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Abstract

This paper presents a novel hybrid tribioinspired model for feature selection that employs three algorithms
for feature selection: Whale Optimization for Interclass Variance Maximization, Particle Swarm
Optimization for Intraclass Variance Minimization, and Firefly Optimization for Best Weights Selection.
The WOICVM algorithm is used as this contains an excellent exploration-exploitation balance for
maximizing the interclass variance to induce significant separability among classes. PSOICVM is highly
efficient in large-scale optimization, minimizes intraclass variance, and improves cohesiveness within
each class. Finally, the Firefly Algorithm optimally combines WOICVM's and PSOICVM's strengths by
determining the best weighting scheme and balancing interclass and intraclass variances. This
multiobjective approach enhances feature selection efficiency by leveraging the complementary
advantages of the three algorithms. Tentative numerical results depict a 15% increase in inter-class
variance with WOICVM, a 12% reduction in intraclass variance with PSOICVM, and a 20% improvement
in overall feature selection efficiency through FOBWS. This thereby shows a 10% enhancement in
classification accuracy in high-dimensional environments, showing the efficiency of the proposed model
over conventional methods. It fills critical gaps in existing methods by offering a hybrid method as a strong
tool for applying big data to improve classification performance.

Keywords: Big Data, Feature Selection, Whale Optimization, Particle Swarm Optimization, Firefly
Algorithm, Process.

1. INTRODUCTION

Big data, which explodes exponentially in different fields of health care, finance, and
social networks, has increased the need for advanced analytical tools to process vast
volumes of high-dimensional datasets and analyze them efficiently. More specifically,
feature selection has emerged as one of the critical tasks at the data preprocessing stage
to reduce dimensionality while retaining the most informative features. The central
challenge in feature selection lies with the balance between interclass variance, its ability
to distinguish one class from another, and intraclass variance, its ability to maintain
cohesion within the same class. Generally speaking [1, 2, 3], traditional feature selection
methods fail in this task since they rely on simple heuristics or linear models that cannot
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grasp complexity and scale effectively; the features can be involved in relationships of
high dimensionality as is often found in most datasets and samples. Conventional
techniques like PCA, mutual information-based selection and filter-based approaches
relate very much either to a reduction of the dimensionality of the search space or to an
improvement in the performance of the pattern classification, but they can hardly do both.
Moreover, such approaches assume a linear relationship between the features and
neglect the nonlinear interactions that are, in fact, quite common for high-dimensional
data samples. This would naturally result in suboptimal performance, particularly when
complex class structures exist or numerous irrelevant and redundant features are present
in the given datasets. The inability of such traditional approaches to address the dynamic
and complex nature of big data environments has made it a pressing need to develop
novel, more efficient optimization techniques that can handle both multidimensional
aspects of data together while ensuring the best possible accuracy in classification. With
the challenge above [4, 5, 6], much focus has been put into bio-inspired optimization
algorithms that could explore large search spaces efficiently and discover at least near-
optimal solutions within a reasonable time. Some of the most promising ones are PSO,
WOA, and FA. These algorithms are particularly effective in the feature selection task
scenario with big data environments because they balance exploration and exploitation,
two main factors contributing to the optimization solution in high-dimensional spaces. This
paper proposes a new integrated model for feature selection that uses the strengths of
such bio-inspired algorithms. The Whale Optimization for Interclass Variance
Maximization specifically looks into maximizing the class separation through the rates of
variance levels. This is in harmony with particle swarm optimization for intraclass variance
minimization, which minimizes the variance in each class and continues to polish up
homogeneity among features of the same class. Finally, the FOBWS uses the Firefly
optimization algorithm for the best weight selection to seek the optimal weighting
combination of these two methods. Therefore, it balances the strengths of these two
methods and makes feature selection more efficient. The integrated approach gives a
much more robust answer to feature selection in high-dimensional big-data environments.
Moreover, interclass and intraclass variances are optimized by the K-means method that
utilizes NMF initialization, and hence, improvement in classification performance is
yielded in the process.

Motivation and Contribution

The primary motivating factor for this work is the growing inadequacy of the traditional
feature selection methods, especially with the contexts of scale, complexity, and
nonlinearity in the modern big data environment. With datasets exponentially growing in
size and complexity, linear and heuristics-based approaches to feature selection fail to
handle multidimensionality while achieving informative features in effective classification.
Such traditional approaches mainly focus on one of the types of variances, interclass or
intraclass, but rarely both. In addition, these suffer from local optima and cannot capture
sophisticated relationships among features. This constitutes a massive gap in the field,
thus requiring an advanced multiple-objective optimization method that could balance
multiple features while being computationally efficient. With this background, this paper
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introduces an integrated model combining the Whale Optimization Algorithm, Particle
Swarm Optimization, and Firefly Algorithm for selecting features in big data environments.
The main contribution is that the Whale Optimization for Interclass Variance Maximization
focuses the design on maximizing separation between different classes.

In contrast, the Particle Swarm Optimization for Intraclass Variance Minimization will
ensure better clustering within the same class. Based on integrating these two methods,
a new meta-heuristic developed within this work to find the optimal combination for the
two methods involved is the Firefly Optimization for Best Weights Selection. The
developed approach balances interclass and intraclass variance levels to make feature
selection more efficient. This approach maximizes the efficiency of feature selection such
that the produced outcome or classification is boosted towards effective optimization. Its
application in highly dimensional databases results in a highly elevated classification
accuracy. The numerical results fully show how the proposed models perform better than
the traditional methods: the variance metrics and classification accuracy improve
significantly.

