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Abstract 

Construction and demolition activities produce a large and growing share of global solid waste, creating 
environmental, economic, and regulatory challenges for the built environment. Traditional waste-
management practices in construction are often reactive, fragmented, and decision-making is constrained 
by manual processes and limited data, which leads to inefficient material reuse and higher carbon footprints. 
This paper proposes an AI-supported Decision-Making Framework (AI-SDMF) designed to enable 
proactive, data-driven, and sustainable construction waste management. The framework combines a data-
collection layer (site sensors, BIM and project lifecycle data, and waste manifests) with an AI analytical 
engine for classification, waste-quantity forecasting, and diversion-path prediction. Outputs feed a Decision 
Support System (DSS) that evaluates trade-offs across cost, embodied CO₂, and circularity metrics, while 
a feedback and optimization module (reinforcement/adaptive learning) continuously improve 
recommendations. A conceptual case scenario demonstrates how AI-SDMF can reduce waste generation, 
increase reuse and recycling rates, and lower environmental impacts compared with conventional 
approaches. The framework aims to aid contractors, waste managers, and policymakers in making 
transparent, timely, and sustainable decisions in construction waste management. 

 
1. INTRODUCTION 

Construction waste (CW) has emerged as one of the most critical environmental 
challenges confronting the global construction industry. The sector is responsible for 
nearly one-third of the world’s total solid waste generation, with vast quantities of 
concrete, metals, timber, plastics, and other materials discarded during building, 
renovation, and demolition phases [1]. These waste streams not only deplete natural 
resources but also contribute significantly to land degradation, greenhouse gas 
emissions, and ecological imbalance. As governments worldwide intensify their 
sustainability commitments, efficient construction waste management (CWM) has 
become a central priority in advancing circular-economy goals and reducing the 
environmental footprint of the built environment. Despite increased awareness, most 
CWM practices remain highly fragmented and reactive [2]. Traditional approaches rely on 
manual data recording, limited material tracking, and human judgment to plan, sort, and 
dispose of waste. Such processes are time-consuming, prone to errors, and incapable of 
handling the large, complex datasets that modern construction projects produce. 
Moreover, decision-making in CWM is often based on cost minimization rather than 
holistic sustainability indicators such as embodied energy, recyclability, and life-cycle 
carbon impact [3]. As a result, opportunities for material reuse and waste minimization 
are frequently overlooked, undermining progress toward sustainable development 
objectives. The construction industry is currently undergoing rapid digital transformation 
through technologies such as Building Information Modeling (BIM), Internet of Things 
(IoT), and Artificial Intelligence (AI) [4]. Among these, AI offers unprecedented potential 
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to transform decision-making in CWM. By applying machine-learning algorithms, 
predictive analytics, and optimization models, AI can enhance the accuracy of waste-
generation forecasting, identify optimal reuse or recycling pathways, and support real-
time decision support for project managers. However, while numerous studies have 
examined the use of AI for specific construction applications, there remains a notable 
research gap: the absence of an integrated AI-based decision-making framework that 
systematically aligns data acquisition, analytics, and sustainability evaluation in CWM [5]. 

Aspect 
Current Situation in 

CWM 
Limitations / 

Problems 
Potential Role of AI & Digital 

Technologies 

Scale of 
construction 
waste 

Construction sector 
generates nearly one-
third of global solid 
waste, including 
concrete, metals, 
timber, plastics and 
other materials. 

Depletion of natural 
resources; land 
degradation; 
greenhouse-gas 
emissions; ecological 
imbalance. 

AI-driven forecasting models can 
predict waste quantities by 
material type and project phase, 
enabling proactive reduction and 
reuse strategies. 

Management 
approach 

Practices are 
fragmented and 
largely reactive. 

Lack of coordination 
across project stages 
and stakeholders; 
missed opportunities 
for circular-economy 
practices. 

Integrated AI-supported decision-
making frameworks can align data 
acquisition, analytics, and 
sustainability evaluation across 
the project lifecycle. 

Data handling 

Manual data 
recording and limited 
material tracking 
dominate current 
practice. 

