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Abstract 

This paper presents a novel hybrid tribioinspired model for feature selection that employs three algorithms 
for feature selection: Whale Optimization for Interclass Variance Maximization, Particle Swarm 
Optimization for Intraclass Variance Minimization, and Firefly Optimization for Best Weights Selection. 
The WOICVM algorithm is used as this contains an excellent exploration-exploitation balance for 
maximizing the interclass variance to induce significant separability among classes. PSOICVM is highly 
efficient in large-scale optimization, minimizes intraclass variance, and improves cohesiveness within 
each class. Finally, the Firefly Algorithm optimally combines WOICVM's and PSOICVM's strengths by 
determining the best weighting scheme and balancing interclass and intraclass variances. This 
multiobjective approach enhances feature selection efficiency by leveraging the complementary 
advantages of the three algorithms. Tentative numerical results depict a 15% increase in inter-class 
variance with WOICVM, a 12% reduction in intraclass variance with PSOICVM, and a 20% improvement 
in overall feature selection efficiency through FOBWS. This thereby shows a 10% enhancement in 
classification accuracy in high-dimensional environments, showing the efficiency of the proposed model 
over conventional methods. It fills critical gaps in existing methods by offering a hybrid method as a strong 
tool for applying big data to improve classification performance. 

Keywords: Big Data, Feature Selection, Whale Optimization, Particle Swarm Optimization, Firefly 
Algorithm, Process. 

 
1. INTRODUCTION 

Big data, which explodes exponentially in different fields of health care, finance, and 
social networks, has increased the need for advanced analytical tools to process vast 
volumes of high-dimensional datasets and analyze them efficiently. More specifically, 
feature selection has emerged as one of the critical tasks at the data preprocessing stage 
to reduce dimensionality while retaining the most informative features. The central 
challenge in feature selection lies with the balance between interclass variance, its ability 
to distinguish one class from another, and intraclass variance, its ability to maintain 
cohesion within the same class. Generally speaking [1, 2, 3], traditional feature selection 
methods fail in this task since they rely on simple heuristics or linear models that cannot 
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grasp complexity and scale effectively; the features can be involved in relationships of 
high dimensionality as is often found in most datasets and samples. Conventional 
techniques like PCA, mutual information-based selection and filter-based approaches 
relate very much either to a reduction of the dimensionality of the search space or to an 
improvement in the performance of the pattern classification, but they can hardly do both. 
Moreover, such approaches assume a linear relationship between the features and 
neglect the nonlinear interactions that are, in fact, quite common for high-dimensional 
data samples. This would naturally result in suboptimal performance, particularly when 
complex class structures exist or numerous irrelevant and redundant features are present 
in the given datasets. The inability of such traditional approaches to address the dynamic 
and complex nature of big data environments has made it a pressing need to develop 
novel, more efficient optimization techniques that can handle both multidimensional 
aspects of data together while ensuring the best possible accuracy in classification. With 
the challenge above [4, 5, 6], much focus has been put into bio-inspired optimization 
algorithms that could explore large search spaces efficiently and discover at least near-
optimal solutions within a reasonable time. Some of the most promising ones are PSO, 
WOA, and FA. These algorithms are particularly effective in the feature selection task 
scenario with big data environments because they balance exploration and exploitation, 
two main factors contributing to the optimization solution in high-dimensional spaces. This 
paper proposes a new integrated model for feature selection that uses the strengths of 
such bio-inspired algorithms. The Whale Optimization for Interclass Variance 
Maximization specifically looks into maximizing the class separation through the rates of 
variance levels. This is in harmony with particle swarm optimization for intraclass variance 
minimization, which minimizes the variance in each class and continues to polish up 
homogeneity among features of the same class. Finally, the FOBWS uses the Firefly 
optimization algorithm for the best weight selection to seek the optimal weighting 
combination of these two methods. Therefore, it balances the strengths of these two 
methods and makes feature selection more efficient. The integrated approach gives a 
much more robust answer to feature selection in high-dimensional big-data environments. 
Moreover, interclass and intraclass variances are optimized by the K-means method that 
utilizes NMF initialization, and hence, improvement in classification performance is 
yielded in the process. 

Motivation and Contribution 

The primary motivating factor for this work is the growing inadequacy of the traditional 
feature selection methods, especially with the contexts of scale, complexity, and 
nonlinearity in the modern big data environment. With datasets exponentially growing in 
size and complexity, linear and heuristics-based approaches to feature selection fail to 
handle multidimensionality while achieving informative features in effective classification. 
Such traditional approaches mainly focus on one of the types of variances, interclass or 
intraclass, but rarely both. In addition, these suffer from local optima and cannot capture 
sophisticated relationships among features. This constitutes a massive gap in the field, 
thus requiring an advanced multiple-objective optimization method that could balance 
multiple features while being computationally efficient. With this background, this paper 
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introduces an integrated model combining the Whale Optimization Algorithm, Particle 
Swarm Optimization, and Firefly Algorithm for selecting features in big data environments. 
The main contribution is that the Whale Optimization for Interclass Variance Maximization 
focuses the design on maximizing separation between different classes. 

In contrast, the Particle Swarm Optimization for Intraclass Variance Minimization will 
ensure better clustering within the same class. Based on integrating these two methods, 
a new meta-heuristic developed within this work to find the optimal combination for the 
two methods involved is the Firefly Optimization for Best Weights Selection. The 
developed approach balances interclass and intraclass variance levels to make feature 
selection more efficient. This approach maximizes the efficiency of feature selection such 
that the produced outcome or classification is boosted towards effective optimization. Its 
application in highly dimensional databases results in a highly elevated classification 
accuracy. The numerical results fully show how the proposed models perform better than 
the traditional methods: the variance metrics and classification accuracy improve 
significantly. 
 
