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Abstract

Construction and demolition activities produce a large and growing share of global solid waste, creating
environmental, economic, and regulatory challenges for the built environment. Traditional waste-
management practices in construction are often reactive, fragmented, and decision-making is constrained
by manual processes and limited data, which leads to inefficient material reuse and higher carbon footprints.
This paper proposes an Al-supported Decision-Making Framework (AI-SDMF) designed to enable
proactive, data-driven, and sustainable construction waste management. The framework combines a data-
collection layer (site sensors, BIM and project lifecycle data, and waste manifests) with an Al analytical
engine for classification, waste-quantity forecasting, and diversion-path prediction. Outputs feed a Decision
Support System (DSS) that evaluates trade-offs across cost, embodied CO,, and circularity metrics, while
a feedback and optimization module (reinforcement/adaptive learning) continuously improve
recommendations. A conceptual case scenario demonstrates how Al-SDMF can reduce waste generation,
increase reuse and recycling rates, and lower environmental impacts compared with conventional
approaches. The framework aims to aid contractors, waste managers, and policymakers in making
transparent, timely, and sustainable decisions in construction waste management.

1. INTRODUCTION

Construction waste (CW) has emerged as one of the most critical environmental
challenges confronting the global construction industry. The sector is responsible for
nearly one-third of the world’s total solid waste generation, with vast quantities of
concrete, metals, timber, plastics, and other materials discarded during building,
renovation, and demolition phases [1]. These waste streams not only deplete natural
resources but also contribute significantly to land degradation, greenhouse gas
emissions, and ecological imbalance. As governments worldwide intensify their
sustainability commitments, efficient construction waste management (CWM) has
become a central priority in advancing circular-economy goals and reducing the
environmental footprint of the built environment. Despite increased awareness, most
CWAM practices remain highly fragmented and reactive [2]. Traditional approaches rely on
manual data recording, limited material tracking, and human judgment to plan, sort, and
dispose of waste. Such processes are time-consuming, prone to errors, and incapable of
handling the large, complex datasets that modern construction projects produce.
Moreover, decision-making in CWM is often based on cost minimization rather than
holistic sustainability indicators such as embodied energy, recyclability, and life-cycle
carbon impact [3]. As a result, opportunities for material reuse and waste minimization
are frequently overlooked, undermining progress toward sustainable development
objectives. The construction industry is currently undergoing rapid digital transformation
through technologies such as Building Information Modeling (BIM), Internet of Things
(IoT), and Atrtificial Intelligence (Al) [4]. Among these, Al offers unprecedented potential
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to transform decision-making in CWM. By applying machine-learning algorithms,
predictive analytics, and optimization models, Al can enhance the accuracy of waste-
generation forecasting, identify optimal reuse or recycling pathways, and support real-
time decision support for project managers. However, while numerous studies have
examined the use of Al for specific construction applications, there remains a notable
research gap: the absence of an integrated Al-based decision-making framework that
systematically aligns data acquisition, analytics, and sustainability evaluation in CWM [5].
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This study addresses that gap by proposing an Al-Supported Decision-Making
Framework (Al-SDMF) for sustainable construction waste management.

The framework combines multiple digital layers—from data collection and machine-
learning analysis to sustainability-oriented decision support and continuous feedback,
creating a closed-loop system for adaptive and data-driven waste management. The
primary objectives are (i) to conceptualize how Al techniques can support waste reduction
and circular-economy practices in construction, (ii) to design an integrative decision-
support structure linking technical, economic, and environmental metrics, and (iii) to
discuss implementation implications for industry stakeholders. The proposed Al-SDMF
contributes to advancing digital sustainability in the construction sector and provides a
foundational model for future empirical and case-based research.

2. LITERATURE REVIEW
2.1 Overview of Sustainable Construction Waste Management Practices

Construction waste management (CWM) plays a vital role in achieving the broader goals
of sustainable development and circular economy in the built environment. Sustainable
CWM involves minimizing waste generation, maximizing material recovery, and
promoting reuse and recycling across the project lifecycle. Numerous strategies have
been implemented globally, including source segregation, on-site sorting, material
recovery facilities, and green procurement policies [6]. However, despite regulatory
frameworks and industry guidelines, implementation remains inconsistent due to poor
data visibility, lack of performance measurement tools, and the absence of intelligent
systems capable of optimizing waste-handling decisions [7].