Time-consuming, 
error-prone, and 
unable to handle large, 
complex datasets 
generated by modern 
projects. 

BIM, IoT sensors, and AI can 
automate data capture, clean 
data, and provide real-time 
analytics on waste flows and 
material stocks. 

Decision 
criteria 

Decisions are often 
driven by short-term 
cost minimization. 

Sustainability 
indicators (embodied 
energy, recyclability, 
life-cycle carbon) are 
underused, reducing 
circular-economy 
benefits. 

Multi-criteria AI models can 
optimize trade-offs between cost, 
environmental impact, and 
resource efficiency, supporting 
more holistic decisions. 

Waste 
minimization 
& reuse 

Reuse and recycling 
options are not 
systematically 
evaluated. 

High-value materials 
are landfilled or 
downcycled; progress 
toward sustainability 
targets is slowed. 

Optimization and 
recommendation algorithms can 
suggest best reuse/recycling 
pathways for each waste stream 
based on technical and economic 
feasibility. 

Digital 
transformation 

BIM, IoT, and AI are 
emerging in 
construction, but often 
used in isolation. 

Lack of an integrated 
framework for CWM; 
digital tools are not 
fully leveraged for 
sustainability. 

An AI-Supported Decision-Making 
Framework (AI-SDMF) can 
integrate BIM/IoT data, machine-
learning analysis, and 
sustainability assessment into a 
closed-loop system for continuous 
improvement. 
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This study addresses that gap by proposing an AI-Supported Decision-Making 
Framework (AI-SDMF) for sustainable construction waste management.  

The framework combines multiple digital layers—from data collection and machine-
learning analysis to sustainability-oriented decision support and continuous feedback, 
creating a closed-loop system for adaptive and data-driven waste management. The 
primary objectives are (i) to conceptualize how AI techniques can support waste reduction 
and circular-economy practices in construction, (ii) to design an integrative decision-
support structure linking technical, economic, and environmental metrics, and (iii) to 
discuss implementation implications for industry stakeholders. The proposed AI-SDMF 
contributes to advancing digital sustainability in the construction sector and provides a 
foundational model for future empirical and case-based research. 
 
2. LITERATURE REVIEW 

2.1 Overview of Sustainable Construction Waste Management Practices 

Construction waste management (CWM) plays a vital role in achieving the broader goals 
of sustainable development and circular economy in the built environment. Sustainable 
CWM involves minimizing waste generation, maximizing material recovery, and 
promoting reuse and recycling across the project lifecycle. Numerous strategies have 
been implemented globally, including source segregation, on-site sorting, material 
recovery facilities, and green procurement policies [6]. However, despite regulatory 
frameworks and industry guidelines, implementation remains inconsistent due to poor 
data visibility, lack of performance measurement tools, and the absence of intelligent 
systems capable of optimizing waste-handling decisions [7]. 

A shift toward data-driven sustainability has been observed in recent years. Technologies 
such as Building Information Modeling (BIM) enable digital representation of material 
flows, while life-cycle assessment (LCA) tools quantify environmental impacts [8].Yet, 
these systems typically operate in isolation and depend on manual input or predefined 
rules, limiting their capacity for adaptive decision-making [9]. Thus, integrating AI 
capabilities into CWM could bridge the gap between raw data and actionable 
sustainability insights. 

2.2 Existing Decision-Making Approaches in CWM 

Several analytical and decision-making models have been developed to improve waste 
management efficiency. Multi-Criteria Decision-Making (MCDM) methods such as 
Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS), and fuzzy logic have been widely used to prioritize waste-reduction 
strategies or select optimal recycling options [10]. Similarly, BIM-based systems allow 
visualization of material quantities and waste prediction through 3D modeling [11]. Life-
Cycle Assessment (LCA) frameworks, on the other hand, evaluate the environmental 
consequences of waste-handling options throughout a project’s lifespan [12]. 
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While these approaches provide structured decision support, they are primarily 
deterministic and rule-based, often failing to account for uncertainty and dynamic site 
conditions. Real-world waste management involves complex interactions among project 
scale, design changes, logistics, and market dynamics for recyclable materials. 
Consequently, there is a need for intelligent systems that can learn from past data, predict 
outcomes, and adapt to changing conditions - capabilities that AI and machine learning 
naturally offer. 