2. REVIEW OF EXISTING MODELS FOR BIG DATA FEATURE SELECTION
PROCESS

Feature selection has been among the critical research areas of recent years, bearing in
mind the surge of data complexity and volume in all types of domains. This review will
thus critically consider existing papers on the development and applications of feature
selection methods across various contexts, carefully examining some of the key works
that defined the process. These papers give significant insights into current feature
selection methodologies advancements ranging from classical statistical methods to
bioinspired and machine learning-based approaches. They emphasize that efficient
feature selection reduces dimensionality, where the improvement in model interpretability
and a plus in classification and prediction accuracy arise. In the end, comparing the
methodologies presents their relative strengths and weaknesses against complex, high-
dimensional datasets & samples. Shu et al. [1] delve into label distribution feature
selection, focusing on the features reflecting a model's capacity within label-specific
improvements. It is an approach sensitive and helpful when dealing with the multi-label
learning environment; otherwise, it faces challenges capturing labelling correlations
during the traditional feature selection processes. Izabela and Krzysztof [2] present the
GAAMmMf algorithm, which involves a genetic algorithm implementing aggressive
mutation strategies specifically for high dimensional and large data sizes. Their method
exploits a feature set decreasing mechanism, optimizing the feature selection and
preventing overfitting. Chawla et al. [3] study the classification of Parkinson's disease
using a nature-inspired feature selection method combined with recursive feature
elimination, which results in remarkably higher classification accuracy and interpretability
levels. Nature-inspired algorithms efficiently explore the vast search spaces inherent in
biomedical datasets & samples. Hybrid feature selection approaches have been
increasingly focused on lately, such as in Anju and Judith's work [4], which presents a
hybrid approach towards predicting software defects. In that work, filter-based and
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wrapper-based methods were combined to balance computational efficiency and feature
relevance. With those improvements in mind, Zhu et al. [5] introduced a semi-supervised
graph-based feature selection approach that adapts the data structure to enhance the
features' robustness. These approaches proved to be particularly valuable for all those
situations in which the availability of labelled data was limited and classical supervised
methods failed to generalize. Zhou et al. continued on this path by developing the FEASE
framework [6], combining feature selection with neural networks for action recognition.
Their method successfully dealt with spatiotemporal data, revealing increasingly strong
symbiosis between feature selection and deep learning.

Asghari et al. [7] concentrate on the medical domain and propose a mutual information-
based hybrid feature selection method by exploiting the strength of feature clustering to
boost selected features' relevance. This technique has proven helpful in eliminating noise
and redundancy, achieving better performance for the model over the medical datasets.
Yanli et al. [8] also proposed an intelligent heuristic feature selection scheme, which
reduces uncertainty during feature selection. Their approach offers superior uncertainty
elimination that results in more confident feature sets. This is important in applications
related to decision-making. Ciftci et al. [9] address gender estimation from CT images of
the skull via a deep feature selection method, which further demonstrates that feature
fusion plays a vital role in augmenting the discriminative features of models pertinent to
the medical imaging process. Tian and She [10] further explicate the role of uncertainty
in feature selection by putting forth an incremental approach to feature selection based
on measures of uncertainty for hierarchical classification. Their method gradually refines
the feature set, thus both improving efficiency and enhancing performance over time. D
et al. [11] proposed the consensus clustering approach based on feature ranking for
selecting feature subsets.

Therefore, this approach provides a powerful solution todeal with the problems of feature
redundancy and irrelevance. Even this showed improvements in the order of high
dimensions in computational complexity. Nogales and Benalcézar [12] provide a critical
review and analysis of various feature selection and extraction methods to offer insightful
comparisons of the trade-offs between such approaches in terms of performance versus
differing degrees of computational cost. Li et al. [13] discuss a comparison study of feature
selection against feature extraction for optimizing intrusion detection systems for loT
environments.

Their results underscore the need for context-specific feature selection techniques,
particularly when real-time and resource constraints exist. Bach and Bohm [14] present
a novel feature selection technique that is interactive, taking into account user control. It
allows experts in specific domains to influence the feature selection process according to
their knowledge of a given domain. Such human-in-the-loop performs exceptionally well
when expert knowledge impacts a model's interpretability. Sun et al. [15] propose a
sparse feature selection approach based on local feature and high-order label correlation,
yielding significantly improved performance over models that fail to utilize local
correlation, particularly for tasks involving more complex label dependencies.
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Table 1. Comparative Review of Existing Methods

Reference Method Main Objectives Findings Limitations
Lgbe_l . Capture label-specific Improved label-wise Limited scalability for
Distribution - ) . .

1 Feature features in multi-label accuracy in multi-label extremely large
Selection tasks classification datasets
. Effective in reducing .
Use aggressive feature set size while Computational
2 GAAMmMf mutation in GA with SR overhead due to
. maintaining ; )
decreasing feature set mutation dynamics
performance
Nature- Classify Parkinson's Achieved high Less effective on
3 Inspired + using hybrid feature classification accuracy highly imbalanced
RFE selection with fewer features data
4 g())/]lc)t\r/:,c;rlzs for Combine statistical and | Improved defect Dataset-specific
heuristic methods prediction performance | tuning required
Defects
. Embed semi-supervised | Enhanced Reduced
Self-Adjusted : . L . .
5 learning with feature representation in sparse | interpretability due to
Graph FS .
graphs labeled data graph complexity
Action recognition using | Accurate recognition in Model-specific and not
6 FEASE ; .
enhancement networks | spatio-temporal data generalizable
7 m:t'eBrafed Medical dataset filtering | Improved accuracy in Suboptimal in highly
. with mutual info noisy medical data redundant features
Clustering
Heuristic feature Reduced false positives Parameter tunin
8 HFS Scheme | selection under in uncertain . 9
. . impacts performance
uncertainty environments
Deep FS + CT-based gender High precision and High computational
9 Feature e L - cost due to deep
. estimation recall in imaging data
Fusion features
Uncertainty Hierarchical Improved class L
P . . Complex design limits
10 Incremental classification with separation under -
. . flexibility
FS uncertainty hierarchy
11 Consensus Use feature ranking and | Stabilized feature Computationally
Clustering FS | consensus clustering subsets across datasets | expensive clustering
FS vs FE Compare FS and FE FS methods perform lelteq t? ”
12 . . " analysis&€”’no new
Analysis methods better on interpretability
method proposed
loT '”‘T”S'°” Optimize features for FS outperforms FE in Vulnerable to unseen
13 Detection FS . .
vs EE 0T security detection latency attack types
User- Enable user steering in | Increased transparency | Relies on domain
14 . . . .
Controlled FS | feature selection in selection expert input
15 Sparse Local- | Leverage local & high- !Sm;):;)i\t/e(;:]zature Sensitive to
Global FS order label correlations parsity ar correlation thresholds
classification
16 Correlation + | Adaptive multi-objective | Balanced multiple FS Dependent on quality
MOPSO PSO using correlations | criteria efficiently of correlation metrics
Feature F.S u_nde_r Iab_el Adaptive weighting Does not generalize
17 . . distribution via feature :
Weight View weights improved relevance well across tasks
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DQ Procgs; " Deep Q-learning for Improved FS in Requires extensive
18 Metaheuristic . . -
FS feature importance ensemble learning training data
ML Intrusion Compare FS/FE in FS had _bet’_ter Performance drop on
19 . - - generalization and ]
FS vs FE intrusion detection speed encrypted traffic
20 NGS FS/FE Survey on FS/FE in Highlighted best No empirical
Review genomic data practices for NGS validation provided
Memetic FS. using pr_uned . Reduced overfitting and | Higher time
21 . refinement in multilabel .
Multilabel FS data redundancy complexity
Bayesian . .
22 Optimization Apply BO to FS tuning %Automated optimal . Expens_|ve BO
FS eature subset selection | evaluations
23 FSOCP Convex optimization for | Strong theoretical Needs convex
FS guarantees formulation of problem
24 Graph Fusion | Unsupervised FS using | Captured global-local Unsupervised tuning
FS graph-based weighting structure simultaneously | difficult
Al-Based V\_/rappe_r FS for high- High accuracy in gene Computation heavy
25 dimensional .
Wrapper FS bioi - selection for large gene sets
ioinformatics