2. REVIEW OF EXISTING MODELS FOR BIG DATA FEATURE SELECTION 

PROCESS 

Feature selection has been among the critical research areas of recent years, bearing in 
mind the surge of data complexity and volume in all types of domains. This review will 
thus critically consider existing papers on the development and applications of feature 
selection methods across various contexts, carefully examining some of the key works 
that defined the process. These papers give significant insights into current feature 
selection methodologies advancements ranging from classical statistical methods to 
bioinspired and machine learning-based approaches. They emphasize that efficient 
feature selection reduces dimensionality, where the improvement in model interpretability 
and a plus in classification and prediction accuracy arise. In the end, comparing the 
methodologies presents their relative strengths and weaknesses against complex, high-
dimensional datasets & samples. Shu et al. [1] delve into label distribution feature 
selection, focusing on the features reflecting a model's capacity within label-specific 
improvements. It is an approach sensitive and helpful when dealing with the multi-label 
learning environment; otherwise, it faces challenges capturing labelling correlations 
during the traditional feature selection processes. Izabela and Krzysztof [2] present the 
GAAMmf algorithm, which involves a genetic algorithm implementing aggressive 
mutation strategies specifically for high dimensional and large data sizes. Their method 
exploits a feature set decreasing mechanism, optimizing the feature selection and 
preventing overfitting. Chawla et al. [3] study the classification of Parkinson's disease 
using a nature-inspired feature selection method combined with recursive feature 
elimination, which results in remarkably higher classification accuracy and interpretability 
levels. Nature-inspired algorithms efficiently explore the vast search spaces inherent in 
biomedical datasets & samples. Hybrid feature selection approaches have been 
increasingly focused on lately, such as in Anju and Judith's work [4], which presents a 
hybrid approach towards predicting software defects. In that work, filter-based and 
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wrapper-based methods were combined to balance computational efficiency and feature 
relevance. With those improvements in mind, Zhu et al. [5] introduced a semi-supervised 
graph-based feature selection approach that adapts the data structure to enhance the 
features' robustness. These approaches proved to be particularly valuable for all those 
situations in which the availability of labelled data was limited and classical supervised 
methods failed to generalize. Zhou et al. continued on this path by developing the FEASE 
framework [6], combining feature selection with neural networks for action recognition. 
Their method successfully dealt with spatiotemporal data, revealing increasingly strong 
symbiosis between feature selection and deep learning. 

Asghari et al. [7] concentrate on the medical domain and propose a mutual information-
based hybrid feature selection method by exploiting the strength of feature clustering to 
boost selected features' relevance. This technique has proven helpful in eliminating noise 
and redundancy, achieving better performance for the model over the medical datasets. 
Yanli et al. [8] also proposed an intelligent heuristic feature selection scheme, which 
reduces uncertainty during feature selection. Their approach offers superior uncertainty 
elimination that results in more confident feature sets. This is important in applications 
related to decision-making. Çiftçi et al. [9] address gender estimation from CT images of 
the skull via a deep feature selection method, which further demonstrates that feature 
fusion plays a vital role in augmenting the discriminative features of models pertinent to 
the medical imaging process. Tian and She [10] further explicate the role of uncertainty 
in feature selection by putting forth an incremental approach to feature selection based 
on measures of uncertainty for hierarchical classification. Their method gradually refines 
the feature set, thus both improving efficiency and enhancing performance over time. D 
et al. [11] proposed the consensus clustering approach based on feature ranking for 
selecting feature subsets.  

Therefore, this approach provides a powerful solution todeal with the problems of feature 
redundancy and irrelevance. Even this showed improvements in the order of high 
dimensions in computational complexity. Nogales and Benalcázar [12] provide a critical 
review and analysis of various feature selection and extraction methods to offer insightful 
comparisons of the trade-offs between such approaches in terms of performance versus 
differing degrees of computational cost. Li et al. [13] discuss a comparison study of feature 
selection against feature extraction for optimizing intrusion detection systems for IoT 
environments.  

Their results underscore the need for context-specific feature selection techniques, 
particularly when real-time and resource constraints exist. Bach and Böhm [14] present 
a novel feature selection technique that is interactive, taking into account user control. It 
allows experts in specific domains to influence the feature selection process according to 
their knowledge of a given domain. Such human-in-the-loop performs exceptionally well 
when expert knowledge impacts a model's interpretability. Sun et al. [15] propose a 
sparse feature selection approach based on local feature and high-order label correlation, 
yielding significantly improved performance over models that fail to utilize local 
correlation, particularly for tasks involving more complex label dependencies. 
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Table 1: Comparative Review of Existing Methods 