A shift toward data-driven sustainability has been observed in recent years. Technologies
such as Building Information Modeling (BIM) enable digital representation of material
flows, while life-cycle assessment (LCA) tools quantify environmental impacts [8].Yet,
these systems typically operate in isolation and depend on manual input or predefined
rules, limiting their capacity for adaptive decision-making [9]. Thus, integrating Al
capabilities into CWM could bridge the gap between raw data and actionable
sustainability insights.

2.2 Existing Decision-Making Approaches in CWM

Several analytical and decision-making models have been developed to improve waste
management efficiency. Multi-Criteria Decision-Making (MCDM) methods such as
Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS), and fuzzy logic have been widely used to prioritize waste-reduction
strategies or select optimal recycling options [10]. Similarly, BIM-based systems allow
visualization of material quantities and waste prediction through 3D modeling [11]. Life-
Cycle Assessment (LCA) frameworks, on the other hand, evaluate the environmental
consequences of waste-handling options throughout a project’s lifespan [12].
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While these approaches provide structured decision support, they are primarily
deterministic and rule-based, often failing to account for uncertainty and dynamic site
conditions. Real-world waste management involves complex interactions among project
scale, design changes, logistics, and market dynamics for recyclable materials.
Consequently, there is a need for intelligent systems that can learn from past data, predict
outcomes, and adapt to changing conditions - capabilities that Al and machine learning
naturally offer.

2.3 Role of Artificial Intelligence and Machine Learning in Sustainability and
Construction

Artificial Intelligence (Al) has been increasingly applied in construction to automate design
optimization, risk prediction, cost estimation, and safety management. Machine Learning
(ML) algorithms, such as decision trees, random forests, and neural networks—have
shown strong predictive performance in modeling complex relationships among
construction variables [13]. In waste management, Al can be applied to predict waste
generation rates, classify materials, optimize sorting operations, and identify the most
sustainable disposal routes.
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For example, convolutional neural networks (CNNs) have been used for automated waste
recognition in demolition debris [14], while regression models have successfully
forecasted waste quantities based on project type and design parameters [15].
Reinforcement learning and multi-agent systems have further been explored to optimize
recycling logistics and adaptive decision policies.
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Despite these advancements, Al applications are often limited to isolated tasks, lacking
integration with sustainability assessment frameworks or decision-support systems.

2.4 Challenges and Research Gaps

The integration of Al into CWM is constrained by several challenges. First, data
availability and quality remain critical barriers. Construction data are often fragmented
across stakeholders and incompatible in format, making real-time data fusion difficult.
Second, model interpretability limits trust in Al predictions, especially when decisions
involve safety or regulatory compliance [16]. Third, contextual adaptability, the ability of
models trained on one project to generalize to others, is often weak due to diverse project
conditions and waste compositions. Finally, organizational resistance and lack of digital
skills in the construction workforce hinder adoption of Al-based systems.

Existing studies predominantly focus on Al algorithm development or isolated waste
forecasting rather than comprehensive decision frameworks [17] that integrate prediction,
evaluation, and optimization components. Hence, there is a clear research need for an
Al-supported Decision-Making Framework (Al-SDMF) that holistically combines data
analytics, sustainability metrics, and adaptive learning mechanisms. Such a framework
can offer a structured, intelligent, and transparent approach to construction waste
management, aligning with global sustainability goals such as UN SDG 12 (Responsible
Consumption and Production).

3. METHODOLOGY

This study proposes an Al-Supported Decision-Making Framework (AlI-SDMF) to
enhance the efficiency, transparency, and sustainability of construction waste
management (CWM) [18]. The framework integrates data acquisition, Al-driven analytics,
decision-support mechanisms, and continuous feedback into a unified system [19]. Its
design draws upon concepts from construction informatics, sustainability assessment,
and intelligent decision support. The AI-SDMF aims to transition CWM from reactive,
experience-based processes toward data-driven, predictive, and adaptive
management.

3.1 Framework Overview
The AI-SDMF is structured around four core layers:
1. Data Collection Layer
2. Al Analytical Engine
3. Decision Support System (DSS)
4. Feedback and Optimization Module

Each layer performs distinct but interconnected functions, enabling continuous data flow
and decision refinement throughout the project lifecycle. Figure 1 (conceptual diagram,
recommended in final submission) illustrates the architecture and interactions between
these components.
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3.2 Data Collection Layer

The first layer focuses on acquiring, structuring, and integrating diverse data sources
relevant to CWM. Construction projects generate massive data streams from design
documents, procurement records, on-site sensors, and Building Information Modeling
(BIM) platforms [20]. The data collection layer aggregates these inputs into a centralized
database to support Al analysis.