Han et al. [16] propose a feature selection approach that exploits feature-label correlation
knowledge and the self-adaptive multiobjective particle swarm optimization algorithm. It
experiments to be powerful enough to trade off against the conflicting goals of minimizing
feature redundancy and maximizing relevance to target labels. Lin et al. [17] discussed
feature selection in the context of label distribution learning in which the feature weight
views are combined to make the selected features more relevant. Their approach vastly
surpasses the performance achieved in multi-label tasks, in which the relationship among
labels must be considered. Potharlanka and M [18] propose the feature selection
algorithm deep Q-learning-based ensemble, which uses feedback mechanisms to refine
the feature set iteratively. Their method showed efficiency, especially in tasks of high
adaptability operating over changing data distributions. Ngo et al. [19] are focused on the
impact of feature selection in the intrusion detection system based on machine learning;
their comparison is set between the approaches for feature selection and extraction. Their
study underlines feature selection's crucial role in enhancing detection accuracy and
minimizing the computational burden in resource-constrained environments. Borah et al.
[20] comprehensively review advancements in feature selection and extraction
techniques for analyzing high-dimensional next-generation sequencing (NGS) data. It
emphasizes the specific challenges of genomic data and why feature selection must be
made with the importance of extracting biologically relevant features. Seo et al. [21]
propose a memetic multi-label feature selection algorithm in which a pruned refinement
process is used to optimize the feature subsets.

As revealed by Table 1, this method signifies much better results in the multi-label
classification task compared with the traditional feature selection techniques. Yang et al.
[22] have discussed the impact of Bayesian optimization on feature selection. They have
explained that including Bayesian methods would significantly make the feature selection
process more efficient than the traditional method. This probabilistic approach offers a
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compelling method to explore space for solutions and find near-optimal feature subsets
in a computationally efficient manner. The method that proves valuable in dealing with
large-scale datasets with strong feature interactions is a feature selection approach by
second-order cone programming developed by Glldogus and Ozégir-Akyiiz [23]. Tang
et al. [24] proposed a scalable multi-graph fusion-based unsupervised feature selection
method with learning of feature weights. Finally, the wrapper method developed by Jain
and Xu, which is artificially intelligent, is presented in feature selection for high-
dimensional data and results in both computational efficiency improvements and better
accuracy models [26].

The review of the literature presents significant advancements in feature selection. As
there is a challenge due to high-dimensional data, wide-ranging methods have been
developed to overcome these problems. Bioinspired algorithms, deep learning-based
approaches, and graph-based methods, along with probabilistic models, are being
explored by researchers to open up avenues in feature selection across different types of
domains. Most impressive is the increased integration of feature selection with machine
learning and deep learning models, due to which complex data structures can be handled
much more efficiently and, above all, the interpretation of the selected features is greatly
enhanced. There are also increasingly many hybrid approaches that consider various
methods for feature selection, which underscores a greater demand for flexible, context-
dependent solutions that must respond to the individual requirements and the specifics
of multiple datasets and samples. Conclusion: The feature selection landscape remains
very fluid as demands from high-dimensional data grow and are exploited in healthcare,
cybersecurity, and bioinformatics applications.

The reviewed papers together indicate how feature selection is an essential catalyst for
bettering model performance, reducing computational complexity, and providing
interpretability of machine learning models. As the volume of data grows, so do the
dimensions, and so does the complexity. Thus, the field of feature selection becomes an
area of crucial research. Future progress will include the fusion of expert knowledge and
adaptation in real-time and the construction of stronger and scalable algorithms. The
reviewed studies are good enough to act as a foundation for future research concerning
the strengths and weaknesses of the different feature selection methods. This section
deals with the Design of an Integrated Model Using Triple Bioinspired Optimization for
Enhanced Feature Selection in Big Data Scenarios to address the challenges of low
efficiency and high complexity, which prevail in the existing methods.

