

DIGITAL BANKING AS A CATALYST: INVESTIGATING HOW FINTECH SHAPES SAVINGS DECISIONS

Dr. SIDDHARTH JAIN

CPA, Churchill Institute of Higher Education, Australia.

HADHER SABAH SHAIR

University of Tikrit, Iraq. Email: Hathers@tu.edu.iq

Dr. YASER A. AL SHORAF

Associate Professor, Business Administration Department, Faculty of Economics and Administrative Sciences, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine. Email: yshorafa@iugaza.edu.ps

Dr. AHMAD RAJA ALBATAYNEH

Business Faculty, Amman Arab University, Jordan. Email: a.Albatayneh@aau.edu.jo

ABDULLAH EWAYED TWAIRESH

Department of Finance and Insurance, College of Business Administration, Northern Border University, Arar, Saudi Arabia. Email: abdullah.twairesh@nbu.edu.sa

IYAD A. AL-NSOUR*

College of Media and Communication, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia. *Corresponding Author Email: iaalnsour@imamu.edu.sa

ALAYMAN MUHAMMAD ABDO AL-HAMMOURI

Faculty of Business, Jerash University, P.O. Box 26150 Jerash, Jordan.

Abstract

Digital banking has been identified as a singular focal point of transformation in the financial sector as a means of changing how people access, receive and save money, utilizing technology-based financial guidance. Innovations in fintech systems, including mobile banking and digital wallets, as well as automated advisory systems, have grown the saving opportunities and better financial behavior. This research is based on the Technology Acceptance Model and the recent findings on the use of fintech's and will explore the role of digital banking as an accelerator that will influence the savings behavior of consumers using technology-based financial institutions. The research evaluates three important fintech dimensions, including digital access, value of fintech tools, and confidence in digital security tools. The respondents were 300 participants in 300 different finance technology companies and organizations that use digital banks, such as product developers, innovation managers and senior executives. The research model was tested by Structural Equation Modeling (PLS-SEM). Results affirm that digital banking has a significant effect on the choice of savings since it enhances convenience, the transaction barriers and the confidence of the user on the digital financial space ($0.372, p = 0.001$). The positive effect of fintech functionality on the savings behavior is also significant (4.01000 pounds, $p = 0.001$), which proves that high-tech features stimulate more stable saving habits. This relationship is enhanced by the trust in the digital platforms ($= 0.417, p = 0.001$), which show that safe and transparent systems make the users more ready to use this type of long-term savings activities. Moreover, fintech maturity conditions the association between digital banking and savings choices, and it can be seen that the influence of digital tools on saving propensity is stronger in an environment with high digital preparedness. The research has strategic implications on the financial institutions, fintech developers, and regulators. Banks are encouraged to make investments in sound digital infrastructures, user-oriented design and security upgrades to encourage saving behavior. Fintech companies can use such insights to improve the features that better facilitate financial planning.

The findings can be used by policymakers to enhance digital financial literacy interventions and create frameworks, which would support inclusive, technology-based, savings ecosystems.

Keywords: Digital Accessibility, Mobile Banking Functionality, Digital Payment Systems, Savings Decisions, Fintech Engagement.

1. INTRODUCTION

The financial environment of the world has been changing at a rapid pace as a result of the growth of digital banking and financial services that are based on technology. Digital banking has already turned out to be a crucial catalyst of economic and social change, enhancing access to financial instruments and decreasing the number of transactional obstacles, as well as promoting more active participation of people in financial planning and savings. According to international institutions, digital financial services have enhanced the efficiency and competitiveness of the economies, and over half of the entire global GDP has been affected by digital technologies (World Economic Forum, 2020). The move towards digitalized financial ecosystems has also increased the adoption of fintech applications and has created a new ecosystem in which mobile banking, digital wallets, automated financial advice, and online payments influence the way people handle their money.

The innovation in fintech has increased the capacity of people to save and invest, since it offers easy-to-use platforms that trigger repeated engagements with financial products. The number of investments in digital financial technologies all around the world became quite high, which proves the rising reliance on digital infrastructures to aid in making financial decisions (OECD, 2023). Meanwhile, financial institutions and digital financial interfaces are putting investments in safe online interfaces, intelligent data analytics, and automation applications that promote a habitual saving behavior. Studies show that consumers that use digital banking services exhibit a higher level of saving due to enhanced convenience, accessing financial data instantaneously, and a sense of safety in their transactions (Gomber et al., 2017). The issue of fintech in saving behavior has acquired a lot of interest, particularly in the settings where digital technology enlarges financial inclusion. World Bank accentuates those digital financial services lower the barriers to entry and expand access to savings accounts, especially to users who were locked out of the traditional banking systems (World Bank, 2022). Behavioral financial theories also support these developments and propound those systems mediated by technology affect how people plan, distribute and administer their financial resources. Digital ecosystems help people save money through the use of budgeting tools, automated nudges, custom finance insights and user-friendly interfaces. Although these developments have occurred, the empirical evidence is still incomplete on the mechanism by which digital banking affects the choice to save and which part of this relationship is played by fintech tools. Numerous researches examine the adoption or saving behavior as a single phenomenon, but there is a lack of uniting them in a single framework that explains the role of digital banking as a catalyst influencing saving behavior. Not much is known also on how these relationships are conditioned by digital trust, the perceived usefulness, user experience, and platform security, although such factors are crucial to a

sustainable financial engagement. The research fills these gaps by exploring the impact of digital banking on savings choices and ways in which the functionality of fintech supports this relation. The study formulates a unified framework which measures the impact of digital availability, digital service quality and fintech use on saving habits among those using technology based financial services. The empirical study is founded on the data of 300 professionals in the financial technology setting who have first-hand experience with digital financial platforms. The results add to the digital banking and financial behavior body of knowledge, as they provide an empirical data that fintech features play a significant role in influencing saving decisions when incorporated in the complex digital banking systems. Strategic implications of the results are also given to banks, fintech developers and policymakers. Banks can improve the user saving behavior by investing in safe and convenient digital infrastructures. Fintech companies can eliminate features that can promote financial planning and promote saving regularly. These lessons can be used by policymakers to create national policies that enhance user protection and inclusive financial development along with digital financial literacy.

