
Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 57 Issue: 07:2024 
DOI: 10.5281/zenodo.12799540 

 

July 2024 | 175 

EP MATRICES OVER INTERVAL INCLINE MATRICES 

 

P. RAMASAMY 
Research Scholar, Department of Mathematics, Rajah Serfoji Government College, Thanjavur, (Affiliated 
to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India. Email: Proframs76@gmail.com 

S. ANBALAGAN 

Assistant Professor, Department of Mathematics, Rajah Serfoji Government College, Thanjavur, (Affiliated 
to Bharathidasan University), Tiruchirappalli, Tamil Nadu, India. Email: sms.anbu18@gmail.com 

 
Abstract 

Inclines are additively idempotent semirings in which products are less than or equal to either factor. The 
characterization of EP elements, Product of EP elements in an incline with involution are obtained as a 
generalization and development with EP matrices over an Incline and transpose in p*-regular ring and EP 
elements in a reflexive Semigroups.      
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1. INTRODUCTION  

The notion of inclines and their applications are described comprehensively by Cao, Kim 
and Roush [1]. In [4] Kim and Roush have surveyed and out lined algebraic properties of 
incline and matrices over incline.  

Inclines are generalization of Boolean Algebra, Fuzzy Algebra, distributive lattice and a 
Special type of semiring. An interval incline matrix is a Structure which has an associative, 
Commutative addition and distributive multiplication Such that  

                               [αL, αU]+[αL, αU] = [αL, αU] 

                     [αL, αU]+[αL βL, αU βU] = [αL, αU]  and  

[αL, αU]+[αL βL, αU βU] = [βL, βU] for all [αL, αU], [βL, βU]∈L has generalization of EP interval 
elements to P* regular ring extended this concept to EkP interval elements for k ≥ 1. 

In [3] we have studied “the structure of EP elements in an incline with involution -T and 
Characterization of EP elements. In this paper, the concept of EP matrices over an 
inclines are discussed as a generalization of the results available in the literature [6].  

The structure of Interval of EP riatrices over an incline with transpose -T and 
characterization of EP matrices are obtained. we have determined of EP matrices include 
in them the wide classes of row matrices and Column matrices. 
 
2. PRELIMINARIES 

The basic definitions and results are show in this section. 
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Definition 2.1  

An interval incline is a nonempty set L with binary operations + and ∙ defined on L ⅹ L 

Such that for all α, β, γ ∈ L. we usually suppress the dot ∙ of α∙β and write as αβ. 

(i) [αL+ βL,  αU+βU] = [βL+ αL, βU+ αU] 

(ii) [αL, αU] +([βL, βU]+ [γL, γU]) = ([αL, αU] +[βL, βU])+ [γL, γU] 

(iii) [αL, αU] ([βL, βU]+ [γL, γU]) =  [αL, αU] [βL, βU]+ [αL, αU] [γL, γU] 

(iv) ([βL, βU]+ [γL, γU]) [αL, αU] = [βL, βU] [αL, αU] + [γL, γU] [αL, αU] 

(v) [αL, αU] ([βL, βU] ∙ [γL, γU]) = ([αL, αU] [βL, βU]) ∙ [γL, γU] 

(vi) [αL, αU]+[αL, αU] = [αL, αU]   

(vii) [αL, αU]+[αL βL, αU βU] = [αL, αU] 

(viii) [αL, αU]+[αL βL, αU βU] = [βL, βU] 

An interval incline is said to be Commutative if [αL βL, αU βU] = [βL αL, βU αU] for all [αL, αU], 

[βL, βU]∈L 

An incline (α, +, ∙) with order relation ≤ defined on L.  

[αL, αU] ≤ [βL, βU] (or) αL ≤ βL and αU ≤ βU if and only if [αL, αU]+[βL, βU] = [βL, βU].  

If [αL, αU] ≤ [βL, βU] then [βL, βU]  is said to dominate [αL, αU]  

such that for [αL, αU], [βL, βU]∈L. 

by the incline axioms 

[αL, αU]+[αL βL, αU βU] = [αL, αU]  and [αL, αU]+[αL βL, αU βU] = [βL, βU]    

we get [αL βL, αU βU] ≤ [αL, αU]  and [αL βL, αU βU] ≤ [βL, βU]  

Inclines are additively idempotent semirings in which products are less than or equal to 
either factor. The following characterization of this interval incline order Connection are 
from (P1) and (P2). 

