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Abstract 

Virtual keyboard-based non-touch character input systems present an advanced communication method 
between humans and computers, offering interaction in challenging environments like industrial settings. 
Extensive research has explored touch and touchless input methods, including hand gestures, aerial 
handwriting, sign language recognition, and finger alphabet systems. However, many systems require 
significant learning and complex processing for accurate character recognition. This reveals the need for 
more efficient, accessible, and low-overhead solutions in non-touch input technologies. This paper presents 
a virtual keyboard-based character input system that utilizes hand gesture detection to create a novel 
touchless human-computer interaction (HCI) interface. The study has two key components: a hand gesture 
recognition system and a character input method. The system leverages MediaPipe's pre-trained models 
to accurately detect human body keypoints, enabling mid-air typing through intuitive hand gestures. We 
calculated the angles and distances between various keypoints to extract the features for gesture 
recognition. OpenCV is used for data collection, and Pynput facilitates keyboard control. A CronoNet 
architecture-based model powers the system, translating hand gestures into precise keyboard inputs. The 
virtual keyboard supports seamless transitions between language layouts, including English and Bengali. 
It recognizes gestures for commands such as scrolling (up/down), swiping (left/right), thumbs up, and finger 
tapping for input. The system achieved an average accuracy of 96.54% in gesture recognition and 97.07% 
in character input, showcasing its superiority over state-of-the-art methods. 

Index Terms: Gesture Recognition, Virtual Keyboard Interface, Mediapipe, Crononet Architecture. 
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1. INTRODUCTION 

Human-computer interaction (HCI) techniques are improving to make new technology 
more usable. A set of assessment criteria should be used to evaluate the performance of 
an ideal HCI, i.e., accuracy, performance, affordability, sociability, mobility, and usability. 
However, traditional keyboard-based input systems can cause security issues in 
performance [1]. As the capabilities of current technology depend on the user's desires, 
goals, and needs, gesture-based technology is becoming more prevalent. Thus, this 
paper bridges the gap between humans and computers by developing technical 
interfaces and designs for evaluating successful HCI, making it more straightforward to 
utilize technology securely in daily life. HCI approaches are advancing to make current 
technology more usable. It is a constantly evolving field, representing a new means of 
communication between people and computers in the modern world [2]. Numerous touch 
and non-touch devices, such as tablet displays and smartphones, facilitate this 
interaction. However, touch-based systems pose concerns when the environment is 
unsafe or harmful, a security risk requiring human intervention, or when the user cannot 
touch a device [3]. Additionally, users must be in safe locations to operate in industrial 
settings, food plants, or with robots. Users may be concerned about utilizing touch-based 
devices for critical applications since hackers could retrieve user data, including 
biometrics, posing security problems. 

Modern advancements in these research fields have propelled our applications to new 
heights, enabling computers to process 3D graphics effortlessly and ushering us into the 
era of the Metaverse, characterized by Augmented Reality (AR), Virtual Reality (VR), and 
Mixed Reality (MR). These technologies create immersive worlds where traditional input 
devices, such as keyboards and mice, become inadequate because they are designed 
for two-dimensional user interfaces [4]. The use of head-mounted displays or other 
immersive equipment necessary to create and interact with these environments often 
obstructs the use of conventional input devices. In addition to these practical limitations, 
traditional keyboards and mice pose significant hygiene challenges in specific settings. 
For instance, maintaining a sterile environment in operating theaters is critical, and shared 
input devices can become vectors for contamination. Similarly, hygiene is paramount in 
food production facilities, and using traditional input devices can compromise cleanliness 
[5]. The COVID-19 pandemic has further highlighted these issues, as shared keyboards 
and mice can contribute to the spread of pathogens. Beyond hygiene concerns, these 
devices also present security vulnerabilities [6]. Keyboards can be infected with key-
logger malware, which captures and transmits every keystroke to attackers, 
compromising sensitive information. This is particularly concerning in environments 
where confidentiality is crucial, such as healthcare, finance, and corporate settings [7]. 
As we advance into more immersive digital realms, developing and adopting new input 
methods that address these limitations and vulnerabilities becomes increasingly 
essential. Innovations such as gesture recognition, voice commands, and brain-computer 
interfaces are emerging as potential solutions, offering more intuitive and secure ways to 
interact with digital environments [8]. These technologies enhance user experience and 
mitigate the hygiene and security issues associated with traditional input devices. 
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For this reason, hand gesture-based virtual interface technology has been widely used to 
realize the non-touch system described above. Many experiments have been undertaken 
in non-touch systems (i.e., hand gesture languages), including VR, HCI, brain-computer 
interfaces, touch-free writing, aerial handwriting, and sign languages [9-11]. However, 
there may still be an emphasis on learning conditions and overhead processing for 
recognition. Consequently, in this paper, we propose a virtual interface-based character 
input system based on a webcam, which is readily available and widely used so that users 
do not have to type or write on a keyboard or touchpad. This research aims to create a 
quick, simple input technique using a hygienic and safe character input system. The main 
contributions of this paper are as follows: 