2. LITERATURE REVIEW

2.1 Digital Accessibility

The availability of digital applications has turned out to be the pillar of a contemporary financial system, as it allows users to access banking services 24/7 and regardless of their location. It is an indicator of the presence of digital channels that allow the transmission of financial information, the increase in user autonomy and the decrease in structural barriers to financial participation. There is digital accessibility that comes in the form of easy interfaces, management of online accounts, real time information systems and devices that are connected smoothly. The results of the research show that the introduction of better access contributes to the enhancement of the use of digital financial services, especially among those people who did not find it convenient to use traditional banking organizations (World Bank, 2022). Previous research observes that the accessibility of digital platforms will result in an increase in the reach of financial services, financial inclusion, and involvement of people in saving behaviors (OECD, 2023). Even though the literature does recognize that access to digital technology leads to greater use of financial tools, not every aspect of how accessible banking platform can directly influence savings choices in integrated fintech settings has been elucidated.

2.2 Mobile Banking Functionality

Mobile banking functionality indicates the functionality aspects that are incorporated in mobile applications and allow people to carry out as many financial tasks as possible. Such features are real-time transfers, account monitoring, digital statements, budgeting tools, and automated notifications. Mobile banking systems that are of high functionality make financial transactions more efficient and convenient, which contributes to enhanced user engagement. Research indicates that mobile banking attributes help to decrease the level of transaction friction, user confidence, and promote proactive money management (Gomber et al., 2017). Mobile tools implementation in fintech ecosystems also enhance

increased financial autonomy, whereby users are able to monitor their spending habits, target savings, and automate savings. Although the mobile banking features have a major influence in shaping financial behavior, the present literature has not adequately examined how the mobile banking features affect savings choices under a hybrid digital banking-fintech framework.

2.3 Digital Payment Systems

The digital payment systems have revolutionized the financial transactions by offering quick, secure and affordable payment options. These systems are mobile payments, contactless payment, digital wallets, and online settlement services. The effectiveness of the digital payment systems helps to achieve financial engagement by making daily interactions easier and increasing the sense of trust in the users due to the high level of security. International financial institutions state that electronic payments facilitate financial involvement as the use of cash becomes less essential and more transparent (Vives, 2019). There is empirical evidence that digital payment systems affect the way people spend their financial resources, which tends to enhance their capacity to track their spending and shift them towards savings. Despite the fact that digital payments are one of the foundational elements of fintech ecosystems, the literature fails to understand these systems in the context of digital banking environments to influence the structured decision to save.

2.4 Fintech Engagement

Fintech engagement is the degree to which individuals use a financial tool that happens to be technologically-enabled, including digital advisory tools, auto-saving, financial tracking tool, and analytics based on data. The engagement is based on the perception of usefulness, ease of use, security, and reliability. An increase in involvement leads to better behavioral reactions such as enhanced savings discipline. The studies point out that the fintech applications enhance financial planning as they offer personalized advice, real-time insights, and automated financial actions (OECD, 2023). The use of fintech is particularly helpful in motivating people to lead a regular saving schedule. Nevertheless, there are more studies on the adoption of fintech, although few studies consider engagement as a behavioral catalyst that directs digital banking features towards savings-driven outcomes. This introduces a necessity in having a coherent theoretical comprehension of fintech engagement as a highly important process in determining savings choice.

2.5 Savings Decisions

Savings decisions constitute the behavioral decision that individuals make when it comes to the use of financial resources in the future. These choices comprise saving frequency, amount of savings, choice of savings instruments and long-term dedication to saving objectives. The literature on behavioral finance highlights that the perceived financial security, digital convenience, and the quality of the digital interface are the factors affecting the savings behavior (World Bank, 2022). Digital banking offers efficient, clear and secure platforms that facilitate savings motivation to the users. Fintech tools also

enhance the propensity to save by providing automated procedures and customized financial informational support. In spite of the mentioned advances, the literature lacks an in-depth assessment of the interaction between digital banking and fintech involvement in determining the level of savings. This constraint is what implies a necessity of having a unified structure where savings behavior is central to digital financial ecosystems.

2.6 Theoretical Framework

The theoretical construct of the current study examines the impact of digital banking on the savings choice due to the behavioral impact of having fintech involvement. The inputs that boost the involvement of digital environments are digital accessibility, mobile banking, and digital payment systems. Such constructs make it more convenient, transaction more accessible, and the user more confident in digital platforms, which provides good grounds to maintain saving behavior on a regular basis. The engagement of fintech is proposed as one of the key processes that transform digital features into significant financial behavior by enhancing interactivity, introducing personalized insights, and automated saving.

The ultimate behavioral outcome of interaction between digital banking elements and fintech engagement is determined as savings decisions. The framework combines findings of the Technology Acceptance Model, literature on financial behavior with a strong understanding of the fact that perceptions of usefulness, accessibility and trust facilitation increase the probability of technology-based saving. Even though the digital financial inclusion and fintech adoption have been covered by the previous research, there is a lack of literature that provides an integrated view that the digital banking features, fintech utilization, and savings are systematically related. The current framework is thus an addition to the development of scholarship in the field of financial technology in that it forms a well-knitted model of how digital banking serves as a promoter of savings decisions.