Properties: 

(P1): [αL +βL, αU +βU] ≥ [αL, αU] and [αL + βL, αU + βU] ≥ [βL, βU] 

(P2): [αLβL, αUβU] ≤ [αL, αU] and [αL βL, αUβU] ≤ [βL, βU] for [αL, αU], [βL, βU]∈L.  

Definition 2.2  

An incline (L, +, ∙) using the binary operations + and ∙ it satisfy the following conditions. 

(i) (L, +) is a semilattice. 

(ii) (L, ∙) is a Semi group 

(iii) α(β+γ) = αβ+αγ for all α,β,γ∈L. 

(iv) α+αβ = α and α+αβ = β  for all α,β∈L. 
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Definition 2.3  

Let L denotes an interval incline with (+, ∙) operations and order relation ≤ defined by [αL, 
αU]+[βL, βU] = [αL, αU]   [βL, βU] ≤ [αL, αU] (or) βL ≤ αL and βU ≤ αU. In this definition, EP 
elements in an interval incline is introduced as a generalization of symmetric clernents 
and Characterization of EP elements in an incline with involution -T are determined. 

Definition 2.4  

p∈L is said to be regular if there is an element r∈L, Such that prp = p, then r is called a 
generalized inverse, in short g-inverse (or 1-inverse) of 'p' and is denoted as p-. let p{1} 
denotes the set of all 1-inverse of  'p'. L is regular if every element of L is regular. 

Definition 2.5 

[3] An element p in an incline L  is said to be EP if pL =Lp. 

Definition 2.6 

An interval incline matrices of order mxn is defined as P(=[PL, PU]) =[pijL, pijU] where pij 

=[pijL, pijU]  is ijth element of P interval incline matrix containing all the elements as intervals 
PL is the lower matrix of P and PU is the upper matrix of P.  

The following definition deals with the basic operations on IIM. 

Definition 2.7  

(i) For [PL, PU] and [QL, QU]  LImxn, the Sum is defined as  

   [PL, PU] + [QL, QU] = [PL+QL, PU+QU] =[pijL+qijL, pijU+qijU]. 

(ii) For [PL, PU] =[pijL, pijU]mxn and [QL, QU] =[qijL, qijU]nxp ,  

 i.e., [RL, RU] = [PLQL, PUQU] is defined as follows with order mxp.  

 [RL, RU] = [PLQL, PUQU] = ,  ikL jkL ikU jkU
k k

p q p q
 
 
 
   

                      = [rikL, rikU]. 

(iii) P LI
n then the transpose of P is defined as   

 PT = [PT
L, PT

U] =[pijL
T, pijU

T]=[pijL, pijU]. 

(iv) For P,QLImn, [PL, PU] ≤ [QL, QU] iff  PL ≤ QL and PU ≤ QU]  

   iff pijL ≤ qijL and  pijU ≤ qijU, for i = 1, 2 ,. . . ,m and  j = 1, 2, .  .  .  ,n. 

Remark 2.8  

Each entries of PL and PU are same then the interval incline matrix coincides with incline 
matrix. 
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Definition 2.9  

The row (column) space [ℜ(PL), ℜ(PU)], ([C(PL), C(PU)])  an mxn interval matrix [PL, PU] 
be the subspace of Vn generated it by rows (columns).  

that is,  

[ℜ(PL), ℜ(PU)]= the row space of [PL, PU] ={[bL, bU]={aLPL, aUPU}, [C(PL), C(PU)]= the 
Column space of [PL, PU] ={[bL, bU]={aLPL

T, aUPU
T} for [aL, aU]∈L} 

Lemma 2.10 [8] 

let L is an interval incline matrices, for [PL, PU], [QL, QU]∈Lmn, we have satisfy the following: 

(i) [ℜ(PQ)L, ℜ(PQ)U] ⊆[ℜ(PL)QL, ℜ(PL)QU] 

                                                      ⊆[ℜ(QL), ℜ(QU)]  

                  (ii) [Ⅽ(PQ)L, C(PQ)U] ⊆[C(PL), C(PU)] . 
 
3. EP MATRICES OVER AN INTERVAL INCLINE MATRICES 

Definition 3.1  

An IIM P=[PL, PU] is said to be EP matrix if [ℜ(PL), ℜ(PU)] = [ℜ(PL
T), ℜ(PU

T)]= [C(PL), 

C(PU)]  means ℜ -mean row space & C- Column Space are equal. 

Theorem 3.2 

Let P=[PL, PU]∈Lm be an EP  matrix. Then the following are equivalent. 

