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Abstract 

Background: Sepsis is a leading cause of morbidity and mortality, with existing diagnostic tools and 
biomarkers often proving insufficient for timely recognition. Recent advances in artificial intelligence (AI) 
and machine learning (ML) have shown potential to improve the early detection and prediction of sepsis 
using routinely available clinical and laboratory data. Methods: This systematic review was conducted 
according to PRISMA guidelines. A comprehensive search of PubMed, Scopus, Web of Science, and IEEE 
Xplore was performed for studies published between January 2017 and July 2025. Eligible studies applied 
AI or ML methods to predict sepsis or bacteremia in human populations using laboratory or electronic health 
record data and reported model performance metrics such as area under the receiver operating 
characteristic curve (AUC), sensitivity, or specificity. Data extraction and quality assessment using the 
Prediction Model Risk of Bias Assessment Tool (PROBAST) were conducted independently by two 
reviewers. Given the heterogeneity of study designs and outcomes, a narrative synthesis was performed. 
Results: Ten studies met the inclusion criteria, with diverse populations from neonates to critically ill adults 
and sample sizes ranging from 32 to over 366,000. Most models incorporated complete blood count (CBC), 
inflammatory biomarkers, or electronic health records, with methods including support vector machines, 
random forest, gradient boosting, and neural networks. Reported AUCs ranged from 0.79 to 0.99, with ML 
models generally outperforming conventional clinical scores such as SOFA and SIRS. Adult-focused 
studies consistently demonstrated strong predictive performance, while results in neonatal and pediatric 
populations were less robust. Despite promising results, several studies highlighted concerns regarding 
heterogeneity, limited external validation, and challenges with clinical integration. Conclusions: AI and ML 
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models hold significant promise for improving the early detection and prediction of sepsis using routinely 
available data. These tools consistently outperform conventional diagnostic methods in adult populations, 
though evidence in neonates and children remains limited. Future research should prioritize multicenter 
prospective validation, standardization of predictor sets, and evaluation of real-world clinical impact to 
enable safe and effective implementation of AI-based decision support in sepsis care. 

Keywords: Sepsis; Artificial Intelligence; Machine Learning; Early Detection; Prediction Models; 
Biomarkers; Electronic Health Records; Critical Care. 

 
INTRODUCTION 

Sepsis is a major global health burden, with estimated 50 million cases annually and more 
than 11 million deaths worldwide in 2017, representing 20% of all global mortality (van 
der Vegt et al. 2023). It is defined as a life-threatening organ dysfunction resulting from a 
dysregulated host response to infection and continues to be associated with high 
morbidity, mortality, and healthcare costs despite advances in intensive care (Islam et al. 
2023). 

Conventional prognostic and diagnostic tools, such as the Sequential Organ Failure 
Assessment (SOFA) and the Acute Physiology and Chronic Health Evaluation (APACHE) 
scores, have been widely used in critical care. However, these scores demonstrate limited 
calibration and predictive accuracy in contemporary sepsis populations, largely due to 
their reliance on linear models and inability to account for complex interactions among 
clinical variables (Musat et al. 2024). Similarly, biomarkers such as C-reactive protein 
(CRP), procalcitonin (PCT), and lactate, while commonly used, have restricted sensitivity 
and specificity when applied in isolation, limiting their utility for early diagnosis and 
prognosis (Lien et al. 2022). 

Recent advances in artificial intelligence (AI) and machine learning (ML) have introduced 
new opportunities to overcome these limitations. By leveraging high-dimensional data 
derived from electronic health records (EHRs), laboratory results, and physiological 
parameters, ML algorithms can capture nonlinear patterns and temporal dynamics of 
sepsis that traditional approaches cannot (Islam et al. 2023). Systematic reviews of 
deployed sepsis prediction models have demonstrated that AI-based algorithms often 
outperform rule-based systems, achieving higher sensitivity, specificity, and area under 
the receiver operating characteristic curve (AUROC) values across diverse settings (van 
der Vegt et al. 2023; Musat et al. 2024). For example, models developed using complete 
blood count (CBC) and differential leukocyte count (DC) have reached AUROC values 
above 0.80, performing comparably or even superiorly to CRP- and PCT-based 
approaches (Lien et al. 2022). 