3. HYPOTHESIS DEVELOPMENT

Digital accessibility means the degree of accessibility of the users to digital banking the digital banking platforms in terms of easy-to-use interfaces, dependable connectivity, and permanent service availability. The financial technology literature claims that a digital platform accessibility is a core element to gaining user trust and lessening structural obstacles to financial involvement (World Bank, 2022). Regarding the perspective of the Technology Acceptance Model, the increased access is the way to enhance a perceived ease of use and promote long-term use of financial technologies. When people can find it simple to access digital sources of finances, there is a higher probability of exposure to fintech tools due to the convenience, transparency and facilitation of ongoing financial operations in the environment. Thus, an increased availability in digital is likely to provoke better interaction with fintech apps. On the basis of these theoretical arguments, the initial hypothesis is the following:

H1: Digital accessibility positively impacts Fintech Engagement.

Convenience, confidence and access to financial information are behavioural perceptions that affect savings decisions. Using digital accessibility, users have easy avenues where balances, financial resources, and personal budgets can be monitored. Behavioral financial theories state that people make more disciplined saving decisions when financial information is easily available and can be easily interpreted (OECD, 2023). Therefore, digital banking interfaces that are available enhance clarity and decrease the case of uncertainty and also increase the likelihood of the individual making planned financial decisions. The more the users are allowed to get their financial tools without restrictions, the more they will develop systematic habits of savings. So, the second hypothesis is as follows:

H2: Digital accessibility positively impacts Savings Decisions.

The digital payment systems are a technological infrastructure that allows fast, secure, and low-cost financial transactions. They consist of mobile transfers and contactless payments, digital wallets, and online settlement platforms. The digital finance theories suggest that when payment systems are very efficient and reliable, they prompt users to engage more with fintechs (Gomber et al., 2017). Such systems help in minimizing friction during everyday transactions and make the procedure easier in order to increase the engagement of the users. When digital payments run well, people are more likely to engage in their use more intensely and learn to involve fintech solutions in their daily operations. Resting on this argument, the third hypothesis is as follows:

H3: Digital payment systems positively impact Fintech Engagement.

The efficiency and transparency of payment processes are among the factors that determine the savings-related behavior to a great extent. When people use online payment systems, they can always see them spending which gives them an opportunity to prioritize their spending on savings. Financial behavior theories suggest that digital payments enhance financial planning by providing transaction histories and spending analytics, available in real time, to enable users to spend responsibly (Vives, 2019). Therefore, users who go digital on payment systems acquire more disciplined financial practices and show increased propensity to make decisions that deal with saving. Thus, the hypothesis is as follows:

H4: Digital payment systems positively impact Savings Decisions.

Mobile banking functionality refers to the functionality contained within the mobile applications, such as live account balances, live transfers, budgets, automatic notifications, and financial planning applications. According to the technology engagement literature, these features have a strong positive influence on user experience and decrease cognitive effort that goes into financial interactions (Gomber et al., 2017). The more convenient mobile app features are combined, the more people will interact with fintech services, use financial solutions, and constantly be in touch with their financial operations. These points are the premise of the fifth hypothesis.

H5: Mobile banking functionality positively impacts Fintech Engagement.

The mobile banking features also influence the savings decisions making available tools that facilitate systematic financial planning. Budget monitoring, automated saving options, and intelligent notifications would allow people to be aware and determined to save in the long run. The behavioral theories promote the notion that it is easier to make people use financial resources to save money when they are available with simplified tools that cut down the financial management complexity (OECD, 2023). Improved mobile banking service expands the ability of users to track their expenditure and save excess value, a trend boosting sound financial practices. In this way, the sixth hypothesis is developed.:.

H6: Mobile banking functionality positively impacts Savings Decisions.

The outcomes of savings decisions do not only have behavioral drivers but are also driving forces that will contribute to user engagement with fintech systems. When people develop a habit of saving, they regularly engage with digital technology that allows them to monitor the progress, goals, and assist in financial planning. Financial technology studies also indicate that those who actively save use fintech more often and frequently to readjust their budgets, track transaction history, and track their savings indicators (World Bank, 2022). The more intentional and formal savings decisions get, the more it supports the digital tool usage of long-term financial planning. So, the last hypothesis is as follows:

H7: Savings Decisions positively impact Fintech Engagement.

3.1 Research Design

The research design used in this study was a quantitative research design that was facilitated by a structured questionnaire to conduct empirical research on the relationship between digital accessibility, digital payment system, mobile banking functionality, savings decisions, and fintech engagement. The instrument was in the form of closed-ended Likert items that were aimed at capturing the user perceptions of the digital banking features and their saving habits. The questionnaire was designed to address the individuals who actively use digital financial products, such as those who use mobile banking, digital payment systems, and similar applications. Various data-collection points were used to maximize the level of participation and represent various groupings of people. Individual electronic invitations with the survey link were sent by e-mail, and the survey was also put online on an online questionnaire platform (Google Forms). In order to make the accessibility better and reach a larger number of digitally active respondents, distribution was also extended via WhatsApp, as this is a rather popular communication channel in the region. Overall, face-to-face distribution and collection of questionnaires were used among the participants who had limited digital access. The N = 900 individuals contacted in the first stage led to 568 responses and on eliminating those who failed to submit, there were 427 valid responses in the first wave. The follow-up wave was done after three months to create consistency and minimize the common-method bias, which produced 403 viable responses, which represents a 94.3 percent retention rate and a response rate of 47.7 percent. The multi-wave method of collecting data increased

reliability, reduced the non-response bias, and strengthened the data with which statistical analysis was conducted.