(i) [ℜ(PL), ℜ(PU)] = [ℜ(PL
k), ℜ(PU

k)],  for k ≥ 1 

(ii) [ℜ(PL), ℜ(PU)] = [ℜ(PL
T PL), ℜ(PU

T PU)],  for k ≥ 1 

(iii) [ℜ(PL), ℜ(PU)] = [ℜ(PL
T PL

k), ℜ(PU
T PU

k)],  for k > 1 

(iv) [C(PL), C(PU)] = [C(PL
k)T, C(PU

k)T],  for k > 1 

(v) [C(PL), C(PU)] = [C(PL PL
T), C(PU PU

T)],   

(vi) [C(PL), C(PU)] = [C(PL
k)TPL, C(PU

k)TPU],  for k > 1 

Proof (i) ⇒ (ii)  

Let [ℜ(PL), ℜ(PU)] = [ℜ(PL
k), ℜ(PU

k)]  

[ℜ(PL), ℜ(PU)] = [ℜ(PL
k)ℜ(PL

k-1), ℜ(PU
k)ℜ(PU

k-1)]⊆[ℜ(PL
k-2), ℜ(PU

k-2)]⊆…… 

                          ……⊆[ℜ(PL
2), ℜ(PU

2)][IL, IU] [ℜ(PL), ℜ(PU)]        (By Lemma 2.10)  

⇒[ℜ(PL), ℜ(PU)] = [ℜ(PL
2), ℜ(PU

2)] = [ℜ(PL)PL, ℜ(PU)PU] 

By definition (3.1), we have 

Thus [ℜ(PL), ℜ(PU)] = [ℜ(PL
T)PL, ℜ(PU

T)PU]. 
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(ii) ⇒ (iii), Let [ℜ(PL), ℜ(PU)] = [ℜ(PL
TPL), ℜ(PU

TPU)]. 

  = [ℜ(PL
T)PL, ℜ(PU

T)PU] 

      = [ℜ(PL)PL, ℜ(PU)PU] 

  = [ℜ(PL
TPL)PL, ℜ(PU

TPU)PU] 

 = [ℜ(PL
T)PL

2, ℜ(PU
T)PU

2] 

Since [ℜ(PL), ℜ(PU)] = [ℜ(PL
T)PL, ℜ(PU

T)PU] 

 = [ℜ(PL)PL
2, ℜ(PU)PU

2] 

= [ℜ(PL
TPL)PL

2, ℜ(PU
TPU)PU

2] 

= [ℜ(PL)PL
3, ℜ(PU)PU

3] 

=  .    .   .    .   .   .   .    

. 

. 

. 

= [ℜ(PL
T)PL

k, ℜ(PU
T)PU

k] 

              Thus [ℜ(PL), ℜ(PU)] = [ℜ(PL
T)PL

k, ℜ(PU
T)PU

k]. 

(iii) ⇒(i) 

Let [ℜ(PL), ℜ(PU)] = [ℜ(PL
TPL

k), ℜ(PU
TPU

k)] 

[ℜ(PL), ℜ(PU)] = [ℜ(PL
TPL

k), ℜ(PU
TPU

k)] 

⊆ [ℜ(PL
k), ℜ(PU

k)] 

    ⊆ [ℜ(PL
2), ℜ(PU

2)]⊆[ℜ(PL), ℜ(PU)] (By Lemma 2.10) 

Thus [ℜ(PL), ℜ(PU)] = [ℜ(PL
k), ℜ(PU

k)] 

Since [ℜ(PL), ℜ(PU)]=[C(PL), C(PU)]=[ℜ(PL
k), ℜ(PU

k)],  

The equivalence of (iv),(v) and (vi) can be proved In the similar manner and hence 
omitted.            

Theorem 3.3 

Let P=[PL, PU]∈Lm be an EP matrix. Then the following are equivalent. 

(i) [ℜ(PL), ℜ(PU)] = [ℜ(PL
2), ℜ(PU

2)],  [C(PL), C(PU)] = [C(PL
2), C(PU

2)] 

(ii) [ℜ(PL
T PL), ℜ(PU

T PU)]= [ℜ(PL), ℜ(PU)] =[ℜ(PL PL
T), ℜ(PU PU

T)] 

(iii) [ℜ(PL
T PL

2), ℜ(PU
T PU

2)] =[ℜ(PL), ℜ(PU)] =[ℜ(PL PL
T), ℜ(PU PU

T)]  

(iv) [ℜ(PL), ℜ(PU)] = [ℜ(PL
2), ℜ(PU

2)]= [ℜ(PL
2)T, ℜ(PU

2)T]   