Reference Method Main Objectives Findings Limitations 

1 

Label 
Distribution 
Feature 
Selection 

Capture label-specific 
features in multi-label 
tasks 

Improved label-wise 
accuracy in multi-label 
classification 

Limited scalability for 
extremely large 
datasets 

2 GAAMmf 
Use aggressive 
mutation in GA with 
decreasing feature set 

Effective in reducing 
feature set size while 
maintaining 
performance 

Computational 
overhead due to 
mutation dynamics 

3 
Nature-
Inspired + 
RFE 

Classify Parkinson's 
using hybrid feature 
selection 

Achieved high 
classification accuracy 
with fewer features 

Less effective on 
highly imbalanced 
data 

4 
Hybrid FS for 
Software 
Defects 

Combine statistical and 
heuristic methods 

Improved defect 
prediction performance 

Dataset-specific 
tuning required 

5 
Self-Adjusted 
Graph FS 

Embed semi-supervised 
learning with feature 
graphs 

Enhanced 
representation in sparse 
labeled data 

Reduced 
interpretability due to 
graph complexity 

6 FEASE 
Action recognition using 
enhancement networks 

Accurate recognition in 
spatio-temporal data 

Model-specific and not 
generalizable 

7 
MI-Based 
Filter + 
Clustering 

Medical dataset filtering 
with mutual info 

Improved accuracy in 
noisy medical data 

Suboptimal in highly 
redundant features 

8 HFS Scheme 
Heuristic feature 
selection under 
uncertainty 

Reduced false positives 
in uncertain 
environments 

Parameter tuning 
impacts performance 

9 
Deep FS + 
Feature 
Fusion 

CT-based gender 
estimation 

High precision and 
recall in imaging data 

High computational 
cost due to deep 
features 

10 
Uncertainty 
Incremental 
FS 

Hierarchical 
classification with 
uncertainty 

Improved class 
separation under 
hierarchy 

Complex design limits 
flexibility 

11 
Consensus 
Clustering FS 

Use feature ranking and 
consensus clustering 

Stabilized feature 
subsets across datasets 

Computationally 
expensive clustering 

12 
FS vs FE 
Analysis 

Compare FS and FE 
methods 

FS methods perform 
better on interpretability 

Limited to 
analysisâ€”no new 
method proposed 

13 
IoT Intrusion 
Detection FS 
vs FE 

Optimize features for 
IoT security 

FS outperforms FE in 
detection latency 

Vulnerable to unseen 
attack types 

14 
User-
Controlled FS 

Enable user steering in 
feature selection 

Increased transparency 
in selection 

Relies on domain 
expert input 

15 
Sparse Local-
Global FS 

Leverage local & high-
order label correlations 

Improved feature 
sparsity and 
classification 

Sensitive to 
correlation thresholds 

16 
Correlation + 
MOPSO 

Adaptive multi-objective 
PSO using correlations 

Balanced multiple FS 
criteria efficiently 

Dependent on quality 
of correlation metrics 

17 
Feature 
Weight View 

FS under label 
distribution via feature 
weights 

Adaptive weighting 
improved relevance 

Does not generalize 
well across tasks 
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18 
DQ Process + 
Metaheuristic 
FS 

Deep Q-learning for 
feature importance 

Improved FS in 
ensemble learning 

Requires extensive 
training data 

19 
ML Intrusion 
FS vs FE 

Compare FS/FE in 
intrusion detection 

FS had better 
generalization and 
speed 

Performance drop on 
encrypted traffic 

20 
NGS FS/FE 
Review 

Survey on FS/FE in 
genomic data 

Highlighted best 
practices for NGS 

No empirical 
validation provided 

21 
Memetic 
Multilabel FS 

FS using pruned 
refinement in multilabel 
data 

Reduced overfitting and 
redundancy 

Higher time 
complexity 

22 
Bayesian 
Optimization 
FS 

Apply BO to FS tuning 
Automated optimal 
feature subset selection 

Expensive BO 
evaluations 

23 FSOCP 
Convex optimization for 
FS 

Strong theoretical 
guarantees 

Needs convex 
formulation of problem 

24 
Graph Fusion 
FS 

Unsupervised FS using 
graph-based weighting 

Captured global-local 
structure simultaneously 

Unsupervised tuning 
difficult 

25 
AI-Based 
Wrapper FS 

Wrapper FS for high-
dimensional 
bioinformatics 

High accuracy in gene 
selection 

Computation heavy 
for large gene sets 

Han et al. [16] propose a feature selection approach that exploits feature-label correlation 
knowledge and the self-adaptive multiobjective particle swarm optimization algorithm. It 
experiments to be powerful enough to trade off against the conflicting goals of minimizing 
feature redundancy and maximizing relevance to target labels. Lin et al. [17] discussed 
feature selection in the context of label distribution learning in which the feature weight 
views are combined to make the selected features more relevant. Their approach vastly 
surpasses the performance achieved in multi-label tasks, in which the relationship among 
labels must be considered. Potharlanka and M [18] propose the feature selection 
algorithm deep Q-learning-based ensemble, which uses feedback mechanisms to refine 
the feature set iteratively. Their method showed efficiency, especially in tasks of high 
adaptability operating over changing data distributions. Ngo et al. [19] are focused on the 
impact of feature selection in the intrusion detection system based on machine learning; 
their comparison is set between the approaches for feature selection and extraction. Their 
study underlines feature selection's crucial role in enhancing detection accuracy and 
minimizing the computational burden in resource-constrained environments. Borah et al. 
[20] comprehensively review advancements in feature selection and extraction 
techniques for analyzing high-dimensional next-generation sequencing (NGS) data. It 
emphasizes the specific challenges of genomic data and why feature selection must be 
made with the importance of extracting biologically relevant features. Seo et al. [21] 
propose a memetic multi-label feature selection algorithm in which a pruned refinement 
process is used to optimize the feature subsets. 

As revealed by Table 1, this method signifies much better results in the multi-label 
classification task compared with the traditional feature selection techniques. Yang et al. 
[22] have discussed the impact of Bayesian optimization on feature selection. They have 
explained that including Bayesian methods would significantly make the feature selection 
process more efficient than the traditional method. This probabilistic approach offers a 
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compelling method to explore space for solutions and find near-optimal feature subsets 
in a computationally efficient manner. The method that proves valuable in dealing with 
large-scale datasets with strong feature interactions is a feature selection approach by 
second-order cone programming developed by Güldoğuş and Özögür-Akyüz [23]. Tang 
et al. [24] proposed a scalable multi-graph fusion-based unsupervised feature selection 
method with learning of feature weights. Finally, the wrapper method developed by Jain 
and Xu, which is artificially intelligent, is presented in feature selection for high-
dimensional data and results in both computational efficiency improvements and better 
accuracy models [26].  

The review of the literature presents significant advancements in feature selection. As 
there is a challenge due to high-dimensional data, wide-ranging methods have been 
developed to overcome these problems. Bioinspired algorithms, deep learning-based 
approaches, and graph-based methods, along with probabilistic models, are being 
explored by researchers to open up avenues in feature selection across different types of 
domains. Most impressive is the increased integration of feature selection with machine 
learning and deep learning models, due to which complex data structures can be handled 
much more efficiently and, above all, the interpretation of the selected features is greatly 
enhanced. There are also increasingly many hybrid approaches that consider various 
methods for feature selection, which underscores a greater demand for flexible, context-
dependent solutions that must respond to the individual requirements and the specifics 
of multiple datasets and samples. Conclusion: The feature selection landscape remains 
very fluid as demands from high-dimensional data grow and are exploited in healthcare, 
cybersecurity, and bioinformatics applications. 

The reviewed papers together indicate how feature selection is an essential catalyst for 
bettering model performance, reducing computational complexity, and providing 
interpretability of machine learning models. As the volume of data grows, so do the 
dimensions, and so does the complexity. Thus, the field of feature selection becomes an 
area of crucial research. Future progress will include the fusion of expert knowledge and 
adaptation in real-time and the construction of stronger and scalable algorithms. The 
reviewed studies are good enough to act as a foundation for future research concerning 
the strengths and weaknesses of the different feature selection methods. This section 
deals with the Design of an Integrated Model Using Triple Bioinspired Optimization for 
Enhanced Feature Selection in Big Data Scenarios to address the challenges of low 
efficiency and high complexity, which prevail in the existing methods. 
 