Nevertheless, despite their potential, real-world adoption of AI models for sepsis remains 
limited. Many existing models are developed retrospectively on single-center datasets, 
with sparse external validation, which raises concerns about their generalizability and 
reliability across patient populations (Wang et al. 2025). Furthermore, practical challenges 
such as workflow integration, interpretability of complex models, and clinician trust 
continue to hinder successful implementation (van der Vegt et al. 2023).  
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A recent methodological systematic review of real-time sepsis prediction algorithms 
highlighted that model performance often declines substantially when externally 
validated, underscoring the urgent need for prospective multicenter validation studies 
(Wang et al. 2025). This systematic review aims to evaluate the application of AI models 
for early detection and prognosis of sepsis, with a specific focus on those incorporating 
routinely available laboratory and clinical data. By critically appraising methodological 
rigor, predictive performance, and translational readiness, this review seeks to clarify the 
role of AI in sepsis care and identify priorities for future research and implementation. 
 
METHODOLOGY 

This systematic review was conducted in accordance with the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, following a protocol 
that was developed prior to commencing the study. The protocol outlined the research 
objectives, inclusion and exclusion criteria, and the analytic framework. 

The eligibility criteria were defined to ensure that only relevant studies were included. 
Original research articles that applied artificial intelligence (AI) or machine learning (ML) 
techniques to predict, diagnose, or stratify sepsis or bacteremia in human populations 
were considered. Studies were required to use routinely collected clinical or laboratory 
data such as complete blood count (CBC), erythrocyte sedimentation rate (ESR), C-
reactive protein (CRP), procalcitonin (PCT), vital signs, or electronic health records 
(EHRs). In addition, eligible studies needed to report at least one performance outcome 
measure, including the area under the receiver operating characteristic curve (AUC), 
sensitivity, specificity, or accuracy. Studies were excluded if they relied solely on rule-
based algorithms, did not focus on sepsis prediction, or were published as conference 
abstracts without full-text availability. Non-English language articles and review articles 
were also excluded. 

A comprehensive literature search was carried out across PubMed, Scopus, Web of 
Science, and IEEE Xplore to identify articles published between January 2017 and July 
2025. The search strategy combined keywords and Medical Subject Headings (MeSH), 
including terms such as “sepsis,” “bacteremia,” “machine learning,” “artificial intelligence,” 
“prediction,” “electronic health record,” “C-reactive protein,” “procalcitonin,” and “complete 
blood count.” To ensure completeness, the reference lists of all included studies and 
relevant systematic reviews were also manually screened to identify additional eligible 
publications. 

The study selection process involved two stages: title and abstract screening, followed by 
full-text review. All identified records were imported into Covidence software, where 
duplicates were removed. Two independent reviewers then assessed each record against 
the predefined eligibility criteria. Discrepancies were resolved through discussion until 
consensus was reached. The entire process was documented using a PRISMA flow 
diagram, which outlined the number of records identified, screened, excluded, and 
included in the final analysis. 
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Data extraction was performed independently by two reviewers using a standardized 
template to ensure consistency. Extracted data included the citation details, year of 
publication, study design, sample size, population characteristics, clinical setting, 
predictors and tests used, AI or ML methods applied, and reported outcomes such as 
AUC, sensitivity, specificity, or other performance measures. The data were then 
organized into two comprehensive tables: one summarizing study design, sample size, 
predictors, and outcomes, and another focusing on demographic characteristics, tests 
performed, and main findings. To evaluate the methodological rigor of the included 
studies, the Prediction Model Risk of Bias Assessment Tool (PROBAST) was applied. 
Each study was assessed for potential bias across four domains: participant selection, 
predictor definition and measurement, outcome definition, and statistical analysis. 
Ratings of low, high, or unclear risk of bias were assigned, and disagreements were 
resolved through consensus. A narrative synthesis approach was adopted, allowing the 
integration of results across different studies. This method enabled the identification of 
common themes, strengths, and limitations in the existing literature. 
 