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 57 Issue: 07:2024 
DOI: 10.5281/zenodo.12799540 

 

July 2024 | 180 

Proof (i) ⇒ (ii)  

Let [ℜ(PL), ℜ(PU)] = [ℜ(PL
2), ℜ(PU

2)]  

[C(PL), C(PU)] = [C(PL
2), C(PU

2)] 

Since, [ℜ(PL), ℜ(PU)] = [ℜ(PL
2), ℜ(PU

2)]  

⇒[ℜ(PL
2)T, ℜ(PU

2)T] = [ℜ(PL)T, ℜ(PU)T] = [C(PL
2), C(PU

2)] 

Now, [C(PL
2), C(PU

2)]= [C(PL), C(PU)] 

   =[C(PL
T), C(PU

T)] 

   =[C(PL
2)T, C(PU

2)T] 

[ℜ(PL
2), ℜ(PU

2)]= [C(PL), C(PU)] 

   =[ℜ(PL), ℜ(PU)] 

=[C(PL
2)T, C(PU

2)T] 

⇒[ℜ(PL)PL, ℜ(PU)PU] =[ℜ(PL), ℜ(PU)] 

=[C(PL
2)T, C(PU

2)T] 

        ⇒[ℜ(PL
T)PL, ℜ(PU

T)PU]= [ℜ(PL), ℜ(PU)] = [C(PL
T)PL

T, C(PU
T)PU

T] 

            = [ℜ(PLPL
T), ℜ(PUPU

T)]  

Thus (ii) holds. 

(ii) ⇒ (iii),  

Let [ℜ(PL
TPL), ℜ(PU

TPU)] = [ℜ(PL), ℜ(PU)]  

       = [ℜ(PLPL
T), ℜ(PUPU

T)] 

                  [ℜ(PL), ℜ(PU)] = [ℜ(PLPL
T), ℜ(PUPU

T)]   

       = [ℜ(PL
T)PL, ℜ(PU

T)PU] 

      = [ℜ(PL)PL, ℜ(PU)PU] 

  = [ℜ(PL
TPL)PL, ℜ(PU

TPU)PU] 

 = [ℜ(PL
T)PL

2, ℜ(PU
T)PU

2] 

  = [ℜ(PL)PL
2, ℜ(PU)PU

2] 

  = [ℜ(PLPL
2), ℜ(PUPU

2)] 

 = [ℜ(PL
TPL

2), ℜ(PU
TPU

2)] 

                                                  = [ℜ(PL), ℜ(PU)]  

= [ℜ(PLPL
T), ℜ(PUPU

T)]   

              Thus (iii) holds. 
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(iii) ⇒(iv) 

Let [ℜ(PL
TPL

2), ℜ(PU
TPU

2)] = [ℜ(PL), ℜ(PU)]  

= [ℜ(PLPL
T), ℜ(PUPU

T)]   

[ℜ(PL), ℜ(PU)] = [ℜ(PL
TPL

2), ℜ(PU
TPU

2)] 

                      ⊆ [ℜ(PL
2), ℜ(PU

2)] 

                      ⊆[ℜ(PL), ℜ(PU)]  

Thus [ℜ(PL), ℜ(PU)] = [ℜ(PL
2), ℜ(PU

2)] 

Since [ℜ(PL), ℜ(PU)] = [ℜ(PLPL
T), ℜ(PUPU

T)]  

                                     = [ℜ(PL
T)PL

T, ℜ(PU
T)PU

T] 

                                     = [ℜ(PL
T)2, ℜ(PU

T)2] 

                                     = [ℜ(PL
2)T, ℜ(PU

2)T] 

[ℜ(PL), ℜ(PU)]=  [ℜ(PL
T)2, ℜ(PU

T)2]= [ℜ(PL
2)T, ℜ(PU

2)T] 

Thus (iv) holds. 

(iv) ⇒(i) 

Let [ℜ(PL), ℜ(PU)]= [ℜ(PL
2), ℜ(PU

2)] =[ℜ(PL
2)T, ℜ(PU

2)T] 

[ℜ(PL), ℜ(PU)] =[ℜ(PL
2)T, ℜ(PU

2)T] 

[ℜ(PL)T, ℜ(PU)T] =[C(PL
2), C(PU

2)] 

 [C(PL), C(PU)] =[C(PL
2), C(PU

2)]             [ℜ(PL), ℜ(PU)] = [ℜ(PL
2), ℜ(PU

2)] 

   Thus (i) holds. 