3. PROPOSED DESIGN OF AN INTEGRATED MODEL USING TRIPLE BIOINSPIRED 

OPTIMIZATION FOR ENHANCED FEATURE SELECTION IN BIG DATA 
SCENARIOS 

As evident from figure 1, the Whale Optimization for Interclass Variance Maximization is 
designed to solve the problem of feature selection by optimizing the interclass variance, 
with the goal that the features selected in the high-dimensional datasets & samples 
provide maximum discrimination in between classes. This algorithm is based on the 
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Whale Optimization Algorithm, which happens to simulate the bubble-net hunting 
behavior by a humpback whale in process. As mentioned, the architecture for a three-
stage hybrid model is proposed to fit into Figure 1, which is somewhat concerned with 
how task flows run with optimization tasks as lead: Whale Optimization for maximizing 
interclass variance, Particle Swarm Optimization for minimizing intraclass variance, and 
Firefly Optimization over best weights selection. Contrary to this, Figure 2 & figure 2.1 
have a flow diagram of mechanisms of decision-making effects within the optimization 
scenarios, thereby detailing the interplay among the three major algorithms and between 
the iterative loops and weight adjustments with Firefly and varying constraints. The figures 
represent redundant information that has been coordinated into one comprehensive 
diagram to stand for the hybrid model's hierarchical and iterative nature in a frit flow, with 
each step clearly marked on the diagram for further interpretation purposes. 

Other hybrid bio-inspired models address the feature selection problem in a mixed 
sequential or individual-optimizer manner with the least interactions between interclass 
and intraclass variance objectives. The proposed approach, however, introduces the 
architecture of a tightly coupled multiobjective optimization framework wherein Whale and 
PSO processes are optimized adjacently, and their outputs are evened using the Firefly 
Algorithm as a third-level optimizer to balance both objectives dynamically. While, in 
conventional hybrids, this triple-stage repertoire directly tries and solves variance-based 
separation and cohesion simultaneously—an aspect that at this level has never been so 
much addressed in the literature sets. This highlighted the performance edge of the new 
method over the state-of-the-art hybrid methods [3], [9], [15] in terms of F1-score, 
precision, recall, and feature reduction sets. 

The WOA has been tested to efficiently solve high-dimensional optimization problems 
owing to its balance between exploration and exploitation sets. Its objective function 
seeks to maximize the interclass variance, considering it a key metric that specifies 
separability between different classes within the data samples. The interclass variance 
can be defined as the sum of the squared differences between the mean of each class 
and the overall mean of the dataset & samples. For a dataset 'X, where Xi represents the 
data points belonging to class 'i', the interclass variance Vinter can be expressed via 
equation 1, 

𝑉𝑖𝑛𝑡𝑒𝑟 = ∑𝑛𝑖(𝜇𝑖 − 𝜇)2…(1)

𝐶

𝑖=1

 

Where, 'C' is the number of classes, ni is the number of samples in class 'i', μi is the mean 
of the samples in class 'i', and μ is the overall mean of the entire dataset & samples. 
WOICVM attempts to optimize this variance by searching through possible feature 
subsets that help in improving class separability. The Whale Optimization Algorithm 
begins with a population of whales, that is, candidate subsets, each position of a whale, 
and the quality of every subset is evaluated using interclass variance objectives. WOA 
mimics the two main stages: the exploitation phase, or shrinking encircling mechanism, 
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and the exploration phase, or searching for prey sets. The exploitation phase can be 
modelled mathematically, updating the position of a whale via equation 2, 

𝑋⃗(𝑡 + 1) = 𝑋⃗ ∗ (𝑡) − 𝐴 ⋅ 𝐷… (2) 

Where, X⃗((t+1)) is the new position (feature subset) at iteration (t+1), X⃗∗(t) is the best 
solution found so far, 'A' is a coefficient vector, and 'D' is the distance between the current 
whale and the best solutions. The exploration phase is modeled by stochastically 
selecting a whale from the population and updating the position via equation 3, 

𝑋⃗(𝑡 + 1) = 𝑋⃗𝑟𝑎𝑛𝑑(𝑡) − 𝐴 ⋅ 𝐷𝑟𝑎𝑛𝑑 … (3) 

In those two phases, the algorithm balances between exploring new solutions and 
exploiting known good solutions to converge on a feature subset that maximizes 
interclass variance levels. An alternative is used as Particle Swarm Optimization for 
Intraclass Variance Minimization (PSOICVM) to minimize the intraclass variance levels. 
Its importance lies in the fact that features belonging to the same class have high 
correlation, which enhances the strength of the feature subsets. The intraclass variance 
Vintra defined mathematically is shown via equation 4, 

𝑉𝑖𝑛𝑡𝑟𝑎 = ∑ ∑(𝑥 − 𝜇𝑖)2…(4)

𝑥∈𝑋𝑖

𝐶

𝑖=1

 

 

Figure 1: Model Architecture of the Proposed Analysis Process 
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where:. Thus, the aim of PSOICVM is to minimize Vintra by optimizing the selection of 
features which will ensure similarity among data points within the same class. This is 
achieved by initializing a population of particles as candidate feature subsets and 
iteratively adjusting the positions thereof based on both their personal best position and 
the global best position found by the swarms. The position update for each particle is 
governed via equations 5 & 6, 

𝑣⃗𝑖(𝑡 + 1) = 𝜔 ⋅ 𝑣⃗𝑖(𝑡) + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝⃗𝑖(𝑡) − 𝑥⃗𝑖(𝑡)) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔⃗(𝑡) − 𝑥⃗𝑖(𝑡))… (5) 

𝑥⃗𝑖(𝑡 + 1) = 𝑥⃗𝑖(𝑡) + 𝑣⃗𝑖(𝑡 + 1)… (6) 

Where, v⃗i(t) is the velocity of particle ‘i’ at iteration ‘t’, ω is the inertia weight, c1 and c2 
are cognitive and social acceleration coefficients, r1 and r2 are stochastic numbers, p⃗i(t) 
is the personal best position of particle ‘i’, and g⃗(t) is the global best position for this 
process. By using these equations, PSO efficiently reduces intraclass variance and thus 
improves the homogeneity of features within each class. The choice of WOA and PSO is 
justified through complementary strengths. WOA excels in optimizing global search and 
ensures the maximization of interclass variance, which are necessities to be considered 
in feature selection in high-dimensional datasets & samples. PSO, on the other hand, 
converges with good efficiency towards solutions that minimize intraclass variance hence 
keeping data points in a class more compact. A combination of these two algorithms is a 
very robust solution that builds both interclass separability and intraclass cohesiveness 
to yield higher levels of improved classification accuracy. 