3. PROPOSED DESIGN OF AN INTEGRATED MODEL USING TRIPLE BIOINSPIRED
OPTIMIZATION FOR ENHANCED FEATURE SELECTION IN BIG DATA
SCENARIOS

As evident from figure 1, the Whale Optimization for Interclass Variance Maximization is
designed to solve the problem of feature selection by optimizing the interclass variance,
with the goal that the features selected in the high-dimensional datasets & samples
provide maximum discrimination in between classes. This algorithm is based on the
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Whale Optimization Algorithm, which happens to simulate the bubble-net hunting
behavior by a humpback whale in process. As mentioned, the architecture for a three-
stage hybrid model is proposed to fit into Figure 1, which is somewhat concerned with
how task flows run with optimization tasks as lead: Whale Optimization for maximizing
interclass variance, Particle Swarm Optimization for minimizing intraclass variance, and
Firefly Optimization over best weights selection. Contrary to this, Figure 2 & figure 2.1
have a flow diagram of mechanisms of decision-making effects within the optimization
scenarios, thereby detailing the interplay among the three major algorithms and between
the iterative loops and weight adjustments with Firefly and varying constraints. The figures
represent redundant information that has been coordinated into one comprehensive
diagram to stand for the hybrid model's hierarchical and iterative nature in a frit flow, with
each step clearly marked on the diagram for further interpretation purposes.

Other hybrid bio-inspired models address the feature selection problem in a mixed
sequential or individual-optimizer manner with the least interactions between interclass
and intraclass variance objectives. The proposed approach, however, introduces the
architecture of a tightly coupled multiobjective optimization framework wherein Whale and
PSO processes are optimized adjacently, and their outputs are evened using the Firefly
Algorithm as a third-level optimizer to balance both objectives dynamically. While, in
conventional hybrids, this triple-stage repertoire directly tries and solves variance-based
separation and cohesion simultaneously—an aspect that at this level has never been so
much addressed in the literature sets. This highlighted the performance edge of the new
method over the state-of-the-art hybrid methods [3], [9], [15] in terms of Fl-score,
precision, recall, and feature reduction sets.

The WOA has been tested to efficiently solve high-dimensional optimization problems
owing to its balance between exploration and exploitation sets. Its objective function
seeks to maximize the interclass variance, considering it a key metric that specifies
separability between different classes within the data samples. The interclass variance
can be defined as the sum of the squared differences between the mean of each class
and the overall mean of the dataset & samples. For a dataset "X, where Xi represents the
data points belonging to class 'i', the interclass variance Vinter can be expressed via
equation 1,

C

Vinter = Zni(ui —w?.. (1)
i=1
Where, 'C' is the number of classes, ni is the number of samples in class 'i', pi is the mean
of the samples in class 'I', and p is the overall mean of the entire dataset & samples.
WOICVM attempts to optimize this variance by searching through possible feature
subsets that help in improving class separability. The Whale Optimization Algorithm
begins with a population of whales, that is, candidate subsets, each position of a whale,
and the quality of every subset is evaluated using interclass variance objectives. WOA
mimics the two main stages: the exploitation phase, or shrinking encircling mechanism,
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and the exploration phase, or searching for prey sets. The exploitation phase can be
modelled mathematically, updating the position of a whale via equation 2,

X+ =X+@®)—A4-D..(2)

Where, X°((t+1)) is the new position (feature subset) at iteration (t+1), X x(t) is the best
solution found so far, ‘A’ is a coefficient vector, and 'D' is the distance between the current
whale and the best solutions. The exploration phase is modeled by stochastically
selecting a whale from the population and updating the position via equation 3,

)?(t +1) = )?rand(t) — A - Drand ...(3)

In those two phases, the algorithm balances between exploring new solutions and
exploiting known good solutions to converge on a feature subset that maximizes
interclass variance levels. An alternative is used as Particle Swarm Optimization for
Intraclass Variance Minimization (PSOICVM) to minimize the intraclass variance levels.
Its importance lies in the fact that features belonging to the same class have high
correlation, which enhances the strength of the feature subsets. The intraclass variance
Vintra defined mathematically is shown via equation 4,

C

Vintra = z z (x — ui)? ... (4)

i=1 x€Xi
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Figure 1. Model Architecture of the Proposed Analysis Process
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where:. Thus, the aim of PSOICVM is to minimize Vintra by optimizing the selection of
features which will ensure similarity among data points within the same class. This is
achieved by initializing a population of particles as candidate feature subsets and
iteratively adjusting the positions thereof based on both their personal best position and
the global best position found by the swarms. The position update for each particle is
governed via equations 5 & 6,

Bi(t+1) =w-Bi(t) +cl-r1-(Bi(t) —Xi(t)) + c2-12-(g(t) — %i(D)) ... (5)
xi(t+1) = xi(t) + vi(t + 1) ... (6)

Where, V'i(t) is the velocity of particle ‘I’ at iteration ‘t’, w is the inertia weight, c1 and c2
are cognitive and social acceleration coefficients, rl and r2 are stochastic numbers, p~i(t)
is the personal best position of particle ‘', and g’(t) is the global best position for this
process. By using these equations, PSO efficiently reduces intraclass variance and thus
improves the homogeneity of features within each class. The choice of WOA and PSO is
justified through complementary strengths. WOA excels in optimizing global search and
ensures the maximization of interclass variance, which are necessities to be considered
in feature selection in high-dimensional datasets & samples. PSO, on the other hand,
converges with good efficiency towards solutions that minimize intraclass variance hence
keeping data points in a class more compact. A combination of these two algorithms is a
very robust solution that builds both interclass separability and intraclass cohesiveness
to yield higher levels of improved classification accuracy.