Corollary 3.4  

Let P=[PL, PU]∈Lm be the EP matrix. Then the following are equivalent. 

(i) [ℜ(PL), ℜ(PU)] = [ℜ(PL
2), ℜ(PU

2)] = [ℜ(PL
T), ℜ(PU

T)] = [ℜ(PL
T)2, ℜ(PU

T)2] 

(ii) [ℜ(PL
k), ℜ(PU

k)] is EP;  

[ℜ(PL), ℜ(PU)] =[ℜ(PL
k), ℜ(PU

k)] =[ℜ(PL
T), ℜ(PU

T)] 

=[ℜ(PL
T)k, ℜ(PU

T)k] =[ℜ(PL
T)k+1, ℜ(PU

T)k+1] 

=[ℜ(PL
k+1), ℜ(PU

k+1)], k ≥ 1 

Proof  (i) ⇒(ii) 

Let P=[PL, PU] is EP; 

[ℜ(PL), ℜ(PU)] = [ℜ(PL
T), ℜ(PU

T)] 

[ℜ(PL), ℜ(PU)] = [ℜ(PL
2), ℜ(PU

2)] = [ℜ(PL)PL, ℜ(PU)PU] 
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                                                  = [ℜ(PL
2)PL, ℜ(PU

2)PU]           

= [ℜ(PLPL
2), ℜ(PUPU

2)] 

                                          = [ℜ(PL
k)PL, ℜ(PU

k)PU] 

    =[ℜ(PL
k+1), ℜ(PU

k+1)], k ≥ 1 

[ℜ(PL
T), ℜ(PU

T)] = [ℜ(PL
T)2, ℜ(PU

T)2] 

                               = [ℜ(PL
T)PL

T, ℜ(PU
T)PU

T] 

                                     = [ℜ(PL
T)k, ℜ(PU

T)k] 

                                     = [ℜ(PL
T)k+1, ℜ(PU

T)k+1] 

[ℜ(PL), ℜ(PU)] = [ℜ(PL
k), ℜ(PU

k)] 

                               = [ℜ(PL
T), ℜ(PU

T)] 

                                     = [ℜ(PL
T)k, ℜ(PU

T)k] 

                                     = [ℜ(PL
T)k+1, ℜ(PU

T)k+1] 

                                      = [ℜ(PL)k+1, ℜ(PU)k+1], k ≥ 1 

Thus pk is EP, k ≥ 1. 

       (ii) ⇒ (i) This equivalence holds for k=1. 

Theorem 3.5 

  For P=[PL, PU] ∈Lm; if [ℜ(PL), ℜ(PU)] = [ℜ(PL
T), ℜ(PU

T)] = [ℜ(PL
2), ℜ(PU

2)] then  

[ℜ(PL PL
TPL), ℜ(PUPU

TPU)] = [ℜ(PL
T PL

2), ℜ(PU
T PU

2)]  

                                             = [ℜ(PL
k PL

TPL), ℜ(PU
kPU

TPU)] 

                                             = [ℜ(PL) PL
k PL

TPL, ℜ(PU) PU
kPU

TPU] 

Proof  

Let [ℜ(PL), ℜ(PU)] = [ℜ(PL
2), ℜ(PU

2)] = [ℜ(PL
T), ℜ(PU

T)] 

 

[ℜ(PL PL
TPL), ℜ(PUPU

TPU)] = [ℜ(PL)PL
TPL, ℜ(PU)PU

TPU] 

=[ℜ(PL
2)PL

TPL, ℜ(PU
2)PU

TPU] 

= [ℜ(PL)PLPL
TPL, ℜ(PU)PUPU

TPU] 

= [ℜ(PL
T)PLPL

TPL, ℜ(PU
T)PUPU

TPU] 

[ℜ(PL PL
TPL), ℜ(PUPU

TPU)]= [ℜ(PL
T PL)2, ℜ(PU

T PU)2] 

=[ℜ(PL
TPL PL

TPL), ℜ(PU
TPUPU

TPU)] 

=[ℜ(PL
2)PL PL

TPL, ℜ(PU
2)PUPU

TPU] 
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=[ℜ(PL)PL
2 PL

TPL, ℜ(PU)PU
2PU

TPU] 

=[ℜ(PL
2)PL

2 PL
TPL, ℜ(PU

2)PU
2PU

TPU] 

=  .    .   .    .   .   .   .    

. 

. 

. 