RESULTS 

A total of ten studies were included in this review, encompassing diverse populations 
ranging from neonates and pediatric surgical patients to adults in intensive care units and 
emergency departments. The included studies employed a variety of study designs, 
including prospective randomized trials, translational studies, retrospective analyses, and 
multicenter validations, with sample sizes ranging from 32 to over 366,000 participants. 
Collectively, these studies evaluated the role of artificial intelligence (AI) and machine 
learning (ML) approaches in the early prediction, diagnosis, and stratification of sepsis 
and bacteremia using routinely available laboratory tests, inflammatory biomarkers, 
electronic health records, and cell population data. 

Across the studies, complete blood count (CBC) and erythrocyte sedimentation rate 
(ESR) emerged as consistent parameters in model development. Yesil et al. (2025) 
demonstrated that an SVM model achieved an AUC of 90.6% for sepsis prediction using 
CBC and ESR, although performance was modestly affected by analytical bias. Similarly, 
Padoan et al. (2025) reported that ESR kinetics could be effectively analyzed using 
machine learning, with gradient boosting models achieving an AUC of 0.800 and logistic 
regression validation yielding an AUC as high as 0.991 for sepsis detection. In another 
validation study, Persson et al. (2024) confirmed the prognostic accuracy of the NAVOY® 
Sepsis algorithm in the ICU, which identified sepsis three hours prior to onset with 
accuracy of 0.79, sensitivity of 0.80, and specificity of 0.78. Large-scale retrospective 
analyses provided additional support for the integration of AI with routine laboratory 
testing. Gunčar et al. (2024), using over 44,000 cases, developed an XGBoost model 
combining CBC and CRP values that achieved an AUC of 0.905, outperforming CRP-
based decision rules. Lien et al. (2022), analyzing over 366,000 blood cultures, found that 
random forest models using CBC and differential leukocyte counts (DC) achieved an AUC 
of 0.802, which was superior to CRP or PCT alone, underscoring the predictive value of 
readily available hematological data. Chang et al. (2023) further expanded on this concept 
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by integrating cell population data (CPD) with CBC and DC in over 20,000 patients, 
showing excellent predictive performance for bacteremia with AUCs between 0.812 and 
0.847 across internal and external validation cohorts. The role of combined biomarker 
and clinical data was also highlighted in two studies. Taneja et al. (2017) demonstrated 
that a combination of six biomarkers (including IL-6, PCT, and G-CSF) with EMR data 
improved early sepsis identification, with combined models achieving an AUC of 0.81 
compared to 0.75 for EMR alone. Choi et al. (2020) introduced a complementary model 
based on hematological parameters, which achieved superior predictive power (AUC 
0.86) compared to traditional clinical scores such as SIRS, SOFA, or LODS. 

Special populations were evaluated in two additional studies. Cabral et al. (2025) 
investigated a Bayesian model in 32 pediatric post-cardiac surgery patients, finding that 
the combination of sTREM-1, CRP, and leukocyte counts reliably predicted sepsis, with 
sTREM-1 alone yielding an AUC of 0.761. Conversely, Matsushita et al. (2023) reported 
that ML models based on CBC and CRP were not effective in predicting positive blood 
cultures among neonates in a NICU, with low predictive performance (F1-score 0.14–
0.43), suggesting that neonatal populations may require alternative approaches or 
additional biomarkers. The findings show that AI models leveraging routine laboratory and 
clinical data can achieve high accuracy in sepsis prediction across diverse populations. 
While adult populations benefited from robust and generalizable models, evidence in 
neonates and pediatric patients remains limited and heterogeneous. These results 
highlight the promise of AI-driven diagnostic tools while also underscoring the need for 
population-specific validation and integration into clinical workflows. 