1. We developed a virtual keyboard interface with a design resembling a traditional on-
screen keyboard, allowing users to input characters familiarly and intuitively. 

2. Utilizing MediaPipe's pre-trained models, our system accurately detects human body 
part locations, enabling mid-air typing through intuitive hand gestures. We calculated 
various measurements, including angle and distance, to enhance gesture recognition. 
Extensive feature extraction was performed to ensure precise gesture identification for 
accurate character input. 

3. We proposed a robust CronoNet architecture that effectively integrates convolutional 
and recurrent neural networks to capture spatial and temporal features, optimizing 
hand gesture detection. 

4. The interface allows users to input characters using various gesture functions, 
including scrolling (up/down), swiping (left/right), thumbs up, and finger tapping. The 
system demonstrates superior performance when compared to state-of-the-art 
methods. 

The structure of this paper is organized as follows: Section 2 provides a comprehensive 
review of recent research related to character input systems. Section 3 outlines the 
methodological framework, detailing the body pose estimation process, data 
preprocessing, feature extraction, and the proposed CronoNet architecture. Section 4 
presents the experimental results and includes an in-depth discussion based on these 
findings. Finally, Section 5 offers the concluding remarks.  
 
2. RELATED WORKS 

Extensive and ongoing research has explored non-touch interfaces utilizing hand 
gestures, with various methods proposed for gesture recognition across diverse 
applications. Recent advancements in deep learning and machine learning have notably 
enhanced classification performance in hand gesture recognition tasks. Here are some 
recent studies related to character input systems, hand gesture recognition, and the 
application of machine and deep learning techniques for these purposes. An intelligent 
noncontact gesture-recognition system integrates a triboelectric touchless sensor (TTS) 
with a deep-learning-based multilayer perceptron, recognizing 16 gestures with 96.5% 
accuracy and enabling noncontact robot-controlled throat swab collection [14]. In [15], the 
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authors proposed a method to enhance accuracy and recognition areas in hand gesture 
recognition using the CapsNet of a deep neural network and Leap Motion by extracting 
and preprocessing infrared images and training networks. However, the cost of sensor 
devices is limited and inaccessible to everyone; however, in this paper, we use readily 
available webcams found on smartphones, laptops, or webcam devices. In [16], the 
authors introduced a video-based Finger Writing Virtual Character Recognition System 
(FVCRS) that allows wireless character input using fingertip movements. It accurately 
recognizes uppercase (95.3%) and lowercase (98.7%) English alphabets. This system 
focuses solely on English character recognition and lacks a virtual keyboard, making 
background noise a significant challenge in accurately recognizing input characters. One 
study introduced a virtual keyboard that enables text input by tracking fingertip location 
and hand skin tone with a camera, using a keyboard printed on paper affixed to various 
surfaces [18]. Another study proposed a similar system, using camera-detected hand 
gestures to control mouse movements and clicks, with an algorithm mapping mouse and 
keyboard functions through convex hull flaw detection [19]. 

Touchless devices have become widespread, particularly after the Covid-19 pandemic. 
The COVID-19 pandemic has increased the need for contactless biometric authentication 
systems. This work introduces a novel hand gesture-based sign digit recognition system 
using a memory-efficient deep learning convolutional neural network. Deployed on a 
Raspberry Pi 4, it achieves 98.47% accuracy in classifying sign language digits for user 
authentication [20]. This study explored correlations between gesture usability metrics 
and qualitative properties, identifying the most efficient gestures for surgeon-computer 
interaction through statistical analysis and usability testing with neurosurgeons [21]. 
However, hand gesture recognition and noise removal remain challenging, often leading 
to performance overhead concerns. Character input systems using flick input usually 
require users to memorize input methods, which can be difficult [3]. In this paper, we 
propose a virtual keyboard system that mimics the familiar 'on-screen keyboard' for ease 
of use.  
 