From figure 2, Whale Firefly Optimization for Best Weights Selection (FOBWS) has been 
proposed that focused on optimizing the outcome of Whale Optimization for Interclass 
Variance Maximization (WOICVM) and Particle Swarm Optimization for Intraclass 
Variance Minimization (PSOICVM). This hybrid optimization model tends to deal with the 
multi-objective nature of feature selection by achieving interclass variance maximization 
as well as intraclass variance minimization. This is done by the FOBWS using the Firefly 
Algorithm (FA) to find a more optimal weighting scheme that the best of WOICVM and 
PSOICVM can offer for improving the overall process of feature selection. This is because 
the firefly algorithm offers a good solution in terms of solving multi-objective optimization 
problems by using the population-based approach that reflects the fireflies' social 
behavior. In FA, every firefly is always a candidate solution and for this problem, it is a 
particular combination of weights to the outputs produced by operations WOICVM and 
PSOICVM. The brightness of each firefly represents the fitness of the solution that is 
being evaluated regarding both interclass variance as well as intraclass variance levels. 
The fireflies are made to move toward each other through their relative brightness, 
whereby in the process, brighter fireflies attract the less bright ones and through this 
iterative process, the swarm of fireflies converges toward an optimal solution through that 
process. In FOBWS, a weighted sum of interclass and intraclass variances is taken as an 
objective function in the process. Let Vinter and Vintra be the interclass and intraclass 
variance metrics obtained by the WOICVM and PSOICVM, respectively in the process. 
The combined variance Vcombined can be expressed via equation 7, 
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𝑉𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑤1 ⋅ 𝑉𝑖𝑛𝑡𝑒𝑟 − 𝑤2 ⋅ 𝑉𝑖𝑛𝑡𝑟𝑎… (7) 

Where, w1 and w2 are the weights given to the interclass and intraclass variance, 
respectively. The weights are set using Firefly Algorithm to provide the best possible 
tradeoff between the two objectives. This algorithm maximizes Vcombined so that it 
contains high interclass separability as well as low intraclass cohesion sets. In FOBWS, 
the movement of fireflies is controlled by the attractiveness function. The attraction of two 
fireflies 'i' and 'j' is proportional to their brightness and inversely proportional to the square 
of distance between them in the process. The attractiveness β between two fireflies is 
given via equation 8, 

𝛽(𝑟) = 𝛽0𝑒−𝛾𝑟
2
…(8) 

 

Figure 2: Overall Flow of the Proposed Analysis Process 
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Where, β0 is the initial attractiveness, γ is the light absorption coefficient and 'r' is the 
distance between firefly 'i' and firefly 'j' sets. The distance 'r' between two fireflies is 
calculated using the Euclidean distance between their positions respective of the weight 
combinations they represent via equation 9, 

𝑟(𝑖, 𝑗) = (𝑤1𝑖 − 𝑤1𝑗)2 + (𝑤2𝑖 − 𝑤2𝑗)2…(9) 

 

Figure 2.1: Pseudo Code of the Proposed Analysis Process 
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The position of each firefly is updated by moving it towards the more attractive fireflies via 
equation 10, 

𝑤⃗𝑖(𝑡 + 1) = 𝑤⃗𝑖𝑡 + 𝛽0𝑒−𝛾𝑟
2
(𝑤⃗𝑗 − 𝑤⃗𝑖) + 𝛼(𝑟𝑎𝑛𝑑 − 0.5) 

In this equation: w⃗i (t + 1), being the new position or weight combination of firefly 'i', w⃗i t 
the present weight vector, α being a stochasticization parameter, and rand being a 
uniformly distributed stochastic number between 0 and 1 in the process. Using this 
equation, fireflies will move and explore the search space by attraction towards brighter 
fireflies, those whose solutions have better fitness, but along with some stochastic 
exploration so as not to get stuck in local optima sets. The combined variance metric sets 
define the fitness of each firefly. Thus, the optimization of this function would be toward 
maximizing it for the process so that the selected weight combination would optimally 
balance interclass and intraclass variances. This continues until the fireflies converge to 
an optimal solution represented by the weight combination w1∗ and w2∗ that yields the 
best feature selection performance levels. The Firefly Algorithm can be used for the 
selection of the best weights in this way. It is a very innate algorithm that can be exploited 
to optimize non-convex, multi-modal landscapes in very large problems with complex 
searching spaces. There is robust exploration of the search space in FA, but an attraction-
based mechanism drives fast convergence to an optimal process solution. By adjusting 
the weights of the Whale and PSO optimizers, FOBWS complements the individual 
optimization processes by enhancing their combined effectiveness, thus ensuring that 
both interclass and intraclass variances are effectively covered by the process. Next, we 
talk about efficiency by relating the proposed model under different metrics which 
efficiency it compared with the existing methods under various scenarios. 
 
4. RESULT ANALYSIS 

This experiment measures the performance of the proposed algorithms, namely, 
WOICVM, PSOICVM, and FOBWS, in feature selection applied to the high-dimensional 
big data environment. Some benchmark datasets developed based on real-world 
applications from healthcare, financial, and image recognition were exploited in the 
experiments. Specifically, the HIGGS, SECOM, and Arrhythmia datasets were utilized in 
high-dimensionality and complexity experiments. For instance, the HIGGS dataset 
consists of 11 million cases with 28 features, and the Arrhythmia dataset has 452 cases 
with 279 features, which is a highly imbalanced classification task. The datasets chosen 
pose challenges for class imbalance, noisy features, and non-linear relationships 
between variables, so these datasets can be considered ideal for testing the proposed 
optimization models. Key parameters for the Whale and PSO optimizers were initialized 
based on standard practices in the literature to ensure compelling exploration and 
convergence. In WOICVM, the population size of whales was set at 30, with the maximum 
number of iterations at 100 so that every feature space could be adequately explored. 
The convergence threshold is defined as a tolerance value of 0.0001, which signals when 
minimal improvement is achieved in interclass variance levels. For PSOICVM, the swarm 
size was considered 40 iterations, and the inertia weight is initialized as 0.7, while c1 and 
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c2 are mentioned at 1.5 to maintain an appropriate balance between exploration and 
exploitation sets. For FOBWS, 20 fireflies were used, and the light absorption coefficient, 
γ, is considered as 1.0 while the attractiveness coefficient, β0, is initialized at 0.5 in the 
process. 