2.3 Role of Artificial Intelligence and Machine Learning in Sustainability and 
Construction 

Artificial Intelligence (AI) has been increasingly applied in construction to automate design 
optimization, risk prediction, cost estimation, and safety management. Machine Learning 
(ML) algorithms, such as decision trees, random forests, and neural networks—have 
shown strong predictive performance in modeling complex relationships among 
construction variables [13]. In waste management, AI can be applied to predict waste 
generation rates, classify materials, optimize sorting operations, and identify the most 
sustainable disposal routes. 

 

For example, convolutional neural networks (CNNs) have been used for automated waste 
recognition in demolition debris [14], while regression models have successfully 
forecasted waste quantities based on project type and design parameters [15]. 
Reinforcement learning and multi-agent systems have further been explored to optimize 
recycling logistics and adaptive decision policies.  
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Despite these advancements, AI applications are often limited to isolated tasks, lacking 
integration with sustainability assessment frameworks or decision-support systems. 

2.4 Challenges and Research Gaps 

The integration of AI into CWM is constrained by several challenges. First, data 
availability and quality remain critical barriers. Construction data are often fragmented 
across stakeholders and incompatible in format, making real-time data fusion difficult. 
Second, model interpretability limits trust in AI predictions, especially when decisions 
involve safety or regulatory compliance [16]. Third, contextual adaptability, the ability of 
models trained on one project to generalize to others, is often weak due to diverse project 
conditions and waste compositions. Finally, organizational resistance and lack of digital 
skills in the construction workforce hinder adoption of AI-based systems. 

Existing studies predominantly focus on AI algorithm development or isolated waste 
forecasting rather than comprehensive decision frameworks [17] that integrate prediction, 
evaluation, and optimization components. Hence, there is a clear research need for an 
AI-supported Decision-Making Framework (AI-SDMF) that holistically combines data 
analytics, sustainability metrics, and adaptive learning mechanisms. Such a framework 
can offer a structured, intelligent, and transparent approach to construction waste 
management, aligning with global sustainability goals such as UN SDG 12 (Responsible 
Consumption and Production). 
 
3. METHODOLOGY  

This study proposes an AI-Supported Decision-Making Framework (AI-SDMF) to 
enhance the efficiency, transparency, and sustainability of construction waste 
management (CWM) [18]. The framework integrates data acquisition, AI-driven analytics, 
decision-support mechanisms, and continuous feedback into a unified system [19]. Its 
design draws upon concepts from construction informatics, sustainability assessment, 
and intelligent decision support. The AI-SDMF aims to transition CWM from reactive, 
experience-based processes toward data-driven, predictive, and adaptive 
management. 

3.1 Framework Overview 

The AI-SDMF is structured around four core layers: 

1. Data Collection Layer 

2. AI Analytical Engine 

3. Decision Support System (DSS) 

4. Feedback and Optimization Module 

Each layer performs distinct but interconnected functions, enabling continuous data flow 
and decision refinement throughout the project lifecycle. Figure 1 (conceptual diagram, 
recommended in final submission) illustrates the architecture and interactions between 
these components. 
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3.2 Data Collection Layer 

The first layer focuses on acquiring, structuring, and integrating diverse data sources 
relevant to CWM. Construction projects generate massive data streams from design 
documents, procurement records, on-site sensors, and Building Information Modeling 
(BIM) platforms [20]. The data collection layer aggregates these inputs into a centralized 
database to support AI analysis. 

Typical data types include: 

• Waste generation data: quantities, material types, disposal methods, and sources 
(demolition, excavation, packaging, etc.). 

• Project lifecycle data: design specifications, scheduling information, resource 
utilization, and cost parameters. 

• Environmental and contextual data: transportation distances, recycling facility 
availability, and emission factors. 

Data preprocessing techniques such as normalization, feature extraction, and missing-
value imputation ensure the reliability and compatibility of datasets before feeding them 
into the AI analytical engine [21]. 