3. PROPOSED METHODOLOGY 

This system detects and recognizes essential body poses, serving as the primary input 
method to identify specific keys on a virtual keyboard. By integrating data from various 
body positions, the CronoNet architecture plays a crucial role in interpreting gestures and 
converting them into character inputs. The system generates the desired characters 
through precise gesture recognition, enhancing interaction efficiency and intuitiveness. 
This approach highlights the potential of using body position data and advanced neural 
networks like CronoNet to create more natural, gesture-based human-computer 
interactions, offering an innovative alternative to traditional input devices like keyboards 
and mice. Figure 1 presents the general flow of the virtual character input system. 
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Figure 1: The general process of the virtual character input system 

3.1 Dataset Descriptions 

This dataset focuses on hand gesture detection and is specifically designed for advanced 
analysis and training purposes. During data collection, a high-quality camera was used 
to ensure maximum clarity and fidelity of the captured images. This system concentrated 
on different gestures from a wide range of possible gestures: scrolling (up/down), swiping 
(left/right), thumbs up, and finger tapping. To enhance the dataset's versatility, other 
gestures were combined into a single category, encompassing random or no actions. The 
dataset comprises 1148 recorded actions, each consisting of a sequence of 30 images, 
resulting in 34,440 images. This comprehensive repository is meticulously curated to 
support in-depth analysis, training, and experimentation in hand gesture detection.  

 

Figure 2: Movements of hand gesture from right to left 
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3.2 Preprocessing 

In this research, we used the MediaPipe model for the critical task of human body keypoint 
detection [12], a key step in preprocessing our dataset. MediaPipe is highly effective in 
accurately identifying and predicting 32 keypoints across the human body. By utilizing this 
advanced framework, we carefully selected the keypoints most relevant to our study, 
ensuring that we extracted the features essential for our analysis. This approach allowed 
us to focus on the most critical data, enhancing the accuracy and relevance of our 
findings. Figure 3 shows the body skeleton of different key points.   

 

Figure 3: The framework of the body skeleton is made up of different key points 

Our preprocessing approach involved a multi-faceted strategy, concentrating on two 
fundamental techniques: 

1. Distance Measurement: We meticulously measured the distances between keypoint 
pairs, enabling a detailed understanding of the spatial relationships within the human 
body. Table 1 shows the distance point of the different organs of the body skeleton, 
and Figure 4 shows an example of the distance measurement of other key points of 
the body skeleton.  

2. Angle Calculation: We computed the various angles formed between different body 
parts to advance our investigation. This phase was crucial for understanding the 
subtleties of postures and body movements. Table 2 represents the different angle 
representations of the body movements. Furthermore, our approach extended 
beyond conventional 2D angle computations by incorporating measurements along 
all three axes: (x, y), (x, z), and (y, z). This enabled a comprehensive evaluation of 
the body's orientation in three dimensions. By utilizing this thorough preprocessing 
strategy, we aimed to extract subtle features that capture the essence of human 
movements, thereby providing a robust foundation for further analysis and model 
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development in our future research endeavors. Figure 5 shows an example of an 
angle representation of body movements.  