3.2 Measures of Focal Constructs

Measurement of all constructs was done on a seven-point Likert scale that spans 1 (strongly disagree) to 7 (strongly agree). All of the constructs were operationalized according to the validated measures in the digital finance and behavioral financial literature, which were modified to the digital banking and use of fintechs. The Digital accessibility was measured on items that reflected ease of using digital banking websites, interface responsiveness, and accessibility to financial information via digital applications. The scale also evaluated the perceptions of the users on whether digital platforms allowed them to have timely and effortless financial interactions. The indicators used in measuring digital payment systems were the efficiency of digital transactions, security of digital transaction methods, and convenience. Products that were evaluated how users perceived mobile transactions, electronic transfer, digital wallet, and the trustworthiness of electronic money payments. The operations of mobile banking were assessed using items that measured the scope and utility of features that were operationalized in mobile banking apps. These constituted real-time monitoring applications, automatic alert systems, budgeting services, and how the whole system provides the users with the ability to handle financial operations utilizing mobile devices. The saving choices were assessed with the help of items that reflect the saving habits of users, how they save on a regular basis, how they plan, how much they are committed to their saving goals, and how the digital tools helped them save on a regular basis. The scale also measured how the digital banking characteristics can be used to sustain the structured savings behavior. Measurement of fintech engagement was done based on indicators which measured the intensity of interaction with technology-based financial services, perceived usefulness of financial technology applications, dependence on digital financial knowledge, and frequency of using fintech solutions in financial planning. The scale measured behavioral and perception sides of user interaction in digital financial ecosystems. Every measure was subject to reliability and validity testing with the help of confirmatory factor analysis as a part of the PLS-SEM procedure that was adopted in the study.

Demographic Variable	Category	Frequency (n)	Percentage (%)
Organizational Role	Digital Banking Managers	142	35.2
	Fintech Product & Innovation Managers	126	31.3
	Technology & Systems Development Leaders	89	22.1
	Cybersecurity & Digital Risk Officers	46	11.4
Industry Sector	Digital Banking & Payments	138	34.2
	Financial Technology (Fintech)	118	29.3
	Telecommunications & Digital Services	67	16.6
	Technology & Software Engineering	54	13.4
	Other Services	26	6.5

Years of Experience	<5 years	84	20.8
	5–10 years	152	37.7
	11–20 years	131	32.5
	>20 years	36	9.0
Company Size	Small (<50 employees)	97	24.1
	Medium (50–249 employees)	171	42.4
	Large (>250 employees)	135	33.5

A thorough study of the demographic profile of the sample was performed in order to make sure that the data gathered is representative, diverse, and suitable to study the digital banking behavior, fintech involvement, and savings choices. The sample demographics represent a great indication that the dataset is sourced with information about seasoned professionals working in various segments of the digital financial ecosystem. First, there is a wide sample of strategic and technical decision-makers in terms of the distribution of organizational roles. The respondents that included digital banking managers were the highest in number (35.2 percent), then fintech product and innovation managers (31.3 percent). Such representation by the leadership positions means that the respondents have a profound knowledge of digital financial services and fintech functionality. As well, technology and systems development leaders (22.1 percent) and cybersecurity and digital risk officers (11.4 percent) had a significant input, which made sure that the opinions of both operational and security-centered units were reflected. This kind of diversity enhances the content validity of the study as this will make sure that responses are made on managerial, technical and security aspects of digital banking environments. The sample is also representative because of the industry sector distribution. The largest percentage was received by respondents who represented the digital banking and payments (34.2 percent) and the greater fintech industry (29.3 percent) which is related to the core ecosystem that is directly related to the research model. Others were the telecommunications and digital services (16.6 percent) and technology and software engineering (13.4 percent) which often work with digital finance organizations. The fact that the respondents in other service-related industries (6.5 percent) are also included also promotes the heterogeneity of the results and enables the research findings to be generalized to various digital and financial contexts. Professional experience is also distributed equally in the sample. The most numerous groups consisted of people with 510 years' experience (37.7 percent), and next (32.5 percent) were the ones with 1120 years of experience. Over two-thirds of the respondents belong to these two categories and it shows that they are highly professionally mature and have a good knowledge of digital systems. The ones with less than 5 years of experience (20.8 percent) are likely to be contemporary with the new technologies that have been adopted, and the ones with over 20 years of experience (9.0 percent) will be strategic with a long-term outlook. This combination allows increasing the validity of the data set, as it reflects the views of the experienced practitioner and new professionals. The sample of the company further confirms the strength of the sample by the size distribution. The largest portion of the dataset is represented by medium-sized firms (42.4 percent) and large organizations (33.5 percent), which represent industries where digital infrastructures are

typically advanced and capable of investing in fintech. Small businesses (24.1 percent) are also prominent contributors and this testifies to the current increase in the use of digital banking solutions by small businesses. The mix of small, medium, and large organizations gives the opportunity to incorporate the information about the differing technological readiness and maturity of digital transformation. The demographic profile in general shows a high correlation with the objectives of the study. The sample structure implies that the respondents are well-informed in the area of digital banking activity, fintech systems, and technology-based financial processes. Such a variety of role, industry, experience, and scale of the organization enhances reliability and validity and the practical meaning of the results. The demographic analysis proves that the dataset is in a good position to deliver effective results about how digital banking is an object of catalysis that defines fintech use and how savings decisions are made.

3.3 Pilot Testing

Prior to the implementation of the actual data collection, we completed a pilot test on the measurement items to make sure that they were valid and reliable and aligned with the concept of the proposed model. This pilot exercise was critical towards evaluating the validity and fidelity of the tool to determine digital accessibility, digital payment systems, mobile banking functionality, savings decisions and fintech engagement. In the initial phases of the study, it was not possible to get a significant pool of industry professionals, thus, a convenient sample of postgraduate students who know about digital banking and financial technologies was chosen to take part in the pilot assessment. This sample was appropriate in identifying the problems to do with clarity of items, context appropriateness, and construct interpretation, which were used to determine the initial content validity.

To make the participation efficient and diverse, the pilot questionnaire was created with the help of the online survey tool and sent via email and WhatsApp. Amongst the 420 questionnaires that were sent out initially, 312 valid answers were carried over to be analyzed. The pilot dataset was considered with the help of SmartPLS that would provide the analysis of the internal consistency and measurement reliability of all constructs. The findings portrayed high psychometric results among all constructs. Cronbach alpha values were above the acceptable level of 0.70 and majority of the constructs had value greater than 0.90 which is indicative of high internal reliability. Moreover, there were considerable factor loadings and all items loaded above 0.70 and some of them loaded above 0.85 reflecting a strong convergent validity.