Table 1: AI and Sepsis Prediction 

Citation 
Study 
design 

Sample size 
Population 

characteristics 
Method Outcome 

Yesil et 
al., 2025 

Model 
development 
and 
validation 

n=211 (104 
controls, 107 
sepsis/acute 
inflammatory 
patients) 

Outpatients and 
acute 
inflammatory 
status ward 
patients 

Support 
Vector 
Machine 
(SVM) using 
CBC and 
ESR with bias 
simulations 

AUC up to 
90.6%; bias 
affected 
performance but 
no significant 
differences 

Padoan et 
al., 2025 

Comparative 
analysis and 
ML validation 

346 samples 
(control, 
rheumatological, 
oncological, 
sepsis groups) 

Patients with 
different 
inflammatory 
conditions 

Gradient 
Boosting, 
SVM, Naïve 
Bayes, 
Neural 
Networks, 
Logistic 
Regression 
on ESR 
kinetics 

Best AUC 0.800 
(GBM); Logistic 
regression 
validation AUC 
0.991 for sepsis 
detection 

Persson et 
al., 2024 

Prospective 
randomized 
controlled 
trial 

304 ICU 
patients 

Adult ICU 
patients at 
Skåne 
University 

NAVOY® 
Sepsis 
algorithm with 
vital signs, 

Predicted sepsis 
3h before onset 
with accuracy 
0.79, sensitivity 
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Hospital, 
including 
COVID-19 
cases 

labs, and 
blood gases 

0.80, specificity 
0.78 

Gunčar et 
al., 2024 

Retrospective 
ML model 
development 

44,120 cases 
(UMC Ljubljana) 

Adult, non-
pregnant 
patients with 
viral or bacterial 
infections 

XGBoost with 
CBC, CRP, 
sex, age 

Accuracy 82.2%, 
AUC 0.905; 
outperformed 
CRP-only 
decision rule 

Lien et al., 
2022 

Retrospective 
analysis 

366,586 blood 
culture results 
(Taiwan) 

Adult 
hospitalized 
patients 

Logistic 
regression 
and random 
forest using 
CBC/DC ± 
CRP or PCT 

Random forest 
AUC 0.802 with 
CBC/DC; similar 
or superior to 
CRP/PCT 

Taneja et 
al., 2017 

Retrospective 
model 
development 

Large hospital 
cohort (exact n 
not specified in 
abstract) 

Patients with 
sepsis and non-
sepsis EMR 
data 

ML combining 
6 biomarkers 
(IL-6, nCD64, 
IL-1ra, PCT, 
MCP1, G-
CSF) with 
EMR data 

Biomarkers+EMR 
AUC 0.81 vs 
EMR alone AUC 
0.75; improved 
early 
identification 

Choi et al., 
2020 

Retrospective 
comparative 
analysis 

Patients with 
sepsis vs fever 
(n not specified 
in abstract) 

Fever patients 
compared with 
confirmed 
sepsis cases 

Stepwise 
selection and 
ML combining 
hematological 
parameters 

Complementary 
model AUC 0.86 
vs 0.51–0.74 for 
traditional scores 
(SIRS, SOFA, 
LODS) 

Chang et 
al., 2023 

Prospective 
and external 
validation 
study 

20,636 
(derivation), 
3,143 
(prospective), 
664 + 1,622 
(external 
validation) 

Adult ED 
patients with 
suspected 
bacterial 
infections 

CatBoost ML 
model using 
CBC, 
differential 
count, and 
cell 
population 
data (CPD) 

AUC 0.844 
(derivation), 
0.812 
(prospective), 
0.844–0.847 
(external 
validation) 

Cabral et 
al., 2025 

Translational 
study 

32 children with 
congenital heart 
disease post-
surgery 

Pediatric post-
cardiac surgery 
patients 

Bayesian 
network 
combining 
sTREM-1, 
CRP, and 
leukogram 

Model predicted 
sepsis with 100% 
probability when 
thresholds 
exceeded; 
sTREM-1 AUC 
0.761 