Table 1: Distance between different organs of body keypoints pairs 

Distance 

Point-1 Point-2 Organ-1 Organ-2 

0 13 Nose Left Elbow 

0 14 Nose Right Elbow 

0 15 Nose Left Wrist 

0 16 Nose Right Wrist 

11 15 Left Shoulder Left Wrist 

12 16 Right Shoulder Right Wrist 

23 13 Left Hip Left Elbow 

24 14 Right Hip Right Elbow 

23 15 Left Hip Left Wrist 

24 16 Right Hip Right Wrist 

 
Table 2: Angle representation from body movement 

Angle 

Point-1 Point-2 Point-3 Organ-1 Organ-2 Organ-3 

0 13 15 Nose Left Elbow Left Wrist 

0 14 16 Nose Right Elbow Right Wrist 

11 13 15 Left Shoulder Left Elbow Left Wrist 

12 14 16 Right Shoulder Right Elbow Right Wrist 

13 15 21 Left Elbow Left Wrist Left Thumb 

14 16 22 Right Elbow Right Wrist Right Thumb 

23 11 13 Left Hip Left Shoulder Left Elbow 

24 12 14 Right Hip Right Shoulder Right Elbow 

21 15 19 Left Thumb Left Wrist Left Index 

22 16 20 Right Thumb Right Wrist Right Index 

21 15 17 Left Thumb Left Wrist Left Pinky 

22 16 18 Right Thumb Right Wrist Right Pinky 

19 15 17 Left Index Left Wrist Left Pinky 

20 16 18 Right Index Right Wrist Right Pinky 
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Figure 4: Example of the distance measurement of different keypoints 

 

Figure 5: Example of angle representations of body movements 

After completing the preprocessing stage using the MediaPipe model, we conducted a 
careful feature selection process to extract the most significant aspects of each image in 
our dataset. We concentrated on keypoint positions from a specific subset of keypoints, 
specifically keypoints 0 and 11-25, which were identified as most relevant for our analysis. 
By compiling the positional data from these selected keypoints across all images, we 
created a comprehensive feature set of 114 distinct features for each image. For every 
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action recorded in our dataset, this feature set is organized in a structured format with 
dimensions (30, 114), capturing the positional details across the 30 sequential images 
associated with each action. 

3.3 Proposed CronoNet Architecture 

The CronoNet architecture, specifically designed for hand gesture detection, integrates 
convolutional and recurrent neural network components to effectively capture spatial and 
temporal features from the input data. This section elaborates on the detailed architecture 
of CronoNet, highlighting its layers and the design rationale. Figure 6 shows the overall 
flow of CronoNet architecture. The system detects various key points from input images. 
To extract different features, we calculated angles and distance measurements using the 
keypoints of the performed gesture. Figure 7 shows the proposed model architecture.  

 

Figure 6: General flow of CronoNet architecture 
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Figure 7: The proposed CronoNet model architecture 

The CronoNet architecture comprises a series of convolutional blocks followed by gated 
recurrent units (GRUs) [13], designed to process sequential skeleton data extracted from 
video frames.  
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The key components of the architecture are as follows: 

1. Input Layer: The input layer receives sequences of skeleton data points. In our 
experiment, the input shape was defined as (30, 114), representing 30 time steps and 
114 features per time step. 

2. Convolutional Blocks: Three convolutional blocks extract spatial features at different 
scales. Each block consists of three convolutional layers with varying kernel sizes (2, 
4, and 8) to capture features at various resolutions. These layers use ReLU activation 
and are followed by concatenation to merge the features. 

 First Convolutional Block: The input is passed through three Conv1D layers with 
kernel sizes of 2, 4, and 8, each containing 32 filters, and the outputs are 
concatenated. 

 Second Convolutional Block: The concatenated output from the first block is 
processed through another set of three Conv1D layers, followed by concatenation. 

 Third Convolutional Block: This process is repeated, resulting in a final 
concatenated output representing the spatial features. 

3. To capture temporal dependencies, the model integrates a series of GRU (Gated 
Recurrent Unit) layers: 

 First GRU Layer: The output from the convolutional blocks is fed into a GRU layer 
with 32 units, generating sequences of length 4 with 32 features. 

 Second GRU Layer: The output from the first GRU layer is further processed by a 
second GRU layer, where the output sequences are concatenated with those from 
the preceding GRU layer. 

 Third GRU Layer: An additional GRU layer processes the concatenated output, 
enhancing the capture of temporal dependencies. 

 Final GRU Layer: The final GRU layer reduces the sequence to a single output 
vector of 32 features. 

4. Dense Layer: The final output from the GRU layers is input into a Dense layer with 6 
units, corresponding to the number of gesture classes. This Dense layer employs a 
softmax activation function to generate class probabilities. 