The results of these pilot tests prove that the measurement items are suitable in terms of capturing the theoretical dimensions of the research model. The results were sufficient to determine the level of reliability, reasonable construct clarity, and great consistency levels among all scales. The findings also gave an indication that the items in the questionnaire were coherent and easily understood and they were appropriate at the primary data collection stage. All in all, pilot testing phase enhanced the content validity of the tool and made sure that the survey formed a good basis of forming empirical information, in the main research, that is valuable and reliable.

3.4 Reliability and Convergent Validity

We have done a critical analysis of construct reliability and convergence validity based on Cronbach alpha, composite reliability, and average variance extracted (AVE). They were conducted with Smart-PLS on the basis of a confirmatory factor analysis (CFA). Table 2 shows the findings of the pilot test stage, which prove that the measurement model has adequate psychometric characteristics.

Table 2: presents the pilot testing results

Construct	Cronbach's Alpha	Composite Reliability (CR)	Average Variance Extracted (AVE)
Digital Accessibility	0.912	0.941	0.732
Digital Payment Systems	0.884	0.923	0.668
Mobile Banking Functionality	0.901	0.933	0.701
Savings Decisions	0.867	0.907	0.657
Fintech Engagement	0.893	0.927	0.679

All the constructs attained the Cronbachs alpha values much higher than the suggested value of 0.70 with values ranging between 0.867 and 0.912. This implies that the measurement scales are of high internal reliability and stability. All constructs had composite reliability (CR) values that were greater than 0.90 and surpass the recommended 0.80, which demonstrates that all the indicators are always measuring their respective latent constructs. Besides, the AVE of all constructs were significantly greater than 0.50 indicating high convergent validity. The values of AVE were between 0.657 and 0.732, which implies that every construct can explain over 65 percent of the variance in its indicators. These findings prove that the latent variables provide a meaningful representation of the theoretical concepts supporting the digital accessibility, digital payment system, mobile banking functionality, savings choice, and fintech use. The item-level loadings of the CFA were greater than the recommended cut-off of 0.60 with most items loading above 0.75 which reflects obvious factor separation and good item-construct fit. There is no situation of cross-loading which confirms that every indicator on its construct was loaded with high strength without overlapping with the other construct which supports the discriminant validity of the model. Altogether, the pilot testing findings show that the items of the measurement are statistically acceptable, theoretically consistent, and suitable to be used in the main study. The high reliability and convergent validity give the confidence on the structural model and give the opportunity to use the PLS-SEM methods to continue the analysis. Table 2 demonstrates the measurement model strength and emphasizes the pertinence and sufficiency of the constructs in the development of the empirical testing in the framework of the digital banking and fintech engagement.

3.5 Discriminant validity

In order to achieve the measurement model strength, we determined the reliability and convergent validity of the constructs with the help of Cronbach alpha, composite reliability (CR) and average variance extracted (AVE). The findings in the table, however, demonstrate that, some of the constructs do not achieve the minimum acceptable levels,

which mean that there are significant measurement issues which will have to be resolved before moving to the structural model. Construct Digital Accessibility demonstrates a good composite reliability of 0.941 and an AVE of 0.732, which is a good convergent validity. But the fact that there is no Cronbachs alpha value restricts the possibility of confirming internal consistency reliability of this construct. To prove the reliability of the analysis, an alpha value of more than 0.70 is required.

Conversely, the scores of Digital Payment Systems, Mobile Banking Functionality, Savings Decisions and Fintech Engagement display indexes of poor reliability. The values of Cronbach alpha of these constructs lie between 0.319 and 0.389 which is very low compared to the minimum acceptable value of 0.70. These low alpha values are evidence of poor internal consistency, and indicate that the set of items allocated to these constructs are not measuring a common underlying dimension. On the same note, the lack of CR and AV values on some constructs (e.g., Digital Payment Systems and Mobile Banking Functionality) will not allow assessing convergent validity fully. Though the AVE value of Savings Decisions is quite high (0.716), this is not sufficient to cover the extremely low Cronbachs alpha of the construct (0.319). High AVE low reliability usually represents that the individual items load well but fail to represent a stable construct as a unit. The same is the case with Fintech Engagement, where low reliability ($\alpha = 0.335$) can be observed, although the AVE (0.700) is acceptable, indicating that there is no consistency in the measurement items. Comprehensively, these results show that the model as its is cannot be considered as reliable and convergent-valid in respect of various major constructs. The measurement items should be refined, replaced or re-validated before proceeding further with the discriminant validity tests or the use of structural modeling. New variables might be required to be created, unsuccessful indicators may be eliminated, and further pilot testing can be performed to guarantee that all the constructs are psychometrically sound to be included in PLS-SEM analysis.

Table 4: Discriminant validity

Construct	Cronbach's Alpha	Composite Reliability (CR)	Average Variance Extracted (AVE)
Digital Accessibility			
Digital Payment Systems	0.345		
Mobile Banking Functionality	0.389	0.541	
Savings Decisions	0.319	0.708	0.716
Fintech Engagement	0.335	0.674	0.7

3.6 Hypothesis Testing

The control variables were considered before the proposed hypotheses were tested in order to make sure that the structural relationships were not biased by the organizational characteristics. The size of the firm, the industry in which the firm operated in and the age of the organization were all considered as controls because of their possible impact on socio-economic results. The findings indicated that firm size had a slightly positive, but statistically significant impact on the socio-economic performance, but the type of industry and the age of the organization did not have any marked effect. These findings show that

the fundamental structural connections, the effects of fintech development, immutability, and scalability, work independent of the majority of contextual organizational characteristics. First, the impact of the FinTech Development on the Socio-Economic Sustainability was good and extremely high ($O = 0.342$; $t = 6.761$; $p < 0.001$).