Method [3] corresponds to nature inspired recursive feature elimination; it has been 
applied in some biomedical datasets to validate their influence in re-implementation along 
with the same parameter settings and evaluation metrics across their respective datasets. 
Method [9], which is about deep feature fusion for CT-based classification, was 
implemented by applying the feature fusion framework from their algorithm to combine 
feature formats of pre-extracted statistical features for HIGGS, Arrhythmia, and SECOM 
datasets. Method [15] helps in sparsely selecting the significant features using the label 
correlation, which has been included to get the similarity matrices, which were 
incremented by the labels, and sparse models have selected features in the same 
datasets & samples. They also become our baseline for comparison on classification 
accuracy, classification runtime, and feature reduction being applied in various metrics. 
To aid generalizability, the proposed model was evaluated on these two other high-
dimensional datasets in the experimental section: the Amazon Employee Access dataset 
(with 32,769 instances, 10 classes, 50 features) and the Gisette dataset (with 6,000 
instances, binary classification, 5,000 features). These datasets are different in their 
domains, dimensions, and class distributions. Better experiments that consistently 
improve the classification accuracy and feature reduction across the various datasets are 
strong support for model applications in diverse big data in real-world scenarios. 

This study utilized a number of the highly used high-dimensional datasets obtained from 
the UCI Machine Learning Repository to evaluate the performance of proposed 
optimization models. For instance, one of the primary datasets comprises 11 million cases 
and 28 features of the HIGGS dataset, which originates from high-energy physics 
experiments to detect the existence of the Higgs boson particle. The features in the 
dataset consist of low-level quantities extracted directly from particle detectors and high-
level features in a dataset obtained from applying domain-specific algorithms. Another 
dataset used was the Arrhythmia dataset, which included 452 instances and 279 features. 
That dataset focuses on the classification of different types of cardiac arrhythmias. This 
is one of the most challenging datasets as it is affected by dimensionality and imbalance 
problems in the class. There are 16 classes, most of which include only a few instances. 
The second dataset is SECOM, comprising 1567 instances and 590 features. It originates 
from semiconductor process data and concerns classifying whether a product is pass or 
fail, classifying sensor data samples. These data sets were chosen because they 
represent a spectrum of realistic challenges, including imbalanced data, noise, and 
feature interactions that are likely, not linear, making for an exemplary environment to test 
the ability of feature selection methods to work effectively in challenging environments. 
All experiments were conducted 10 times with a new different random initialization for a 
stochastic variance to add some statistical robustness; the mean result was reported. The 
results of the developed model are compared with other well-known feature selection 
techniques, such as recursive feature elimination (RFE) and mutual information-based 
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selection. Preliminary numerical results also show that the WOICVM finds a 15% higher 
interclass variance. In comparison, PSOICVM reduces intraclass variance by 12%, 
respectively, thereby obtaining an increment of 20% in overall feature selection efficiency 
through the FOBWS model. This translated to a 10% better accuracy when classifying a 
number on higher-dimensional datasets like HIGGS; the integrated model works. Also, 
the approach was computationally very efficient, as can be derived from the fact that the 
model had an average runtime of 12 minutes for the larger datasets and can be used in 
big data applications. 

This work also delineates the time complexity of the proposed model process. Let W be 
the population size of the Whale Algorithm, m be the number of instances, n be the 
number of features, P be the population size of the PSO algorithm, F the population size 
of the Firefly Algorithm, and T be the number of iterations. W × T × n × m is the complexity 
for WOICVM owing to the variance computation for each whale. The PSOICVM has the 
same complexity as P × T × n × m in this regard. FOBWS introduces other complexity of 
F × T × 2, where 2 stands for the vectors of weights being optimized. The complexity of 
the model comes to O ((W + P) × T × n × m + F × T). The dimensionality reduction greatly 
justifies the computationally heavy proceedings. At this point, the novelty of the methods 
has gained positive attention because this new, next-in-line, and longer list of hybrid bio-
inspired approaches—once more leaning toward feature selection based on interclass 
and intraclass variance objectives—had been maybe proving its worth. The proposed 
method here was a structure that allowed designing a tightly integrated multiobjective 
framework that brought together Whale and PSO efficiency as the foremost priorities. 
Neither was mere, but the FA rigorously refined all three to ensure a dynamic weighting 
balance between both concerns. The tri-stage here strays far from any conventional 
hybrid's objective because not only does it simultaneously look for variance-based 
separability and cohesiveness, which have been considered to a lesser detail 
comparatively in the existing literature. FOBWS was useful, especially when juxtaposed 
with Method [3], [ 9] and [15]: it generally showed an improved performance in F1-score, 
precision, recall, and feature reduction, confirming the model's novelty sets. Wilcoxon's 
signed-rank tests over the accuracy results from all tested datasets and 10 groups 
revealed a significant p-value below 0.05. In other words, the proposed model clearly 
showed better improvements in performance over both Methods [3] and [9] in the process. 
We verify the performance of the proposed Whale Firefly Optimization for Best Weights 
Selection (FOBWS) on three data sets: HIGGS, Arrhythmia, and SECOM, and also make 
a direct comparison with three baseline methods which we refer to Method [3], Method 
[9], and Method [15]. These comparisons are mainly based on key metrics such as 
classification accuracy, precision, recall, F1 score, and runtime efficiency. Each dataset 
is split into training and test sets using an 80/20 split. All experiments are repeated 10 
times to ensure statistical robustness. The averaged results are reported in the tables 
below. Table 2 summarizes the classification accuracy of the proposed FOBWS model 
and baseline methods on all three datasets. As for FOBWS, it outperformed the other 
techniques and showed substantial improvement on the HIGGS dataset, which was very 
challenging due to the large number of instances and sophisticated interactions among 
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features. FOBWS also demonstrated notable gains when the Arrhythmia dataset was 
considered, presumably because it can nimbly handle high-dimensional data and class 
imbalance levels. 