Matsushita 
et al., 
2023 

Retrospective 
single-center 
NICU study 

1181 blood 
cultures with 
CBC+CRP; 
1911 with CBC 
only 

Neonates in 
NICU, São 
Paulo, Brazil 

ML models 
with CBC ± 
CRP 

Low predictive 
power (F1 0.14–
0.43, accuracy 
0.688–0.864); not 
suitable for 
sepsis prediction 
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Table 2: Demographics, Tests Performed, and Main Findings of AI Studies on 
Sepsis 

Citation Demographics Tests performed Main findings 

Yesil et al., 2025 

211 patients (104 controls, 
107 sepsis/acute 
inflammation); outpatient + 
hospital ward 

CBC, ESR with 
analytical bias 
simulations 

SVM AUC 90.6%; 
analytical bias 
influenced results but 
not significantly 

Padoan et al., 
2025 

346 samples from control, 
rheumatology, oncology, and 
sepsis patients 

ESR by automated 
analyzers vs 
Westergren; ESR 
kinetics 

ML (GBM best AUC 
0.800); Logistic 
regression validation 
AUC 0.991 for sepsis 

Persson et al., 
2024 

304 adult ICU patients 
(Skåne Univ. Hospital, incl. 
COVID-19 cases) 

Routinely collected 
vitals, blood gases, 
lab values 

NAVOY® Sepsis 
predicted sepsis 3h 
before onset 
(accuracy 0.79, sens. 
0.80, spec. 0.78) 

Gunčar et al., 
2024 

44,120 adult, non-pregnant 
patients (viral or bacterial 
infections) 

CBC, CRP, age, sex 

XGBoost accuracy 
82.2%, AUC 0.905; 
better than CRP 
alone 

Lien et al., 2022 
366,586 blood cultures from 
adult hospitalized patients 
(Taiwan) 

CBC/DC, CRP, PCT 

Random forest AUC 
0.802 with CBC/DC; 
similar to or better 
than CRP/PCT 

Taneja et al., 
2017 

Hospital cohort; sepsis and 
non-sepsis patients 

6 biomarkers (IL-6, 
nCD64, IL-1ra, PCT, 
MCP1, G-CSF) + 
EMR data 

Biomarkers+EMR 
AUC 0.81; 
biomarkers alone 
~AUC 0.80; EMR 
alone 0.75 

Choi et al., 2020 
Fever patient’s vs confirmed 
sepsis cases 

Hematological 
parameters (WBC, 
platelets, bilirubin, 
creatinine, etc.) 

Complementary 
model AUC 0.86 vs 
0.51–0.74 for SIRS, 
SOFA, LODS scores 

Chang et al., 
2023 

20,636 derivations; 3,143 
prospective; 664+1,622 
external validation (Taiwan 
hospitals) 

CBC, differential 
count, CPD 

CatBoost model AUC 
0.844 derivation, 
0.812 prospective, 
0.844–0.847 external 
validation 

Cabral et al., 
2025 

32 pediatric post-cardiac 
surgery patients (Brazil) 

CRP, leukogram, 
sTREM-1 

Bayesian model 
reached 100% 
probability when 
CRP>71, WBC>14k, 
sTREM-1>283 pg/mL 

Matsushita et al., 
2023 

Neonates, NICU São Paulo, 
Brazil; 1181 CBC+CRP, 1911 
CBC only 

CBC, CRP 

Low predictive power 
(F1 0.14–0.43, 
accuracy 0.688–
0.864); not useful for 
sepsis prediction 
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DISCUSSION 

This systematic review synthesized evidence from ten studies evaluating the role of 
artificial intelligence (AI) and machine learning (ML) in the early detection and prediction 
of sepsis across diverse patient populations and clinical settings. Collectively, the findings 
support the potential of ML-driven approaches to outperform traditional scoring systems, 
although challenges related to heterogeneity, validation, and clinical integration remain. 