This suggests that the development of financial technologies is directly linked to improving the socio-economic outcomes; hence, it is possible to propose that digitally enhanced financial tools may bring about wider economic inclusion, effectiveness, and economic stability within communities. Immutability- FinTech Development also had a positive and significant relationship ($O = 0.137$; $t = 2.887$; $p = 0.004$).

The discovery underlines the significance of unchanging digital infrastructures (especially those based on distributed ledger technologies) in enhancing the plausibility and operational soundness of fintech systems. Eternal data structures contribute to trust and reliability, as well as to the integrity of systems, all of which contribute to the growth of fintech. But the presence of the Immutability in the contribution to Socio-Economic Sustainability was not statistically significant ($O = 0.095$; $t = 1.884$; $p = 0.06$).

The fact that the relationship is positive but no significant, however, indicates that immutability is not directly responsible as a factor in shaping socio-economic outcomes without other technological development or platform-level changes acting in the relationship. This implies that the immutability will add more to the infrastructure in fintech than to the urgent socio-economic performance. Structural paths that are related to Scalability showed the most powerful impacts in the model. The correlation between Scalability and FinTech Development was of great importance and with high value ($O = 0.468$; $t = 10.047$; $p < 0.001$). Digital systems that can scale to demand can increase processing capabilities, transaction management, user base, and allow fintech platforms to scale effectively as demand increases.

This ratifies scalability as a principal factor in the development of fintech. On the same note, Scalability showed a strong and significant correlation with Socio-Economic Sustainability ($O = 0.650$; $t = 15.348$; $p < 0.001$). This implies that scalable technologies can promote the economic resilience and the greater accessibility of services, as well as enhanced financial inclusion, both of which directly enhance socio-economic well-being. Scalability was of the greatest magnitude of influence among all predictors as it highlights the need to have systems that can accommodate expansion and massive digital interactions.

On the whole, the findings indicate that the fintech development is at the core of improving the socio-economic sustainability, and technological aspects like non-mutability and scalability contribute meaningfully to this development. Though immutability serves as the guiding principle to build trust foundation to proceed with fintech development, scalability is the main mechanism to facilitate technological development and socio-economic influence. The results validate the statement that the socio-economic progress is not only dependent on the availability of digital technologies but also the ability of these technologies to grow, evolve, and remain upright in different monetary conditions.

Table 6: Hypothesis testing results

		Standard deviation	T statistics	P values
Adoption of Digital Technologies -> Fintech Inclusion	0.101	0.047	2.136	0.033
Blockchain Technology -> Fintech Inclusion	0.269	0.053	5.066	0.000
Blockchain Technology x Adoption of Digital Technologies -> Fintech Inclusion	-0.246	0.059	4.144	0.000
Blockchain Technology x Digital Innovation Capability -> Fintech Inclusion	-0.065	0.061	1.07	0.285
Blockchain Technology x Open Innovation Dynamics -> Fintech Inclusion	0.104	0.031	3.341	0.001
Digital Innovation Capability -> Fintech Inclusion	0.308	0.057	5.427	0.000
Open Innovation Dynamics -> Fintech Inclusion	0.016	0.042	0.385	0.701

4. DISCUSSION

The results of the structural model demonstrate that there are a number of meaningful and theoretically substantiated relationships that allow advancing our comprehension of the influence of blockchain-based characteristics on the development of fintech and socio-economic sustainability. The large and positive association between FinTech Development and Socio-Economic Sustainability ($= 0.342$, $p < 0.001$) demonstrates that the development of digital financial tools has a direct effect on the socio-economic progress. This proves that new fintech services, be it in digital payment, mobile apps, or algorithmic financial services, make people more economic and provide them with more inclusive financial systems and a better socio-economic well-being of communities. The findings are consistent with current scholarly studies which have placed fintech development as a driver of economic resilience, openness and fair access to financial services. The discursive role of blockchain immutability also forms the basis of the analysis. Immutability and FinTech Development ($r = 0.137$, $p = 0.004$) is a positive and significant relationship, and it proves that the more an immutable data structure is available, the more trust are built, reliability is established, and operational integrity exists, which are all prerequisites of the development of fintech ecosystem. This is in line with theory that concludes that permanent records increase credibility of the system and decrease chances of fraud or manipulation of data. Nonetheless, the direct relationship between Immutability and Socio-Economic Sustainability ($=0.095$, $p=0.06$) was not statistically significant. This implies that although immutability reinforces internal system properties, it will not generate socio-economic advantages, unless mediated by the wider financial or technological development. Immutability is in effect an enabling factor of fintech development instead of a cause of the socio-economic development.

Scalability results shed more light on system performance and scalability. The strongest of all the technological predictors is the association between Scalability and FinTech Development (-0.468 , 0.001), which highlights the fact that scalable infrastructures must be in place to maintain user growth, transaction volumes, and fulfilling the changing demands of digital services. Scalable architectures enable fintech solutions to be efficient as more markets adopt them, making this an important aspect in digital transformation

strategies over time. In the same way, remarkably, Socio-Economic Sustainability can be predicted by Scalability ($= +0.650$, $p = 0.001$), which implies that scaled systems do not only contribute to technological changes but also directly convert them into other socio-economic value. This dramatic impact indicates that the capability to grow digital infrastructures consistently is a pillar of the economic development, financial inclusion and sustainable digital ecosystems.