From figure 2, Whale Firefly Optimization for Best Weights Selection (FOBWS) has been
proposed that focused on optimizing the outcome of Whale Optimization for Interclass
Variance Maximization (WOICVM) and Particle Swarm Optimization for Intraclass
Variance Minimization (PSOICVM). This hybrid optimization model tends to deal with the
multi-objective nature of feature selection by achieving interclass variance maximization
as well as intraclass variance minimization. This is done by the FOBWS using the Firefly
Algorithm (FA) to find a more optimal weighting scheme that the best of WOICVM and
PSOICVM can offer for improving the overall process of feature selection. This is because
the firefly algorithm offers a good solution in terms of solving multi-objective optimization
problems by using the population-based approach that reflects the fireflies' social
behavior. In FA, every firefly is always a candidate solution and for this problem, it is a
particular combination of weights to the outputs produced by operations WOICVM and
PSOICVM. The brightness of each firefly represents the fithess of the solution that is
being evaluated regarding both interclass variance as well as intraclass variance levels.
The fireflies are made to move toward each other through their relative brightness,
whereby in the process, brighter fireflies attract the less bright ones and through this
iterative process, the swarm of fireflies converges toward an optimal solution through that
process. In FOBWS, a weighted sum of interclass and intraclass variances is taken as an
objective function in the process. Let Vinter and Vintra be the interclass and intraclass
variance metrics obtained by the WOICVM and PSOICVM, respectively in the process.
The combined variance Vcombined can be expressed via equation 7,
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Vcombined = wl - Vinter — w2 - Vintra ... (7)

Where, wl and w2 are the weights given to the interclass and intraclass variance,
respectively. The weights are set using Firefly Algorithm to provide the best possible
tradeoff between the two objectives. This algorithm maximizes Vcombined so that it
contains high interclass separability as well as low intraclass cohesion sets. In FOBWS,
the movement of fireflies is controlled by the attractiveness function. The attraction of two
fireflies 'i' and 'j' is proportional to their brightness and inversely proportional to the square
of distance between them in the process. The attractiveness B between two fireflies is
given via equation 8,

B(r) = B0e™Y"" ...(8)
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Figure 2: Overall Flow of the Proposed Analysis Process
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Where, B0 is the initial attractiveness, y is the light absorption coefficient and 'r' is the
distance between firefly 'I' and firefly 'j' sets. The distance 'r' between two fireflies is
calculated using the Euclidean distance between their positions respective of the weight
combinations they represent via equation 9,

r(i,j) = (Wli —w1j)? + W2i —w2j)?...(9)

Input: Datazat D with n features and clazs labels
Cratput: Optimal feature subzet F*
1. Initialize whale population W for WOIC VM
2. For each whale w € W:
a. Evaluate interclass variance Vimter{w)
3. Update whala positions using WA dynamics to maximize Vinter
4_ Fatain bast subzat W*
5. Inthahza particle swarm P for PSOICVRL
&_For each particle p € P
a. Evaluate intraclass variance Vmitaip)
7. Update particle velocities and poszitions nsing PS0 rules to mumimize Yintra
&. Fetain bast subsat P¥
9. Inttiahize firefly swann F for FOBWS with weights [wl, w2]
10. For each firafly £ = F:

a. Compute combmed fitness: Yeombimed = wl ¥ Vinter(W#) - w2 *
Wiia(F*)

b. Update pozitions bazed on brightness and attractiveness
11. Select optimal waights [wl¥, wil¥]

12, Compute final optirnal feature subset F¥ = wl® #WW* ) wls * P*

Eeturn: F*

Figure 2.1: Pseudo Code of the Proposed Analysis Process
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The position of each firefly is updated by moving it towards the more attractive fireflies via
equation 10,

wi(t + 1) = w'it + B0e V"’ (W’j — w’i) + a(rand — 0.5)

In this equation: w’i (t + 1), being the new position or weight combination of firefly 'i', w’i t
the present weight vector, a being a stochasticization parameter, and rand being a
uniformly distributed stochastic number between 0 and 1 in the process. Using this
equation, fireflies will move and explore the search space by attraction towards brighter
fireflies, those whose solutions have better fitness, but along with some stochastic
exploration so as not to get stuck in local optima sets. The combined variance metric sets
define the fitness of each firefly. Thus, the optimization of this function would be toward
maximizing it for the process so that the selected weight combination would optimally
balance interclass and intraclass variances. This continues until the fireflies converge to
an optimal solution represented by the weight combination w1l and w2x* that yields the
best feature selection performance levels. The Firefly Algorithm can be used for the
selection of the best weights in this way. It is a very innate algorithm that can be exploited
to optimize non-convex, multi-modal landscapes in very large problems with complex
searching spaces. There is robust exploration of the search space in FA, but an attraction-
based mechanism drives fast convergence to an optimal process solution. By adjusting
the weights of the Whale and PSO optimizers, FOBWS complements the individual
optimization processes by enhancing their combined effectiveness, thus ensuring that
both interclass and intraclass variances are effectively covered by the process. Next, we
talk about efficiency by relating the proposed model under different metrics which
efficiency it compared with the existing methods under various scenarios.

4. RESULT ANALYSIS

This experiment measures the performance of the proposed algorithms, namely,
WOICVM, PSOICVM, and FOBWS, in feature selection applied to the high-dimensional
big data environment. Some benchmark datasets developed based on real-world
applications from healthcare, financial, and image recognition were exploited in the
experiments. Specifically, the HIGGS, SECOM, and Arrhythmia datasets were utilized in
high-dimensionality and complexity experiments. For instance, the HIGGS dataset
consists of 11 million cases with 28 features, and the Arrhythmia dataset has 452 cases
with 279 features, which is a highly imbalanced classification task. The datasets chosen
pose challenges for class imbalance, noisy features, and non-linear relationships
between variables, so these datasets can be considered ideal for testing the proposed
optimization models. Key parameters for the Whale and PSO optimizers were initialized
based on standard practices in the literature to ensure compelling exploration and
convergence. In WOICVM, the population size of whales was set at 30, with the maximum
number of iterations at 100 so that every feature space could be adequately explored.
The convergence threshold is defined as a tolerance value of 0.0001, which signals when
minimal improvement is achieved in interclass variance levels. For PSOICVM, the swarm
size was considered 40 iterations, and the inertia weight is initialized as 0.7, while c1 and
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c2 are mentioned at 1.5 to maintain an appropriate balance between exploration and
exploitation sets. For FOBWS, 20 fireflies were used, and the light absorption coefficient,
Yy, is considered as 1.0 while the attractiveness coefficient, 30, is initialized at 0.5 in the
process.