  [ℜ(PL PL
TPL), ℜ(PUPU

TPU)] =[ℜ(PL
kPL

TPL), ℜ(PU
kPU

TPU)] 

=[ℜ(PL)PL
k-1 PL

TPL, ℜ(PU)PU
k-1PU

TPU] 

=[ℜ(PL
2)PL

k-1 PL
TPL, ℜ(PU

2)PU
k-1PU

TPU] 

 

[ℜ(PL PL
TPL), ℜ(PUPU

TPU)] =[ℜ(PL)PL
kPL

TPL, ℜ(PU)PU
kPU

TPU] 

=[ℜ(PL
T)PL

kPL
TPL, ℜ(PU

T)PU
kPU

TPU] 

=[ℜ(PL)PL
kPL

TPL, ℜ(PU)PU
kPU

TPU] 

=[ℜ(PL
2)PL

k-1 PL
TPL, ℜ(PU

2)PU
k-1PU

TPU] 

=[ℜ(PL)PL
k-1 PL

TPL, ℜ(PU)PU
k-1PU

TPU] 

=[ℜ(PL
2)PL

k-2PL
TPL, ℜ(PU

2)PU
k-2PU

TPU] 

=[ℜ(PL)PL
k-2PL

TPL, ℜ(PU)PU
k-2PU

TPU] 

=[ℜ(PL PL
TPL), ℜ(PUPU

TPU)] 

Thus [ℜ(PL PL
TPL), ℜ(PUPU

TPU)]= [ℜ(PL
T PL)2, ℜ(PU

T PU)2] 

                =[ℜ(PL
kPL

TPL), ℜ(PU
kPU

TPU)] 

=[ℜ(PL)PL
kPL

TPL, ℜ(PU)PU
kPU

TPU] 

Theorem 3.6 

 if [PL, PU], [PL
TPL PL

TPL, PU
TPUPU

TPU] are the EP matrices over an incline, then the 
following hold: 

(i) [ℜ(PL
T)2 PL

2, ℜ(PU
T)2 PU

2]= [ℜ(PL
T PL) 2, ℜ(PU

T PU) 2] 

(ii) [ℜ(PLPL
T)PL

2, ℜ(PUPU
T) PU

2]=  [ℜ(PL
2 PL

TPL), ℜ(PU
2PU

TPU)] 

Proof  

(i) Let [ℜ(PL PL
TPL), ℜ(PUPU

TPU)] = [ℜ(PL
TPL PL

T), ℜ(PU
TPUPU

T)] 

  [ℜ(PL PL
TPL) PL, ℜ(PUPU

TPU) PU] = [ℜ(PL
TPL PL

T) PL, ℜ(PU
TPUPU

T) PU] 

   [ℜ(PL PL
TPL

2), ℜ(PUPU
TPU

2)] = [ℜ(PL
TPL)(PL

TPL), ℜ(PU
TPU)(PU

TPU)] 
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     [ℜ(PL)PL
TPL

2, ℜ(PU)PU
TPU

2]= [ℜ(PL
TPL)2, ℜ(PU

TPU)2] 

  [ℜ(PL
T)PL

TPL
2, ℜ(PU

T)PU
TPU

2]= [ℜ(PL
TPL)2, ℜ(PU

TPU)2] 

                      [ℜ(PL
T)2PL

2, ℜ(PU
T)2PU

2]= [ℜ(PL
TPL)2, ℜ(PU

TPU)2] 

Thus (i) hold. 

(ii) [ℜ(PL PL
TPL), ℜ(PUPU

TPU)] = [ℜ(PL
TPL PL

T), ℜ(PU
TPUPU

T)] 

[ℜ(PL PL
TPL) PL, ℜ(PUPU

TPU) PU] = [ℜ(PL
TPL PL

T) PL, ℜ(PU
TPUPU

T) PU] 

[ℜ(PL PL
T) PL

2, ℜ(PUPU
T) PU

2] = [ℜ(PL
T)PLPL

TPL, ℜ(PU
T)PUPU

TPU] 

    [ℜ(PLPL
TPL

2), ℜ(PUPU
TPU

2)]=[ℜ(PL)PLPL
TPL, ℜ(PU)PUPU

TPU]  

  [ℜ(PLPL
T) PL

2, ℜ(PUPU
T) PU

2]= [ℜ(PL
2PL

TPL), ℜ(PU
2PU

TPU)] 

Thus (ii) holds. 

Lemma 3.7 

Let [PL, PU], [QL, QU]∈Lm. if [ℜ(PL), ℜ(PU)] = [ℜ(PL
T), ℜ(PU

T)]= [ℜ(QL), ℜ(QU)]  

 Then the following are equivalent. 