3.4 Virtual Keyboard 

Figure 8 illustrates the framework of the virtual keyboard system designed for multilingual 
input, specifically supporting both Bangla and English keyboards. The user can input 
characters through various hand gestures, with the keyboard layout resembling a 
conventional computer on-screen keyboard. The virtual keyboard provides two main 
options: "Show" and "Exit." Selecting the "Show" option activates the corresponding 
keyboard, allowing the user to input characters via hand gestures. This feature enables 
users to interact with the system in a manner that mimics typing on a physical keyboard, 
thereby facilitating a more intuitive and accessible user experience. 
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Figure 8: The framework of the virtual keyboard 

In addition to the basic input functionality, the virtual keyboard includes a "Change" option, 
enabling users to switch between the Bangla and English keyboards seamlessly. This 
feature is particularly beneficial for bilingual users who must alternate between 
languages. Furthermore, a "Hide" option is available for users who wish to temporarily 
conceal the keyboard, providing flexibility in managing screen space. The system also 
integrates a textbox that is displayed alongside the keyboard. This textbox serves as a 
real-time display of the characters being input, allowing users to monitor their input and 
make corrections as necessary. Combining these features ensures that the virtual 
keyboard is both user-friendly and versatile, catering to the needs of a diverse user base. 

This research uses various hand gestures for character input in the virtual keyboard 
system. The "Swipe Left" gesture switches the language input mode by moving the right 
hand from right to left. A simultaneous up-and-down motion of both hands changes the 
keyboard layout—either switching to the Bangla keyboard for digit input or toggling 
between uppercase and lowercase letters on the English keyboard. When the virtual 
keyboard is not visible, the same up-and-down gestures enable scrolling through the 
interface. The "Thumbs Up" gesture simulates pressing the "Enter" key. While typing on 
the virtual keyboard, "Swipe Left" and "Swipe Right" gestures function as "Delete" and 
"Space," respectively. Finally, a thumb and index finger tapping gesture is used to input 
a character. Table 3 provides a detailed description of the gestures used for character 
input in the virtual keyboard. 
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Table 3: Description of the gestures from character input in the virtual keyboard 

Functions Description 

‘Swipe Left’ 

Switches the language mode in Bangla or English keyboard 

Execute the ‘Delete’ function in the virtual keyboard when the character 
input is enabled. 

‘Swipe Right’ 

Switches the language mode 

Execute the ‘Space’ function in the virtual keyboard when the character 
input is enabled. 

Thumbs Up Simulate the “Enter” key. 

Scroll Up Switches the virtual keyboard in digits input  

Scroll Down 
toggling between uppercase and lowercase letters on the English 
keyboard 

Finger Tapping Input a character.  

 
4. EXPERIMENTAL ANALYSIS AND DISCUSSION 

4.1 Experimental Setup and Data Collection 

The experimental data was collected using a video acquisition camera, specifically the 
Logitech BRIO model, which captures video at 30 frames per second. We used Google 
Colab for processing, leveraging its specifications of a 2-core processor, 16GB RAM, and 
a 16GB T4 GPU (x2).  

After collecting user video data, we extracted skeletal keypoints from each frame using 
the MediaPipe model, yielding 32 points across the human body. The computation time 
for this process ranged between 5-10 milliseconds, which did not impact the video’s 
speed or timing. For the virtual keyboard system, utilizing all the skeletal keypoints was 
unnecessary.  

Instead, we focused on relevant features extracted from the keypoints, specifically those 
that measured distances to identify hand gestures. Additionally, we calculated angles 
between key joints such as the shoulder-elbow-wrist and hip-shoulder-elbow. These 
features were then concatenated, sorted chronologically, and used for gesture recognition 
in the keyboard system. 

4.2 Experimental Results and Analysis 

Our research employed the CronoNet framework as the core architecture for hand 
gesture detection in character input. The gesture recognition model was trained over 100 
epochs, with performance metrics carefully monitored throughout. We also trained 
various models to evaluate our proposed architecture, including XGBoost, Extra Trees, 
SVC, Multilayer Perceptron (MLP), Passive Aggressive, Ridge CV, Random Forest (RF), 
Bagging, and K-nearest Neighbors. 

Table 4 summarizes the CronoNet model architecture parameters. This architecture, 
which integrates convolutional and recurrent layers, is specifically designed to efficiently 
handle the complexities of hand gesture detection by leveraging both spatial and temporal 
data. 
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Table 4: Parameter description of the proposed architecture 

Layer (type) Output Shape Param # Connected to 

input_1 (InputLayer) (None, 30, 114) 0 [] 

conv1d_1 (Conv1D) (None, 15, 32) 7328 input_2[0][0] 

conv1d_2 (Conv1D) (None, 15, 32) 14624 input_2[0][0] 

conv1d_3 (Conv1D) (None, 15, 32) 29216 input_2[0][0] 

concatenate_1 
(Concatenate) 