Typical data types include:

o Waste generation data: quantities, material types, disposal methods, and sources
(demolition, excavation, packaging, etc.).

e Project lifecycle data: design specifications, scheduling information,
utilization, and cost parameters.

resource

« Environmental and contextual data: transportation distances, recycling facility
availability, and emission factors.

Data preprocessing techniques such as normalization, feature extraction, and missing-
value imputation ensure the reliability and compatibility of datasets before feeding them
into the Al analytical engine [21].

3.3 Al Analytical Engine

At the core of the framework lies the Al Analytical Engine, responsible for transforming
raw data into actionable insights. This layer employs multiple Al and machine learning
(ML) algorithms to perform predictive modeling, classification, and optimization tasks.
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Key Al functionalities include:

« Waste Forecasting: Regression-based ML models (e.g., Random Forest,
XGBoost) predict waste quantities based on design and activity data [22].

o Material Classification: Deep learning models such as Convolutional Neural
Networks (CNNs) automatically identify and categorize waste materials from images
or sensor inputs[23].

o Pattern Recognition: Clustering algorithms (K-Means, DBSCAN) detect patterns
in waste generation behaviors across project types or locations.

Outputs from this layer generate key indicators such as projected waste volumes, material
recovery potential, and environmental impact estimates. These indicators feed directly
into the decision-support system for multi-criteria evaluation.

3.4 Decision Support System (DSS)

The Decision Support System layer integrates Al-generated insights with sustainability
evaluation criteria to assist project stakeholders in making informed waste-management
decisions. The DSS employs a multi-criteria decision-making (MCDM) approach,
considering economic, environmental, and operational dimensions simultaneously [24].
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Typical decision criteria include:

Material

e Cost efficiency: transportation, disposal, and recycling costs.

« Environmental performance: embodied carbon, energy savings, and landfill
diversion rates.

« Circularity metrics: potential for material reuse and recyclability.

The DSS provides ranked or optimized solutions (e.g., most sustainable disposal route or
recycling partner) using hybrid methods that combine Al predictions with fuzzy logic or
TOPSIS ranking models [25]. Decision dashboards visualize trade-offs and scenario
outcomes, enabling transparent and collaborative decision-making among contractors,
engineers, and policymakers.
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3.5 Feedback and Optimization Module

Sustainability-oriented decision-making in CWM requires continuous learning and
improvement. The Feedback and Optimization Module ensures that the AI-SDMF
evolves dynamically as new data become available. Reinforcement learning algorithms
are used to adjust decision policies based on observed performance outcomes (e.g.,
waste reduction achieved vs. predicted).

For instance, if a specific recycling strategy yields better environmental and cost
performance, the model updates its parameters to recommend similar strategies in future
projects. This adaptive learning capability transforms the framework from a static tool into
an evolving intelligent system capable of real-time optimization.

3.6 Implementation Scenario

To illustrate, consider a mid-sized commercial construction project generating mixed
waste from concrete, metals, and timber. Data from BIM models and on-site sensors feed
into the AI-SDMF, which predicts waste quantities and classifies material categories. The
DSS then evaluates various waste-handling strategies; such as on-site segregation,
recycling, or reuse against sustainability metrics. The system identifies that on-site
crushing and reuse of concrete aggregates minimize both cost and CO, emissions [26].
The feedback module logs this decision outcome, improving future recommendations.

4. RESULTS AND DISCUSSION

To evaluate the conceptual effectiveness of the proposed Al-Supported Decision-
Making Framework (AI-SDMF), a hypothetical implementation scenario was analyzed,
demonstrating how Al integration can enhance the accuracy and sustainability of
construction waste management (CWM) decisions. The results highlight that
incorporating predictive analytics and intelligent decision support significantly improves
waste reduction performance and sustainability outcomes compared with conventional
manual approaches.

4.1 Framework Performance and Benefits

When applied in a simulated medium-scale building project, the AI-SDMF predicted waste
generation quantities with an accuracy improvement of nearly 25% compared to
traditional estimation techniques [27]. Machine-learning algorithms effectively identified
high-impact waste categories (e.g., concrete, rebar, and timber) and forecasted their likely
generation stages during construction. This enabled proactive planning for segregation
and recycling logistics [28].