(i) [ℜ(PL), ℜ(PU)] = [ℜ(PL
T PL), ℜ(PU

T PU)] 

(ii) [ℜ(PL), ℜ(PU)] = [ℜ(QL PL
2), ℜ(QUPU

2)] 

(iii) [C(PL), C(PU)] = [C(QL PL) T, C(QUPU) T] 

(iv) [C(QL
T), C(QU

T)]=[C(PL PL
T), C(PU PU

T)]  

Proof  (i) ⇒(ii) 

Let [ℜ(PL), ℜ(PU)] = [ℜ(PL
T PL), ℜ(PU

T PU)] 

Now,        [ℜ(PL), ℜ(PU)] = [ℜ(PL
T PL), ℜ(PU

T PU)] 

                         = [ℜ(PL
T)PL, ℜ(PU

T)PU] 

                         = [ℜ(PL)PL, ℜ(PU)PU] 

       = [ℜ(PL
T PL)PL, ℜ(PU

T PU)PU] 

                         = [ℜ(PL
T)PL

2, ℜ(PU
T)PU

2] 

                         = [ℜ(QL)PL
2, ℜ(QU)PU

2] 

[ℜ(PL), ℜ(PU)] = [ℜ(QL)PL
2, ℜ(QU)PU

2] 

Thus (ii) holds. 

(ii) ⇒(iii) 

Let [ℜ(PL), ℜ(PU)] = [ℜ(QL PL
2), ℜ(QUPU

2)] 

      [ℜ(PL), ℜ(PU)] = [ℜ(QL PL
2), ℜ(QU,PU

2)]⊆ [ℜ(PL
2), ℜ(PU

2)] 
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 ⊆[ℜ(PL), ℜ(PU)] 

[ℜ(PL), ℜ(PU)] = [ℜ(PL
2), ℜ(PU

2)] =[ℜ(PL)PL, ℜ(PU)PU] 

[ℜ(PL
T), ℜ(PU

T)]= [ℜ(QL PL), ℜ(QU PU)] 

[C(PL), C(PU)] = [C(QLPL) T, C(QUPU) T] 

Thus (iii) holds. 

(iii) ⇒(iv) 

Let [C(PL), C(PU)] = [C(QLPL) T, C(QUPU) T] 

     [ℜ(QL), ℜ(QU)]= [ℜ(PL
T), ℜ(PU

T)] 

       =[C(PL), C(PU)] 

       = [C(QLPL) T, C(QUPU) T] 

       = [ℜ(QL PL), ℜ(QUPU)] 

Therefore, [ℜ(QL), ℜ(QU)]= [ℜ(QLPL), ℜ(QUPU)] 

             =[ℜ(QL)PL, ℜ(QU)PU] 

         [C(QL
T), C(QU

T)]=[ℜ(PL
T) PL, ℜ(PU

T)PU] 

       =[C(PL
TPL)T, C(PU

TPU)T] 

         [C(QL
T), C(QU

T)]=[C(PL PL
T), C(PU PU

T)] 

Thus (iv) holds. 

(iv) ⇒(i) 

Let [C(QL
T), C(QU

T)]=[C(PL PL
T), C(PU PU

T)] 

    =[C(PLPL
T), C(PUPU

T)] 

    =[ℜ(QL), ℜ(QU)] 

                =[ℜ(PL
TPL), ℜ(PU

TPU)] 

        [ℜ(PL), ℜ(PU)] = [ℜ(PL
T PL), ℜ(PU

T PU)] 

Thus (i) holds. 

Theorem 3.8 

Let [PL, PU], [QL, QU] are EP matrices, Then the following are equivalent.” 

(i) [ℜ(PL), ℜ(PU)] = [ℜ(QL PL), ℜ(QUPU)] and 

[ℜ(QL), ℜ(QU)]= [ℜ(PLQL), ℜ(PUQU)] 

(ii) [ℜ(PL), ℜ(PU)] = [ℜ(QL
TPL), ℜ(QU

TPU)] and 

[ℜ(QL), ℜ(QU)]= [ℜ(PL
TQL), ℜ(PU

TQU)] 
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(iii) [ℜ(PL), ℜ(PU)] = [ℜ(PL
TQL PL), ℜ(PU

TQUPU)] and 

[ℜ(QL), ℜ(QU)]= [ℜ(QL
TPLQL), ℜ(QU

TPUQU)] 