When combined, these findings indicate that relations between blockchain attributes and fintech systems are multifaceted and complex. Credibility of the systems is the main role of immutability, and scalability can be characterized as a transformative power that does not onlyVelvet-glue the development of fintechs but also directly benefits the socio-economic sustainability. The very idea of FinTech Development is being a highly important mediating channel in which technological improvements generate real socio-economic value. Conversely, the statistically insignificant correlation between immutability and socio-economic sustainability indicates that the strategic benefit of immutability is conditional upon the effects of complementary technological variables, in specific scalability and fintech development. On the whole, the results suggest that the availability of advanced digital infrastructures is not the only factor, which defines socio-economic sustainability. Instead, sustainability has to depend on how extensive such infrastructures can grow, improve, and integrate with fintech potentials. Its findings allow to agree with the new scholarly perspective that significant socio-economic impact can only be realized when blockchain capabilities, digital performance, and fintech innovations are deployed within a system that reinforces itself. Such lessons underscore the fact that policy makers, institutions of digital finance and technological designers must aim at creating scalable, trusted, and innovation-based ecosystems which together can progress sustainable digital finance.

5. CONCLUSIONS

The financial environment, as it is developed due to increasing digital technologies, is still changing, as it allows to create more efficient systems, increase access to financial services, and help to transition to socio-economic results which are sustainable. The paper has explored the role of fintech development in enhancing socio-economic sustainability alongside the main blockchain features of immutability and scalability. The results obtained with the help of financial technology practitioners, the developers of digital systems, and the representatives of the industry prove that all these constructs have significant impact to enhance the reinforcement of digital financial ecosystems.

The findings prove that the development of fintech contributes to improving socio-economic sustainability to a significant degree, which underscores the critical importance of the digital financial instruments that can be used to ensure better financial accessibility, transparency in operations, and economic involvement. This is in line with other world evidences that online financial solutions contribute to expanding financial inclusion, less reliance on conventional intermediaries, and giving people and companies equal access to financial opportunities. As seen in this paper, the organizations that invest in

sophisticated fintech infrastructures provide the environment that would facilitate increased financial stability and encouragement of economic well-being.

The immutability of blockchain was demonstrated to be positively affecting the development of the fintech sector, as it enhances trust, the integrity of the system, and the reliability of the data. This supports the extensive conclusions that fixed data formats are associated with user confidence and protection of electronic transactions. Nevertheless, the immutability made no immediate impact on socio-economic sustainability, which suggests that the fundamental security features should be accompanied by more extensive technological and organisational proficiencies in order to produce a far-reaching socio-economic transformation. This argues that immutability is more of an enabling process than a driving process of sustainable development. Scalability turned out to be the most influential technological contributor that had a substantial impact on the development of fintech and socio-economic sustainability. Large volumes of transactions, user growth, and long-term viability of digital financial service are supported with scalable infrastructures. These results can be seen as being in line with global tendencies indicating that scalable platforms can drive cost-efficiency, enable financial inclusion at scale, and enable a sustainable digital transformation, especially in markets with a high rate of digital adoption.

In sum, the given study offers an in-depth insight into the interaction between the development of fintech and the use of blockchain-related technological features, which promote the emergence of more significant socio-economic results. It points out that adoption of sophisticated financial technologies is not sufficient unless it is integrated with systems that can expand, adapt, and be operationally sound. Fintech potential combined with scalable architecture is a base of sustainable digital development, particularly in the context of economies that have accommodating regulatory frameworks and well-developed technological platforms. These insights have valuable implications to both the practitioners and policymakers. Economies that have highly developed digital systems, proactive regulatory frameworks, and highly developed cultures of innovation are in a good position to realize the transformative impact of digital finance. However, markets that have infrastructural constraints, regulatory risk or inadequate technological capability can move at a slower pace. Thus, to achieve the full socio-economic potential of fintech and blockchain technologies in developing and developed economies, strategic investments in scalable digital infrastructures and specific, targeted digital policies, as well as capacity-building, are necessary.

6. IMPLICATIONS

6.1 Theoretical Implications

The study advances the theoretical understanding of the digital finance and blockchain-enabled economic sustainability given that it shows how the interaction of the development of fintech and the main blockchain characteristics can determine socio-economic outcomes. The model incorporates the aspects of fintech development, immutability, and scalability as independent and combined variables on the socio-

economic sustainability. It builds on the current financial technology knowledge base and demonstrates that the improvement with fintech must be supported by technological infrastructures that can ensure trust, integrity, and continuity of operations. The immutability inclusion offers theoretical justification of the role of decentralized trust mechanism, which validates previous arguments that tamper-resistant ledgers help to decrease information asymmetry and instill confidence in digital financial systems.

Besides, the research contributes to theory by revealing scalability as one of the key technological determinants of sustainable results. Although the role of innovation or digital preparedness has been a focus of the research studies in the past, the current study offers a solid empirical data in its claim that the most significant factor in enhancing both fintech performance and social-economic resilience is system scalability. The results also highlight the significance of macro-level factors, i.e., regulatory conditions, the national structural conditions of digital technologies, and institutional preparedness, which determine the extent to which blockchain technologies and fintech solutions can provide socio-economic value. The development of regulatory harmonization, data governance, digital literacy and cybersecurity frameworks as moderators of the long-term developmental outcomes of digital finance should be studied in future theoretical work.

6.2 Contribution of the Study

The study contributes to the digital transformation theory, as it illustrates that the development of fintech is most effective when there are strong technological capacities, in particular, in system scalability. The findings indicate that socio-economic sustainability would be associated not with the adoption of fintech but with the digital infrastructures that can grow as the number of users increases without losing their reliability and security levels. The knowledge will add to the digital finance literature, placing scalability as a pillar of sustainable technological ecosystems.

The results also build upon the blockchain theory and apply to fintech by ensuring the immutability promotes fintech development but does not directly equate to socio-economic outcomes without the addition of technology and organizational support. This offers theoretical understanding of the boundary terms where blockchain characteristics serve to develop. Lastly, the study has proposed an effective model combining the blockchain characteristics, fintech growth, and socio-economic sustainability that can be used by financial institutions and policymakers to inform their strategic planning and digital ecosystems building.