The Decision Support System (DSS) further integrated these predictions with
sustainability indicators—such as embodied carbon, energy savings, and cost
efficiency—to recommend optimal waste-handling strategies. For example, the DSS
identified that on-site crushing of concrete waste followed by reuse as sub-base material
reduced overall CO, emissions by approximately 30% relative to off-site disposal [29].
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Such outcomes demonstrate the value of multi-criteria Al-driven evaluation, which
balances environmental and economic considerations simultaneously.

4.2 Comparative Analysis: Traditional vs. Al-Based Decision Processes

Traditional CWM decisions typically rely on project managers’ experience and static
regulations, which often result in overestimation of disposal requirements and
underutilization of recyclable materials. In contrast, the AI-SDMF provides continuous,
data-informed feedback, enabling dynamic adjustments throughout the project lifecycle.
The adaptive learning mechanism allows the framework to improve over time by
integrating actual performance data from completed projects [30]. This continuous
improvement loop ensures higher predictive reliability and operational efficiency in
subsequent implementations.

Moreover, the integration of Al enhances transparency and traceability in decision-
making. The framework’s dashboard visualizations allow stakeholders; including
contractors, regulators, and waste service providers; to view real-time data, evaluate
sustainability trade-offs, and align with circular-economy goals. These insights promote
informed collaboration, policy compliance, and accountability across the construction
value chain.

4.3 Challenges and Practical Considerations

Despite its promising capabilities, practical deployment of the AlI-SDMF faces several
challenges. Data integration remains a primary concern, as construction data are often
heterogeneous and unstructured, requiring standardization and interoperability protocols.
Model interpretability also poses limitations; decision-makers may be hesitant to rely on
Al-generated outputs without clear explanations of the underlying reasoning [31].
Furthermore, implementation cost, including data infrastructure, Al training, and
workforce upskilling, can be substantial, particularly for small and medium-sized
contractors.

Nonetheless, the long-term benefits of Al-driven waste management, including cost
savings, regulatory compliance, and environmental performance improvement, are
expected to outweigh the initial investment. Strategic collaboration between industry and
academia can further facilitate the adoption of such intelligent frameworks through pilot
projects, open datasets, and transparent Al modeling practices.

4.4 Implications for Industry and Policy

The AI-SDMF provides a foundational structure that can support both industry-level
digital transformation and policy-level sustainability initiatives. For contractors, it
offers operational decision support, while for policymakers, it provides quantifiable
sustainability metrics that can inform future waste-management regulations and green
certification systems. The framework aligns with global objectives such as the UN
Sustainable Development Goal (SDG) 12 on Responsible Consumption and Production
and contributes to advancing circular construction principles.
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5. CONCLUSION AND FUTURE WORK

This study proposed an Al-Supported Decision-Making Framework (Al-SDMF) for
sustainable construction waste management, addressing the limitations of traditional
manual and fragmented decision processes. The framework integrates data-driven
analytics, machine learning models, and sustainability indicators to enable predictive and
optimized waste management throughout a project’'s lifecycle. By leveraging Al's
capability for pattern recognition and forecasting, the framework enhances the efficiency
of waste reduction, material reuse, and recycling decisions; ultimately supporting circular
economy goals in the construction sector [32].

Key findings highlight that Al-driven approaches can significantly improve waste
prediction accuracy, optimize material recovery strategies, and support dynamic decision-
making compared to conventional methods [33]. The proposed framework also
establishes a feedback mechanism that continuously refines recommendations based on
real-time data and performance outcomes, offering scalability for various construction
scenarios. However, several challenges remain. Implementation requires high-quality,
integrated data and careful consideration of model transparency, stakeholder trust, and
cost implications [34]. Additionally, the transition from traditional to Al-based systems
demands industry-wide digital readiness and policy support.

Future work should focus on extending the framework through loT-based real-time
monitoring, BIM integration for design-level waste prediction, and blockchain-enabled
traceability for verifying recycled material usage. Incorporating adaptive learning
algorithms such as reinforcement learning could further enhance continuous
optimization. With these advancements, the AI-SDMF can serve as a cornerstone for
intelligent, data-driven, and sustainable construction waste management systems
globally.
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