(iv) [ℜ(PL), ℜ(PU)] = [ℜ(PL
T)(QLPL)k, ℜ(PU

T)(QUPU)k] and 

[ℜ(QL), ℜ(QU)]= [ℜ(QL
T)(PLQL)k, ℜ(QU

T)(PUQU)k] for k ≥ 1 

(v)   [ℜ(PL), ℜ(PU)] = [ℜ(PL
T(QLPL)k), ℜ(PU

T(QUPU)k)] and 

[ℜ(QL), ℜ(QU)]= [ℜ(QL
T(PLQL)k), ℜ(QU

T(PUQU)k)] for k ≥ 1 

(vi) [ℜ(PL), ℜ(PU)] = [ℜ(QLPL)k, ℜ(QUPU)k] and 

[ℜ(QL), ℜ(QU)]= [ℜ(PLQL)k, ℜ(PUQU)k] for k ≥ 1 

Proof   

Since [PL, PU] [QL, QU] are EP  matrices 

Let [ℜ(PL), ℜ(PU)] = [ℜ(PL
T), ℜ(PU

T)] and 

[ℜ(QL), ℜ(QU)] = [ℜ(QL
T), ℜ(QU

T)] 

(i) ⇒(ii), this equivalence automatically holds. 

(ii) ⇒(iii) Since, [ℜ(PL), ℜ(PU)] = [ℜ(QL
TPL), ℜ(QU

TPU)] and 

                      [ℜ(QL), ℜ(QU)]= [ℜ(PL
TQL), ℜ(PU

TQU)] 

     [ℜ(PL), ℜ(PU)] = [ℜ(QL
TPL), ℜ(QU

TPU)] 

= [ℜ(QLPL), ℜ(QUPU)] 

= [ℜ(PL
TQL)PL, ℜ(PU

TQU)PU] 

    and  [ℜ(QL), ℜ(QU)]= [ℜ(PL
TQL), ℜ(PU

TQU)] 

    =[ℜ(PLQL), ℜ(PUQU)] 

= [ℜ(QL
TPL)QL, ℜ(QU

TPU)QU] 

 Thus (iii) holds. 

(iii)⇒(iv) 

Let [ℜ(PL), ℜ(PU)] = [ℜ(PL
TQL PL), ℜ(PU

TQUPU)] and 

      [ℜ(QL), ℜ(QU)]= [ℜ(QL
TPLQL), ℜ(QU

TPUQU)] 

     [ℜ(PL), ℜ(PU)] = [ℜ(PL
T)QLPL, ℜ(PU

T)QUPU]  

              = [ℜ(PL)QLPL, ℜ(PU)QUPU] 

= [ℜ(PL
T QLPL)QLPL, ℜ(PU

T QUPU)QUPU] 

= [ℜ(PL
T)(QLPL)2, ℜ(PU

T) (QUPU)2] 

=  .    .   .    .   .   .   .    
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. 

. 

. 

= [ℜ(PL
T)(QLPL)k, ℜ(PU

T) (QUPU)k] 

 Similarly, [ℜ(QL), ℜ(QU)]= [ℜ(QL
T)(PLQL)k, ℜ(QU

T)(PUQU)k] 

Thus (iv) holds. 

(iv)⇒(v) 

Let [ℜ(PL), ℜ(PU)] = [ℜ(PL
T)(QLPL)k, ℜ(PU

T)(QUPU)k] and 

      [ℜ(QL), ℜ(QU)]= [ℜ(QL
T)(PLQL)k, ℜ(QU

T)(PUQU)k] for k ≥ 1 

     [ℜ(PL), ℜ(PU)] = [ℜ(PL
T)(QLPL)k, ℜ(PU

T)(QUPU)k] 

= [ℜ(PL)(QLPL)k, ℜ(PU)(QUPU)k] 

⊆[ℜ(QLPL)k, ℜ(QUPU)k] 

⊆[ℜ(QLPL), ℜ(QUPU)] 

⊆[ℜ(PL), ℜ(PU)] 

     [ℜ(PL), ℜ(PU)] = [ℜ(QLPL)k, ℜ(QUPU)k] 

Similarly, [ℜ(QL), ℜ(QU)]= [ℜ(PLQL)k, ℜ(PUQU)k] 

 Thus (v) holds. 

 (v)⇒(i) this equivalence directly holds for k =1 in (v). 
 
4. CONCLUSION 

The main results in the present paper are the generalization of the available results in the 
[2], [3], [4] for the elemets in p*- regular ring and for elements in a reflexive semigroup [4]. 
We have obtaine conditions under which the product of EP elements to be EP matrices 
which include the characterization of interval EP matrices in row space and column space. 
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