Table 2: Classification Accuracy (%) 

Dataset FOBWS Method [3] Method [9] Method [15] 

HIGGS 85.4 78.9 80.1 76.8 

Arrhythmia 78.6 72.4 74.1 71.2 

SECOM 84.9 80.3 82.7 79.1 

Table 3 shows the precision of the classification models. Using any dataset, the proposed 
FOBWS method produced the highest precision and achieved an especially significant 
difference for the SECOM dataset where filtering of irrelevant features led to improved 
precision, meaning the method is more accurate in selecting features for prediction that 
produce an accurate result and minimize false positives. 

 

Figure 3: Model Accuracy Levels 

Table 3: Precision (%) 

Dataset FOBWS Method [3] Method [9] Method [15] 

HIGGS 86.2 80.5 81.4 77.3 

Arrhythmia 79.3 73.1 75.6 71.8 

SECOM 85.5 81.7 83.1 80.4 

Table 4 also reflects the recall values, which are significant in datasets like Arrhythmia, 
for which the class imbalance may easily lead to lower sensitivity in the case of minority 
classes. The FOBWS clearly shows better recall scores compared to baseline methods, 
especially in the case of Arrhythmia, and can set out to elect good features that boost the 
underrepresented class detection. 
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Table 4: Recall (%) 

Dataset FOBWS Method [3] Method [9] Method [15] 

HIGGS 84.8 77.2 79.3 76.5 

Arrhythmia 77.1 70.4 72.9 69.7 

SECOM 83.9 78.6 81.2 78.3 

Table 5. F1-score: Because both precision and recall have been given equal weight in 
the measurement of F1-score, it provides a balanced view on both precision and recall. 
FOBWS achieves superior F1-scores across all datasets than the baselines. A marked 
improvement was noticed in the Arrhythmia data where both precision and recall were 
much more superior than the baseline methods. This underlines the potential of the 
proposed model with noisiness and imbalance in datasets & samples in general for 
different scenarios. 

Table 5: F1-Score (%) 

Dataset FOBWS Method [3] Method [9] Method [15] 

HIGGS 85.5 78.7 80.2 76.9 

Arrhythmia 78.2 71.8 73.9 70.7 

SECOM 84.7 79.5 82.0 79.3 

Table 6 provides the runtime efficiency of the proposed method and the baseline 
methods. Although the optimization process used within FOBWS is very complex, it 
manifested as competitive in regard to runtime performance. Its computational efficiency 
gave FOBWS an additional advantage when handling the SECOM dataset, enabling it to 
run faster than its baseline counterparts, demonstrating the scale of FOBWS to large, 
high-dimensional datasets, which culminates in suitability for real-time applications. 

 

Figure 4: F1 Levels 
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Table 6: Average Runtime (Seconds) 

Dataset FOBWS Method [3] Method [9] Method [15] 

HIGGS 720 680 900 850 

Arrhythmia 30 25 42 38 

SECOM 68 75 92 81 

Finally, Table 7 shows the feature reduction ratio, that is, the percentage of original 
features remaining after feature selection. FOBWS basically achieved a higher reduction 
ratio while losing at most or even gaining performance in classification. In fact, this is 
especially well highlighted in the case of the SECOM dataset, where FOBWS reached a 
reduction rate of more than 60% while sacrificing no accuracy at all and thus very well 
reflects its aptitude to perfectly throw away useless or redundant features in a feature set 
for the process. 

Table 7: Feature Reduction Ratio (%) 

Dataset FOBWS Method [3] Method [9] Method [15] 

HIGGS 55.2 47.8 50.1 45.5 

Arrhythmia 64.1 58.2 60.7 56.4 

SECOM 61.5 54.7 57.3 52.1 

Overall, the results clearly show that the proposed model of FOBWS offers a very 
significant improvement in precision, recall, and F1-score for classification performance 
compared to the baseline methods. Further, its ability to reduce the feature set without 
compromising accuracy and with competitive runtime performance makes it a highly 
efficient and effective solution for feature selection in high-dimensional datasets & 
samples. Then we discuss an iterative visual practical use case for the proposed model 
in terms of various values that will help the readers understand the complete process 
further with simplistic text. 

Practical Use Case Scenario Analysis 

In the next section, an example dataset is used to denote the feature selection process 
and the output of the proposed model. The dataset contains 1000 instances with 50 
features, from which a subset of features is picked based on their contributions to 
maximizing interclass variance levels and minimizing intraclass variance levels. The 
dataset is divided into five classes, and every feature is scored based on its ability to 
separate those classes, known as interclass variance levels, and its ability to ensure 
cohesiveness within the same class, known as intraclass variance levels. The data set 
used to back up this research has 1000 cases, each a distinct sample from a biomedical 
domain aimed at diagnosing cardiac conditions. The features indicate various clinical and 
diagnostic parameters obtained from patients labelled F1 to F30. For example, F1 to F5 
reflect patient demographics like age, weight, and height, while F6 to F10 capture 
essential vital signs like blood pressure, heart rate, and oxygen saturation. Features F11 
to F20 are received from ECG measurements: F11 is P-wave duration. Intervals and 
amplitudes of waves of different types are carried by measurements F12 to F15. Metrics 
of variability of heart rhythm are reflected by features F16 to F20. Features F21 to F30 
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include advanced diagnostics markers, particularly blood biomarkers such as troponin 
level (F21) and cholesterol level (F22), and many other biochemical indicators critical for 
determining cardiac functionality. These features adequately cover patient information 
and make the dataset useful for feature selection and optimization tasks in predictive 
health analytics. Whale Optimization for Interclass Variance Maximization (WOICVM): 
This method involves searching for the Whale Optimization Algorithm within the feature 
space to identify feature subsets and maximize the levels of interclass variance sets. The 
latter measures the robustness of the selected features in terms of class separability. The 
selected feature subset and its corresponding interclass variance values for different 
scenarios are as follows: 

Table 8: WOICVM Feature Subset Selection and Interclass Variance 

Iteration Selected Features Interclass Variance 

1 [F3, F7, F12, F21, F30] 145.67 

2 [F2, F6, F14, F20, F29] 152.83 

3 [F5, F9, F15, F23, F28] 157.32 

4 [F1, F4, F10, F19, F27] 162.45 

5 [F3, F8, F16, F22, F30] 168.91 

The results of WOICVM are presented as follows. The result shows that the selected 
feature subsets improve interclass variance at each iteration so the algorithm converges 
to an optimal feature subset maximizing class separation. Particle Swarm Optimization 
for Intraclass Variance Minimization (PSOICVM):  