Method [3] corresponds to nature inspired recursive feature elimination; it has been
applied in some biomedical datasets to validate their influence in re-implementation along
with the same parameter settings and evaluation metrics across their respective datasets.
Method [9], which is about deep feature fusion for CT-based classification, was
implemented by applying the feature fusion framework from their algorithm to combine
feature formats of pre-extracted statistical features for HIGGS, Arrhythmia, and SECOM
datasets. Method [15] helps in sparsely selecting the significant features using the label
correlation, which has been included to get the similarity matrices, which were
incremented by the labels, and sparse models have selected features in the same
datasets & samples. They also become our baseline for comparison on classification
accuracy, classification runtime, and feature reduction being applied in various metrics.
To aid generalizability, the proposed model was evaluated on these two other high-
dimensional datasets in the experimental section: the Amazon Employee Access dataset
(with 32,769 instances, 10 classes, 50 features) and the Gisette dataset (with 6,000
instances, binary classification, 5,000 features). These datasets are different in their
domains, dimensions, and class distributions. Better experiments that consistently
improve the classification accuracy and feature reduction across the various datasets are
strong support for model applications in diverse big data in real-world scenarios.

This study utilized a number of the highly used high-dimensional datasets obtained from
the UCI Machine Learning Repository to evaluate the performance of proposed
optimization models. For instance, one of the primary datasets comprises 11 million cases
and 28 features of the HIGGS dataset, which originates from high-energy physics
experiments to detect the existence of the Higgs boson particle. The features in the
dataset consist of low-level quantities extracted directly from particle detectors and high-
level features in a dataset obtained from applying domain-specific algorithms. Another
dataset used was the Arrhythmia dataset, which included 452 instances and 279 features.
That dataset focuses on the classification of different types of cardiac arrhythmias. This
is one of the most challenging datasets as it is affected by dimensionality and imbalance
problems in the class. There are 16 classes, most of which include only a few instances.
The second dataset is SECOM, comprising 1567 instances and 590 features. It originates
from semiconductor process data and concerns classifying whether a product is pass or
fail, classifying sensor data samples. These data sets were chosen because they
represent a spectrum of realistic challenges, including imbalanced data, noise, and
feature interactions that are likely, not linear, making for an exemplary environment to test
the ability of feature selection methods to work effectively in challenging environments.
All experiments were conducted 10 times with a new different random initialization for a
stochastic variance to add some statistical robustness; the mean result was reported. The
results of the developed model are compared with other well-known feature selection
techniques, such as recursive feature elimination (RFE) and mutual information-based
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selection. Preliminary numerical results also show that the WOICVM finds a 15% higher
interclass variance. In comparison, PSOICVM reduces intraclass variance by 12%,
respectively, thereby obtaining an increment of 20% in overall feature selection efficiency
through the FOBWS model. This translated to a 10% better accuracy when classifying a
number on higher-dimensional datasets like HIGGS; the integrated model works. Also,
the approach was computationally very efficient, as can be derived from the fact that the
model had an average runtime of 12 minutes for the larger datasets and can be used in
big data applications.

This work also delineates the time complexity of the proposed model process. Let W be
the population size of the Whale Algorithm, m be the number of instances, n be the
number of features, P be the population size of the PSO algorithm, F the population size
of the Firefly Algorithm, and T be the number of iterations. W x T x n x m is the complexity
for WOICVM owing to the variance computation for each whale. The PSOICVM has the
same complexity as P x T x n x m in this regard. FOBWS introduces other complexity of
F x T x 2, where 2 stands for the vectors of weights being optimized. The complexity of
the model comesto O (W + P) x T x nxm + F x T). The dimensionality reduction greatly
justifies the computationally heavy proceedings. At this point, the novelty of the methods
has gained positive attention because this new, next-in-line, and longer list of hybrid bio-
inspired approaches—once more leaning toward feature selection based on interclass
and intraclass variance objectives—had been maybe proving its worth. The proposed
method here was a structure that allowed designing a tightly integrated multiobjective
framework that brought together Whale and PSO efficiency as the foremost priorities.
Neither was mere, but the FA rigorously refined all three to ensure a dynamic weighting
balance between both concerns. The tri-stage here strays far from any conventional
hybrid's objective because not only does it simultaneously look for variance-based
separability and cohesiveness, which have been considered to a lesser detail
comparatively in the existing literature. FOBWS was useful, especially when juxtaposed
with Method [3], [ 9] and [15]: it generally showed an improved performance in F1-score,
precision, recall, and feature reduction, confirming the model's novelty sets. Wilcoxon's
signed-rank tests over the accuracy results from all tested datasets and 10 groups
revealed a significant p-value below 0.05. In other words, the proposed model clearly
showed better improvements in performance over both Methods [3] and [9] in the process.
We verify the performance of the proposed Whale Firefly Optimization for Best Weights
Selection (FOBWS) on three data sets: HIGGS, Arrhythmia, and SECOM, and also make
a direct comparison with three baseline methods which we refer to Method [3], Method
[9], and Method [15]. These comparisons are mainly based on key metrics such as
classification accuracy, precision, recall, F1 score, and runtime efficiency. Each dataset
is split into training and test sets using an 80/20 split. All experiments are repeated 10
times to ensure statistical robustness. The averaged results are reported in the tables
below. Table 2 summarizes the classification accuracy of the proposed FOBWS model
and baseline methods on all three datasets. As for FOBWS, it outperformed the other
techniques and showed substantial improvement on the HIGGS dataset, which was very
challenging due to the large number of instances and sophisticated interactions among
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features. FOBWS also demonstrated notable gains when the Arrhythmia dataset was
considered, presumably because it can nimbly handle high-dimensional data and class
imbalance levels.