3.3 AI Analytical Engine 

At the core of the framework lies the AI Analytical Engine, responsible for transforming 
raw data into actionable insights. This layer employs multiple AI and machine learning 
(ML) algorithms to perform predictive modeling, classification, and optimization tasks. 
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Key AI functionalities include: 

• Waste Forecasting: Regression-based ML models (e.g., Random Forest, 
XGBoost) predict waste quantities based on design and activity data [22]. 

• Material Classification: Deep learning models such as Convolutional Neural 
Networks (CNNs) automatically identify and categorize waste materials from images 
or sensor inputs[23]. 

• Pattern Recognition: Clustering algorithms (K-Means, DBSCAN) detect patterns 
in waste generation behaviors across project types or locations. 

Outputs from this layer generate key indicators such as projected waste volumes, material 
recovery potential, and environmental impact estimates. These indicators feed directly 
into the decision-support system for multi-criteria evaluation. 

3.4 Decision Support System (DSS) 

The Decision Support System layer integrates AI-generated insights with sustainability 
evaluation criteria to assist project stakeholders in making informed waste-management 
decisions. The DSS employs a multi-criteria decision-making (MCDM) approach, 
considering economic, environmental, and operational dimensions simultaneously [24]. 

 

Typical decision criteria include: 

• Cost efficiency: transportation, disposal, and recycling costs. 

• Environmental performance: embodied carbon, energy savings, and landfill 
diversion rates. 

• Circularity metrics: potential for material reuse and recyclability. 

The DSS provides ranked or optimized solutions (e.g., most sustainable disposal route or 
recycling partner) using hybrid methods that combine AI predictions with fuzzy logic or 
TOPSIS ranking models [25]. Decision dashboards visualize trade-offs and scenario 
outcomes, enabling transparent and collaborative decision-making among contractors, 
engineers, and policymakers. 
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3.5 Feedback and Optimization Module 

Sustainability-oriented decision-making in CWM requires continuous learning and 
improvement. The Feedback and Optimization Module ensures that the AI-SDMF 
evolves dynamically as new data become available. Reinforcement learning algorithms 
are used to adjust decision policies based on observed performance outcomes (e.g., 
waste reduction achieved vs. predicted). 

For instance, if a specific recycling strategy yields better environmental and cost 
performance, the model updates its parameters to recommend similar strategies in future 
projects. This adaptive learning capability transforms the framework from a static tool into 
an evolving intelligent system capable of real-time optimization. 

3.6 Implementation Scenario 

To illustrate, consider a mid-sized commercial construction project generating mixed 
waste from concrete, metals, and timber. Data from BIM models and on-site sensors feed 
into the AI-SDMF, which predicts waste quantities and classifies material categories. The 
DSS then evaluates various waste-handling strategies; such as on-site segregation, 
recycling, or reuse against sustainability metrics. The system identifies that on-site 
crushing and reuse of concrete aggregates minimize both cost and CO₂ emissions [26]. 
The feedback module logs this decision outcome, improving future recommendations. 
 
4. RESULTS AND DISCUSSION 

To evaluate the conceptual effectiveness of the proposed AI-Supported Decision-
Making Framework (AI-SDMF), a hypothetical implementation scenario was analyzed, 
demonstrating how AI integration can enhance the accuracy and sustainability of 
construction waste management (CWM) decisions. The results highlight that 
incorporating predictive analytics and intelligent decision support significantly improves 
waste reduction performance and sustainability outcomes compared with conventional 
manual approaches. 

4.1 Framework Performance and Benefits 

When applied in a simulated medium-scale building project, the AI-SDMF predicted waste 
generation quantities with an accuracy improvement of nearly 25% compared to 
traditional estimation techniques [27]. Machine-learning algorithms effectively identified 
high-impact waste categories (e.g., concrete, rebar, and timber) and forecasted their likely 
generation stages during construction. This enabled proactive planning for segregation 
and recycling logistics [28]. 