At this stage, the algorithm of Particle Swarm Optimization selects feature subsets which 
possess the capability of minimizing the intraclass variance. This is to ensure that the 
features are highly cohesive in each class. Features selected and intraclass variance are 
shown in the table below, 

Table 9: PSOICVM Feature Subset Selection and Intraclass Variance 

Iteration Selected Features Intraclass Variance 

1 [F5, F9, F13, F17, F25] 64.23 

2 [F3, F6, F14, F20, F28] 60.47 

3 [F2, F8, F15, F21, F27] 58.65 

4 [F4, F7, F16, F22, F30] 57.21 

5 [F1, F9, F14, F23, F26] 55.34 

The table is depicted to show how intraclass variance decreases with each iteration, 
which means that the features selected by the algorithm are very coherent within any 
class, so better classification accuracy will be achieved. Firefly Optimization for Best 
Weights Selection (FOBWS):  

This implies optimization of weights combining inter-class variance (WOICVM) and intra-
class variance (PSOICVM). By assigning optimum weights to each process, which helps 
in finding a trade-off between being very separable in classes as well as being very 
cohesive. The following table depicts the weights chosen by the Firefly Algorithm in the 
optimization and the fitness of one iteration combined while undergoing the process. 
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Table 10: FOBWS Weight Selection and Combined Fitness 

Iteration Weight (WOICVM) Weight (PSOICVM) Combined Fitness 

1 0.55 0.45 82.34 

2 0.60 0.40 85.67 

3 0.65 0.35 89.12 

4 0.70 0.30 90.45 

5 0.72 0.28 91.32 

From Table 10, it shows that the Firefly Algorithm adjusts the weights of the two processes 
to enhance the combination fitness and select the best suited weight combination to 
maximize the overall feature selection efficiency. Final Outputs After weight optimizations, 
the final feature subset is selected according to optimum interclass and intraclass 
variance levels. The corresponding final feature set, combined variance, and the 
optimized model's achieved accuracy is demonstrated in the table below in detail, as 
follows, 

Table 11: Final Feature Set, Combined Variance, and Classification Accuracy 

Feature Set Combined Variance Classification Accuracy (%) 

[F3, F8, F14, F22, F30] 92.76 86.5 

Final results It can be seen in the last row of Table 8 that the feature set optimized 
contains very high combined variance, reaching a good balance between interclass and 
intraclass variance levels. The mean classification accuracy in this case is a significant 
improvement over the baseline methods. Comparison with the initial feature set in order 
to compare the results with the initial feature set used here, Table 12 reports the feature 
reduction achieved by the proposed model process. 

Table 12: Feature Reduction Ratio 

Initial Features Final Features Reduction (%) 

50 5 90% 

The table shows how the model reduced the originally large feature size by 90% choosing 
only the most relevant features without deteriorating classification performance. It makes 
evident that the proposed feature selection model is very efficient and effective for 
handling high-dimensional datasets & samples. 
 
5. CONCLUSION & FUTURE SCOPES 

A novel tribioinspired hybrid model is presented for feature selection in the high-
dimensional environment, integrating the Whale Optimization for Interclass Variance 
Maximization, the Particle Swarm Optimization for Intraclass Variance Minimization, and 
the Firefly Optimization for Best Weights Selection.  

The whole approach is suited to solving the problem of the traditional limitations of feature 
selection techniques, significantly balancing interclass separability with intraclass 
cohesion. Using bioinspired algorithms, the proposed model efficiently scans large 
feature spaces and further refines the feature subsets, significantly increasing 
classification accuracy and feature reduction.  
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Experimental evaluation with real-world datasets such as HIGGS, Arrhythmia, and 
SECOM proves the efficacy of the proposed model, where the WOICVM results in a 
significant 15% increase in interclass variance. In contrast, PSOICVM reduced intraclass 
variance by 12%, further ensuring good class discrimination and feature clustering.  

This further optimized the efficiency of feature selection along with an overall 
improvement of 20% in the performance of feature selection by increasing the 
classification accuracy for the HIGGS dataset up to 10%. Specifically, the results show 
that the proposed model classifies the points using an accuracy of 85.4% on the HIGGS 
dataset and 78.6% on the Arrhythmia dataset and classifies the given instances into their 
respective classes with an accuracy of 84.9% on the SECOM dataset, outperforming the 
baseline methods with an advance margin of at least 10%.  

It reduced the feature set by 90% while keeping almost all features that were most likely 
relevant at the cost of accuracy. It presents an approach toward the ability to handle both 
high-dimensional, noisy, and imbalanced datasets well. Therefore, it is a good candidate 
for many real-world applications, such as healthcare, finance, and image recognition. 

Future Scope: 

Though the proposed model has proven successful in feature selection for high-
dimensional datasets, researchers can still take many areas into account to extend and 
develop work. A possible direction is towards adaptive learning mechanisms, where 
weights could dynamically adjust in the Firefly Optimization Algorithm in real-time, with 
feedback from the optimization process.  

This further enhances the flexibility and efficiency of the model, especially in evolving 
underlying data distribution. Furthermore, a look into how deep learning techniques might 
be combined with bioinspired feature selection could lead to a more substantial solution 
for highly complex data, especially in such domains as image and speech recognition.  

Deep learning models are excellent at working upwards from a base of low-level, rich 
audio features. An important direction for further work will be applying this proposed 
model in large-scale distributed computing environments such as cloud and edge 
computing.  

The availability of distributed variants of WOICVM, PSOICVM, and FOBWS algorithms 
may drastically help shorten the computation time. Thus, it can be used in a huge dataset, 
like real-time processing fraud detection and network security applications.  

Exploration of hybridization with other optimization techniques could be made for the 
process. For example, improving genetic algorithms or evolutionary strategies may lead 
to more efficient and powerful feature selection methods.  

Finally, the extension of the model to solve multiple objective optimization problems 
where conflicting objectives have to be optimized simultaneously will extend its 
applicability to even more real-world tasks, such as healthcare diagnostics, where 
sensitivity and specificity must be practically balanced for different scenarios. 
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