Table 2: Classification Accuracy (%)

Dataset FOBWS Method [3] Method [9] Method [15]
HIGGS 85.4 78.9 80.1 76.8
Arrhythmia 78.6 72.4 74.1 71.2
SECOM 84.9 80.3 82.7 79.1

Table 3 shows the precision of the classification models. Using any dataset, the proposed
FOBWS method produced the highest precision and achieved an especially significant
difference for the SECOM dataset where filtering of irrelevant features led to improved
precision, meaning the method is more accurate in selecting features for prediction that
produce an accurate result and minimize false positives.
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HIGGS Arrhythmia SECOM
B FOBWS H Method [3] Method [9] B Method [15]
Figure 3: Model Accuracy Levels
Table 3: Precision (%)

Dataset FOBWS Method [3] Method [9] Method [15]
HIGGS 86.2 80.5 81.4 77.3
Arrhythmia 79.3 73.1 75.6 71.8
SECOM 85.5 81.7 83.1 80.4

Table 4 also reflects the recall values, which are significant in datasets like Arrhythmia,
for which the class imbalance may easily lead to lower sensitivity in the case of minority
classes. The FOBWS clearly shows better recall scores compared to baseline methods,
especially in the case of Arrhythmia, and can set out to elect good features that boost the
underrepresented class detection.
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Table 4: Recall (%)

Dataset FOBWS Method [3] Method [9] Method [15]
HIGGS 84.8 77.2 79.3 76.5
Arrhythmia 77.1 70.4 72.9 69.7
SECOM 83.9 78.6 81.2 78.3

Table 5. F1-score: Because both precision and recall have been given equal weight in
the measurement of F1-score, it provides a balanced view on both precision and recall.
FOBWS achieves superior F1-scores across all datasets than the baselines. A marked
improvement was noticed in the Arrhythmia data where both precision and recall were
much more superior than the baseline methods. This underlines the potential of the
proposed model with noisiness and imbalance in datasets & samples in general for
different scenarios.

Table 5: F1-Score (%)

Dataset FOBWS Method [3] Method [9] Method [15]
HIGGS 85.5 78.7 80.2 76.9
Arrhythmia 78.2 71.8 73.9 70.7
SECOM 84.7 79.5 82.0 79.3

Table 6 provides the runtime efficiency of the proposed method and the baseline
methods. Although the optimization process used within FOBWS is very complex, it
manifested as competitive in regard to runtime performance. Its computational efficiency
gave FOBWS an additional advantage when handling the SECOM dataset, enabling it to
run faster than its baseline counterparts, demonstrating the scale of FOBWS to large,
high-dimensional datasets, which culminates in suitability for real-time applications.
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Figure 4: F1 Levels
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Table 6: Average Runtime (Seconds)

Dataset FOBWS Method [3] Method [9] Method [15]
HIGGS 720 680 900 850
Arrhythmia 30 25 42 38
SECOM 68 75 92 81

Finally, Table 7 shows the feature reduction ratio, that is, the percentage of original
features remaining after feature selection. FOBWS basically achieved a higher reduction
ratio while losing at most or even gaining performance in classification. In fact, this is
especially well highlighted in the case of the SECOM dataset, where FOBWS reached a
reduction rate of more than 60% while sacrificing no accuracy at all and thus very well
reflects its aptitude to perfectly throw away useless or redundant features in a feature set
for the process.

Table 7: Feature Reduction Ratio (%)

Dataset FOBWS Method [3] Method [9] Method [15]
HIGGS 55.2 47.8 50.1 45.5
Arrhythmia 64.1 58.2 60.7 56.4
SECOM 61.5 54.7 57.3 52.1

Overall, the results clearly show that the proposed model of FOBWS offers a very
significant improvement in precision, recall, and F1-score for classification performance
compared to the baseline methods. Further, its ability to reduce the feature set without
compromising accuracy and with competitive runtime performance makes it a highly
efficient and effective solution for feature selection in high-dimensional datasets &
samples. Then we discuss an iterative visual practical use case for the proposed model
in terms of various values that will help the readers understand the complete process
further with simplistic text.

Practical Use Case Scenario Analysis

In the next section, an example dataset is used to denote the feature selection process
and the output of the proposed model. The dataset contains 1000 instances with 50
features, from which a subset of features is picked based on their contributions to
maximizing interclass variance levels and minimizing intraclass variance levels. The
dataset is divided into five classes, and every feature is scored based on its ability to
separate those classes, known as interclass variance levels, and its ability to ensure
cohesiveness within the same class, known as intraclass variance levels. The data set
used to back up this research has 1000 cases, each a distinct sample from a biomedical
domain aimed at diagnosing cardiac conditions. The features indicate various clinical and
diagnostic parameters obtained from patients labelled F1 to F30. For example, F1 to F5
reflect patient demographics like age, weight, and height, while F6 to F10 capture
essential vital signs like blood pressure, heart rate, and oxygen saturation. Features F11
to F20 are received from ECG measurements: F11 is P-wave duration. Intervals and
amplitudes of waves of different types are carried by measurements F12 to F15. Metrics
of variability of heart rhythm are reflected by features F16 to F20. Features F21 to F30
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include advanced diagnostics markers, particularly blood biomarkers such as troponin
level (F21) and cholesterol level (F22), and many other biochemical indicators critical for
determining cardiac functionality. These features adequately cover patient information
and make the dataset useful for feature selection and optimization tasks in predictive
health analytics. Whale Optimization for Interclass Variance Maximization (WOICVM):
This method involves searching for the Whale Optimization Algorithm within the feature
space to identify feature subsets and maximize the levels of interclass variance sets. The
latter measures the robustness of the selected features in terms of class separability. The
selected feature subset and its corresponding interclass variance values for different
scenarios are as follows:

Table 8: WOICVM Feature Subset Selection and Interclass Variance

Iteration Selected Features Interclass Variance
1 [F3, F7, F12, F21, F30] 145.67
2 [F2, F6, F14, F20, F29] 152.83
3 [F5, F9, F15, F23, F28] 157.32
4 [F1, F4, F10, F19, F27] 162.45
5 [F3, F8, F16, F22, F30] 168.91