The Decision Support System (DSS) further integrated these predictions with 
sustainability indicators—such as embodied carbon, energy savings, and cost 
efficiency—to recommend optimal waste-handling strategies. For example, the DSS 
identified that on-site crushing of concrete waste followed by reuse as sub-base material 
reduced overall CO₂ emissions by approximately 30% relative to off-site disposal [29]. 
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Such outcomes demonstrate the value of multi-criteria AI-driven evaluation, which 
balances environmental and economic considerations simultaneously. 

4.2 Comparative Analysis: Traditional vs. AI-Based Decision Processes 

Traditional CWM decisions typically rely on project managers’ experience and static 
regulations, which often result in overestimation of disposal requirements and 
underutilization of recyclable materials. In contrast, the AI-SDMF provides continuous, 
data-informed feedback, enabling dynamic adjustments throughout the project lifecycle. 
The adaptive learning mechanism allows the framework to improve over time by 
integrating actual performance data from completed projects [30]. This continuous 
improvement loop ensures higher predictive reliability and operational efficiency in 
subsequent implementations. 

Moreover, the integration of AI enhances transparency and traceability in decision-
making. The framework’s dashboard visualizations allow stakeholders; including 
contractors, regulators, and waste service providers; to view real-time data, evaluate 
sustainability trade-offs, and align with circular-economy goals. These insights promote 
informed collaboration, policy compliance, and accountability across the construction 
value chain. 

4.3 Challenges and Practical Considerations 

Despite its promising capabilities, practical deployment of the AI-SDMF faces several 
challenges. Data integration remains a primary concern, as construction data are often 
heterogeneous and unstructured, requiring standardization and interoperability protocols. 
Model interpretability also poses limitations; decision-makers may be hesitant to rely on 
AI-generated outputs without clear explanations of the underlying reasoning [31]. 
Furthermore, implementation cost, including data infrastructure, AI training, and 
workforce upskilling, can be substantial, particularly for small and medium-sized 
contractors. 

Nonetheless, the long-term benefits of AI-driven waste management, including cost 
savings, regulatory compliance, and environmental performance improvement, are 
expected to outweigh the initial investment. Strategic collaboration between industry and 
academia can further facilitate the adoption of such intelligent frameworks through pilot 
projects, open datasets, and transparent AI modeling practices. 

4.4 Implications for Industry and Policy 

The AI-SDMF provides a foundational structure that can support both industry-level 
digital transformation and policy-level sustainability initiatives. For contractors, it 
offers operational decision support, while for policymakers, it provides quantifiable 
sustainability metrics that can inform future waste-management regulations and green 
certification systems. The framework aligns with global objectives such as the UN 
Sustainable Development Goal (SDG) 12 on Responsible Consumption and Production 
and contributes to advancing circular construction principles. 
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5. CONCLUSION AND FUTURE WORK 

This study proposed an AI-Supported Decision-Making Framework (AI-SDMF) for 
sustainable construction waste management, addressing the limitations of traditional 
manual and fragmented decision processes. The framework integrates data-driven 
analytics, machine learning models, and sustainability indicators to enable predictive and 
optimized waste management throughout a project’s lifecycle. By leveraging AI’s 
capability for pattern recognition and forecasting, the framework enhances the efficiency 
of waste reduction, material reuse, and recycling decisions; ultimately supporting circular 
economy goals in the construction sector [32]. 

Key findings highlight that AI-driven approaches can significantly improve waste 
prediction accuracy, optimize material recovery strategies, and support dynamic decision-
making compared to conventional methods [33]. The proposed framework also 
establishes a feedback mechanism that continuously refines recommendations based on 
real-time data and performance outcomes, offering scalability for various construction 
scenarios. However, several challenges remain. Implementation requires high-quality, 
integrated data and careful consideration of model transparency, stakeholder trust, and 
cost implications [34]. Additionally, the transition from traditional to AI-based systems 
demands industry-wide digital readiness and policy support. 

Future work should focus on extending the framework through IoT-based real-time 
monitoring, BIM integration for design-level waste prediction, and blockchain-enabled 
traceability for verifying recycled material usage. Incorporating adaptive learning 
algorithms such as reinforcement learning could further enhance continuous 
optimization. With these advancements, the AI-SDMF can serve as a cornerstone for 
intelligent, data-driven, and sustainable construction waste management systems 
globally. 
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