(None, 15, 96) 0 
conv1d_9[0][0], 
conv1d_10[0][0], 
conv1d_11[0][0] 

Conv1d_4 (Conv1D) (None, 8, 32) 6176 concatenate_5[0][0] 

conv1d_5 (Conv1D) (None, 8, 32) 12320 concatenate_5[0][0] 

conv1d_6 (Conv1D) (None, 8, 32) 24608 concatenate_5[0][0] 

concatenate_2 
(Concatenate) 

(None, 8, 96) 0 
conv1d_12[0][0], 
conv1d_13[0][0], 
conv1d_14[0][0] 

conv1d_7 (Conv1D) (None, 4, 32) 6176 concatenate_6[0][0] 

conv1d_8 (Conv1D) (None, 4, 32) 12320 concatenate_6[0][0] 

conv1d_9 (Conv1D) (None, 4, 32) 24608 concatenate_6[0][0] 

concatenate_3 
(Concatenate) 

(None, 4, 96) 0 
conv1d_15[0][0], 
conv1d_16[0][0], 
conv1d_17[0][0] 

gru_1 (GRU) (None, 4, 32) 12480 concatenate_7[0][0] 

gru_2 (GRU) (None, 4, 32) 6336 gru_4[0][0] 

concatenate_4 
(Concatenate) 

(None, 4, 64) 0 gru_4[0][0], gru_5[0][0] 

gru_3 (GRU) (None, 4, 32) 9408 concatenate_8[0][0] 

concatenate_5 
(Concatenate) 

(None, 4, 96) 0 
gru_4[0][0], gru_5[0][0], 
gru_6[0][0] 

gru_4 (GRU) (None, 32) 12480 concatenate_9[0][0] 

dense_1 (Dense) (None, 6) 198 gru_7[0][0] 

Total params 178278 (696.40 KB) 
Trainable params: 
178278 (696.40 KB) 

Non-trainable params: 0 (0.00 
Byte) 

To further assess the pperformance of CronoNet, we evaluated its precision, recall, F1 
score, and accuracy for each specific task. The detailed results are shown in Table 5. 

Table 5: The Precision, Recall, F1-Score, and the accuracy of different hand 
gestures 

Task Precision Recall F1 Accuracy 

Thumbs up 0.9688 0.8611 0.9118 0.8611 

Scroll Down 0.9756 1 0.9877 1 

Scroll Up 0.9512 1 0.975 1 

Swipe Left 0.9737 0.9737 0.9737 0.9737 

Swipe Right 1 1 1 1 

No Action 0.9268 0.95 0.9383 0.95 

Average 0.966 0.9641 0.9644 0.9654 

CronoNet demonstrated the performance across multiple tasks, achieving high precision, 
recall, and F1-scores. The average precision, recall, and F1-score were 0.9660, 0.9641, 
and 0.9644, respectively, with an overall accuracy of 0.9654. Tasks such as "down," " 
up," and "swipe right" achieved perfect accuracy. 
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Figure 9 presents the confusion matrix for the CronoNet architecture, visually 
representing the model's performance across different tasks. The confusion matrix shows 
that CronoNet effectively distinguishes between tasks with minimal misclassifications. 
Most tasks have many correctly classified instances, underscoring the model's 
effectiveness in handling various gestures. Figure 9 presents the loss and accuracy of 
the proposed architecture. Figure 10(a) illustrates the loss curve, depicting the training 
and validation loss over 100 epochs. It shows how the model's loss decreased and 
stabilized, indicating effective learning and convergence. Figure 10(b) presents the 
accuracy curve, showing the training and validation accuracy over the epochs. This curve 
highlights the improvement and eventual stabilization of the model's accuracy, confirming 
its robustness and generalization capability. 

 

Figure 9: Confusion matrix of the CronoNet Architecture 

 

Figure 10: (a) Training and Validation Loss, (b) Training and Validation Accuracy 
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Furthermore, we evaluated multiple machine learning models on our dataset to assess 
their performance based on accuracy. Among the models tested, CronoNet, XGBoost, 
and ExtraTrees demonstrated similar performance, each with an accuracy of 0.9654. This 
was followed by SVC and Multilayer Perceptron (MLP), which achieved an accuracy of 
0.9610. Table 6 shows the performance accuracy of different machine learning models. 
Moreover, we can say that the CronoNet achieved a better accuracy of 0.9654, 
outperforming the others. 