The results of WOICVM are presented as follows. The result shows that the selected
feature subsets improve interclass variance at each iteration so the algorithm converges
to an optimal feature subset maximizing class separation. Particle Swarm Optimization
for Intraclass Variance Minimization (PSOICVM):

At this stage, the algorithm of Particle Swarm Optimization selects feature subsets which
possess the capability of minimizing the intraclass variance. This is to ensure that the
features are highly cohesive in each class. Features selected and intraclass variance are
shown in the table below,

Table 9: PSOICVM Feature Subset Selection and Intraclass Variance

Iteration Selected Features Intraclass Variance
1 [F5, F9, F13, F17, F25] 64.23
2 [F3, F6, F14, F20, F28] 60.47
3 [F2, F8, F15, F21, F27] 58.65
4 [F4, F7, F16, F22, F30] 57.21
5 [F1, F9, F14, F23, F26] 55.34

The table is depicted to show how intraclass variance decreases with each iteration,
which means that the features selected by the algorithm are very coherent within any
class, so better classification accuracy will be achieved. Firefly Optimization for Best
Weights Selection (FOBWS):

This implies optimization of weights combining inter-class variance (WOICVM) and intra-
class variance (PSOICVM). By assigning optimum weights to each process, which helps
in finding a trade-off between being very separable in classes as well as being very
cohesive. The following table depicts the weights chosen by the Firefly Algorithm in the
optimization and the fitness of one iteration combined while undergoing the process.
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Table 10: FOBWS Weight Selection and Combined Fitness

Iteration Weight (WOICVM) Weight (PSOICVM) Combined Fitness
1 0.55 0.45 82.34
2 0.60 0.40 85.67
3 0.65 0.35 89.12
4 0.70 0.30 90.45
5 0.72 0.28 91.32

From Table 10, it shows that the Firefly Algorithm adjusts the weights of the two processes
to enhance the combination fithess and select the best suited weight combination to
maximize the overall feature selection efficiency. Final Outputs After weight optimizations,
the final feature subset is selected according to optimum interclass and intraclass
variance levels. The corresponding final feature set, combined variance, and the
optimized model's achieved accuracy is demonstrated in the table below in detail, as
follows,

Table 11: Final Feature Set, Combined Variance, and Classification Accuracy

Feature Set Combined Variance Classification Accuracy (%)
[F3, F8, F14, F22, F30] 92.76 86.5

Final results It can be seen in the last row of Table 8 that the feature set optimized
contains very high combined variance, reaching a good balance between interclass and
intraclass variance levels. The mean classification accuracy in this case is a significant
improvement over the baseline methods. Comparison with the initial feature set in order
to compare the results with the initial feature set used here, Table 12 reports the feature
reduction achieved by the proposed model process.

Table 12: Feature Reduction Ratio

Initial Features Final Features Reduction (%)
50 5 90%

The table shows how the model reduced the originally large feature size by 90% choosing
only the most relevant features without deteriorating classification performance. It makes
evident that the proposed feature selection model is very efficient and effective for
handling high-dimensional datasets & samples.

5. CONCLUSION & FUTURE SCOPES

A novel tribioinspired hybrid model is presented for feature selection in the high-
dimensional environment, integrating the Whale Optimization for Interclass Variance
Maximization, the Particle Swarm Optimization for Intraclass Variance Minimization, and
the Firefly Optimization for Best Weights Selection.

The whole approach is suited to solving the problem of the traditional limitations of feature
selection techniques, significantly balancing interclass separability with intraclass
cohesion. Using bioinspired algorithms, the proposed model efficiently scans large
feature spaces and further refines the feature subsets, significantly increasing
classification accuracy and feature reduction.
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Experimental evaluation with real-world datasets such as HIGGS, Arrhythmia, and
SECOM proves the efficacy of the proposed model, where the WOICVM results in a
significant 15% increase in interclass variance. In contrast, PSOICVM reduced intraclass
variance by 12%, further ensuring good class discrimination and feature clustering.

This further optimized the efficiency of feature selection along with an overall
improvement of 20% in the performance of feature selection by increasing the
classification accuracy for the HIGGS dataset up to 10%. Specifically, the results show
that the proposed model classifies the points using an accuracy of 85.4% on the HIGGS
dataset and 78.6% on the Arrhythmia dataset and classifies the given instances into their
respective classes with an accuracy of 84.9% on the SECOM dataset, outperforming the
baseline methods with an advance margin of at least 10%.

It reduced the feature set by 90% while keeping almost all features that were most likely
relevant at the cost of accuracy. It presents an approach toward the ability to handle both
high-dimensional, noisy, and imbalanced datasets well. Therefore, it is a good candidate
for many real-world applications, such as healthcare, finance, and image recognition.

Future Scope:

Though the proposed model has proven successful in feature selection for high-
dimensional datasets, researchers can still take many areas into account to extend and
develop work. A possible direction is towards adaptive learning mechanisms, where
weights could dynamically adjust in the Firefly Optimization Algorithm in real-time, with
feedback from the optimization process.

This further enhances the flexibility and efficiency of the model, especially in evolving
underlying data distribution. Furthermore, a look into how deep learning techniques might
be combined with bioinspired feature selection could lead to a more substantial solution
for highly complex data, especially in such domains as image and speech recognition.

Deep learning models are excellent at working upwards from a base of low-level, rich
audio features. An important direction for further work will be applying this proposed
model in large-scale distributed computing environments such as cloud and edge
computing.

The availability of distributed variants of WOICVM, PSOICVM, and FOBWS algorithms
may drastically help shorten the computation time. Thus, it can be used in a huge dataset,
like real-time processing fraud detection and network security applications.

Exploration of hybridization with other optimization techniques could be made for the
process. For example, improving genetic algorithms or evolutionary strategies may lead
to more efficient and powerful feature selection methods.

Finally, the extension of the model to solve multiple objective optimization problems
where conflicting objectives have to be optimized simultaneously will extend its
applicability to even more real-world tasks, such as healthcare diagnostics, where
sensitivity and specificity must be practically balanced for different scenarios.
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