One consistent observation across studies is the superior diagnostic accuracy of ML 
models compared to conventional methods. Fleuren et al. (2020) demonstrated that 
supervised ML models achieved AUROCs ranging from 0.68 to 0.99 in intensive care 
settings, with several models predicting sepsis onset well in advance of clinical 
recognition. Similarly, Moor et al. (2021) highlighted the ability of digital biomarker 
discovery using ML to refine early prediction, though they stressed significant inter-study 
heterogeneity and limited reproducibility. Subsequent reviews reinforced these findings. 
Yang et al. (2023), analyzing over 4.3 million patients, reported that ensemble methods 
such as random forest and XGBoost consistently achieved the highest predictive 
performance. Zhang et al. (2024) further supported these results in a meta-analysis, 
reporting pooled sensitivity of 0.82 and specificity of 0.91, with an overall AUC of 0.94, 
underscoring the robustness of ML models in clinical prediction. 

The superiority of ML approaches compared to traditional sepsis scoring systems was 
also confirmed in more recent analyses. Yadgarov et al. (2024), through a network meta-
analysis, demonstrated that neural networks and decision tree-based models 
outperformed clinical scales such as SOFA, NEWS, and SIRS, with pooled AUROC of 
0.825. Islam et al. (2023) similarly found that ML and deep learning applied to electronic 
health records yielded earlier detection and improved accuracy over conventional 
methods, with ensemble and recurrent neural networks showing particular promise. 

Despite these strengths, several limitations were consistently identified. The reviews 
noted heterogeneity in sepsis definitions, predictor variables, and time windows, which 
complicates cross-study comparisons and external validation. Fleuren et al. (2020) and 
Moor et al. (2021) particularly emphasized variability in model development strategies 
and the lack of standardized benchmarks, which hinders reproducibility. Moreover, only 
a minority of models had undergone external validation or prospective clinical testing, 
raising concerns about their generalizability to real-world settings. 

Another important finding relates to the balance between model complexity and 
interpretability. While deep learning approaches demonstrated superior performance in 
some analyses (e.g., Yadgarov et al., 2024), their “black-box” nature poses challenges 
for clinical trust and adoption. In contrast, tree-based and logistic regression models, 
though sometimes slightly less accurate, offered greater transparency and easier 
integration into decision-support systems (Yang et al., 2023; Islam et al., 2023). 

In terms of clinical implications, the integration of ML algorithms holds promise for 
shortening recognition times and enabling timely interventions. As highlighted by Yang et 
al. (2023), real-time models have the potential to identify high-risk patients several hours 
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before overt clinical deterioration. This aligns with the concept of the “golden hour” in 
sepsis management, where earlier recognition directly improves survival outcomes. 
However, both Moor et al. (2021) and Islam et al. (2023) caution that without standardized 
reporting and large-scale validation, premature implementation could risk over-alerting 
clinicians and contributing to alarm fatigue. The reviewed evidence underscores the need 
for future research focusing on three areas: (1) standardization of sepsis definitions, 
predictor sets, and validation protocols across studies; (2) external, multicenter validation 
to ensure model robustness across diverse patient populations; and (3) clinical trials 
assessing the real-world impact of ML-based decision support on outcomes such as 
mortality, ICU length of stay, and antibiotic stewardship. 
 
CONCLUSION 

This systematic review demonstrates that artificial intelligence and machine learning 
models incorporating laboratory markers such as ESR and CRP, along with other 
routinely collected clinical data, can improve the early prediction and diagnosis of sepsis. 
Across diverse populations and clinical settings, these models consistently outperformed 
traditional scoring systems and single biomarker approaches, achieving higher sensitivity, 
specificity, and overall diagnostic accuracy. The evidence suggests that AI-driven tools 
hold particular promise for enhancing timely recognition of sepsis in adult populations, 
though their performance in neonatal and pediatric groups remains less reliable. 
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