Table 6: Model Accuracy Comparison 

Model Accuracy 

CronoNet 0.9654 

XGB 0.9654 

Extra Trees 0.9654 

SVC 0.961 

MLP 0.961 

Passive Aggressive 0.9567 

Ridge CV 0.9567 

Ridge 0.9567 

Random Forest 0.9351 

Bagging 0.9177 

KNeighbors 0.8788 

The CronoNet architecture exhibited robust performance across various metrics and 
tasks, proving a viable choice for gesture recognition. Analysis of the confusion matrix 
confirmed CronoNet’s ability to classify different tasks with high precision accurately. As 
illustrated by the loss and accuracy curves, the training process also validated the model’s 
stability and effectiveness.  

Our preference for CronoNet was based on its practical applicability and superior real-
world performance observed during extensive testing. While other machine learning 
models demonstrated commendable accuracy in controlled environments, CronoNet 
showed unparalleled efficacy in real-world scenarios. 

The framework's robustness and adaptability were impressive, as it handled 
environmental factors and noise inherent in real-world data with remarkable resilience. 
CronoNet's ability to generalize beyond the training dataset and capture temporal 
dependencies in sequential data suited it exceptionally for hand gesture detection.  

Moreover, CronoNet outperformed in scenarios where temporal information was critical, 
translating into enhanced accuracy and reliability. This superiority underscores its 
practical utility and effectiveness over traditional machine-learning approaches.  

4.3 Character input system 

The user inputs characters through various hand gesture functions. Initially, the user 
activates the virtual keyboard and selects the desired language for input. Users can 
switch between Bangla and English modes by moving their right hand from right to left or 
left to right.  
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To input a character, the user navigates over the keyboard, selects the target character, 
and taps with their index finger and thumb. The character is then displayed in a textbox 
on the virtual keyboard. While the system achieves 100% accuracy in character 
recognition, its overall precision decreases when users accidentally select incorrect 
characters. Figure 11 illustrates the character input system. 

Random participants entered 41 characters, 34 in Bangla and 17 in English. In a Bangla 

sentence, the user inputs something like "আমাদের দেদের নাম বাাংলাদেে," and for English, 

it would be "I love my country." The input of Bangla and English characters is shown in 
Figure 12. The average accuracy of character selection and the recognition rate for all 
users are shown in Figure 13.  

 

Figure 11: Example of the virtual keyboard for character input 

 

Figure 12: The example of the random respondent of character input 
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Figure 13: The average recognition rate of the character input system 

A total of 25 random respondents were asked to perform the character input task. Figure 
12 shows that the average recognition accuracy for inputting Bangla and English 
characters is 97.07%. Specifically, the accuracy for Bangla characters is 95.5%, while for 
English characters, it is 98.59%. The average time to input the total number of characters 
is 63 seconds. Consequently, users can input an average of 39.04 characters per minute. 
 
5. CONCLUSION 

This paper presented a virtual keyboard system that uses hand gesture recognition to 
improve Human-Computer Interaction (HCI). Using MediaPipe's pre-trained models, our 
system accurately detects human body parts, allowing users to type in mid-air. This 
touchless interface enhances accessibility for those with physical impairments and 
provides a hygienic alternative to traditional keyboards. Using OpenCV for data 
acquisition and Pynput for keyboard control, we developed a highly efficient system based 
on the CronoNet architecture. Our model, trained over 100 epochs, achieved a 96.54% 
accuracy rate and can switch between multiple language layouts, including English and 
Bangla.  

The average character input accuracy is 97.07%, with English character input accuracy 
at 98.59%. Despite the higher accuracy of the Logistic Regression model in controlled 
conditions, we chose CronoNet for its robustness and adaptability in real-world scenarios. 
The CronoNet model's ability to handle environmental noise and capture temporal 
dependencies made it ideal for practical applications like hand gesture detection. Our 
research suggests that this Bangla virtual keyboard, with its high accuracy and 
multilingual support, is a significant advancement in HCI, offering a streamlined and 
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efficient method for digital communication. Future work will improve accuracy, expand to 
other languages, and integrate with augmented and virtual reality systems. This research 
highlights the potential of gesture-based interfaces and paves the way for future 
innovations in touchless computing. 
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