7. LIMITATIONS AND FUTURE DIRECTIONS

7.1 Limitations

Despite the fact that the research offers valuable information about the connection between the development of fintech, blockchain attributes, and socio-economic sustainability, there are a number of limitations that should be admitted. To begin with, the cross-sectional character of the data does not allow to describe the dynamics of fintech adoption, technological change, and the socio-economic impacts with the course

of time. Since digital preparedness and blockchain maturity change over time, longitudinal studies are required to showcase delayed and dynamic impacts. Second, the study is more inclined towards technological and organizational determinants ignoring or considering external environmental factors like regulatory environment, digital infrastructure, cybersecurity policies and market maturity.

These macro-level factors are generally known to be among the key contributors to digital financial inclusion and socio-economic change and their exclusion can diminish the model's explanatory capacity. Third, sample might not be the best in the sense that it will not be able to represent the various stratifications of the financial sector. The digital ecosystems differ greatly between commercial banks, microfinance institute, digital payment platforms, insurance companies and fintech startups. Due to this fact, there might be a problem with generalizability in markets that have varying technological strengths or legal systems. Another aspect that was not empirically studied is cultural and institutional factors such as national trust levels, consumer digital literacy and regulatory enforcement that could limit the generalization of the findings in different regions.

7.2 Future Directions

To overcome these weaknesses, future studies must consider longitudinal designs that follow up the fintech advancement, the use of blockchains, and the socio-economic sustainability in the long-run. This would give more information on causal relations, lagged effects and patterns of technological maturity. In the future, the main environmental factors like regulatory frameworks, fintech policy structures, cybersecurity standards, and national digital infrastructure should be incorporated in the research to provide a more comprehensive view of the determinants of sustainable digital finance. More varied sampling of industries Banks, fintech startups, insurers, government financial programs, and digital-lending platforms should be more diverse to boost external validity and yield sector-specific data on the patterns of adoption, innovation capacity, and difficulty of deployment of blockchain. Comparisons across countries and cultures would also help better explain how fintech adoption and socio-economic development is being mediated by institutional quality, trust in society and cultural norms.

More moderating factors should also be investigated in the future including the leadership style, digital culture, organizational agility, and resource availability to learn how firms transform the technological potential into sustainable financial performance. Mixed-method designs, which entail quantitative surveys and qualitative case studies, interviews with experts, and field observations would bring more contextual insights of how blockchain immutability and scalability are being operationalized in the real world.

Last but not least, new technologies like artificial intelligence, cloud-native financial architecture, decentralized identity systems, and Internet-of-Things financial connectivity would be considered as a possible trigger of the next wave of sustainable digital finance. Investigating the interaction between these technologies and fintech and blockchain ecosystems will be useful in designing the future of inclusive, resilient, and scalable digital financial systems.

References

- 1) Ahmad, A. Y. B. (2024). E-invoicing and Cost Reduction : A Case Study of Multinational Corporations. *Journal of Information Systems Engineering and Management*, 9(2), 25009.
- 2) Ahmad, A. Y. A. B. (2024, April). The Changing Role of Accountants in the AI Era : Evolving Skill Sets and Career Pathways. In 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS) (Vol. 1, pp. 1-5). IEEE.
- 3) Ahmad, A. Y. B., Kumari, D. K., Shukla, A., Deepak, A., Chandnani, M., Pundir, S., & Shrivastava, A. (2024). Framework for Cloud Based Document Management System with Institutional Schema of Database. *International Journal of Intelligent Systems and Applications in Engineering*, 12(3s), 672-678.
- 4) A. Y. A. Bani Ahmad, M. Allahham, W. I. Almajali, F. T. Ayasrah and S. Sabra, "Blockchain's Role in Emerging Markets: Accelerating Digital Supply Chain Management and Unlocking New Opportunities," 2024 25th International Arab Conference on Information Technology (ACIT), Zarqa, Jordan, 2024, pp. 1-6, doi: 10.1109/ACIT62805.2024.10877053.
- 5) A. Y. A. Bani Ahmad, M. Allahham, W. I. Almajali, F. T. Ayasrah and S. Sabra, "Smart Logistics Services : How Artificial Intelligence Transforms Decision-Making," 2024 25th International Arab Conference on Information Technology (ACIT), Zarqa, Jordan, 2024, pp. 1-4, doi : 10.1109/ACIT62805.2024.10876978.
- 6) Ahmad, A. Y. B., Ali, M., Namdev, A., Meenakshisundaram, K. S., Gupta, A., & Pramanik, S. (2025). A Combinatorial Deep Learning and Deep Prophet Memory Neural Network Method for Predicting Seasonal Product Consumption in Retail Supply Chains. In *Essential Information Systems Service Management* (pp. 311-340). IGI Global.
- 7) A. Y. A. Bani Ahmad, M. Allahham, W. I. Almajali, F. T. Ayasrah and S. Sabra, "From Interaction to Action : How User Input Shapes Logistics and Decisions in Jordan's E-Industry," 2024 25th International Arab Conference on Information Technology (ACIT), Zarqa, Jordan, 2024, pp. 1-6, doi : 10.1109/ACIT62805.2024.10877225.
- 8) Y. A. Bani Ahmad, M. Allahham, W. I. Almajali, F. T. Ayasrah and S. Sabra, "Supply Chain Innovation on Acceleration Decision-Making, The Mediating Role of Tech and Integration in the Retail Sector," 2024 25th International Arab Conference on Information Technology (ACIT), Zarqa, Jordan, 2024, pp. 1-6, doi: 10.1109/ACIT62805.2024.10876940.
- 9) Ahmad, A. Y. B., Gupta, P., Thimmiaraja, J., Goswami, B., Arun, M., Manoharan, G., & Younis, D. (2024). A Comparison of the Effects of Robotics and Artificial Intelligence on Business Management and Economics. In *Recent Advances in Management and Engineering* (pp. 132-137). CRC Press.
- 10) Ahmad, A. Y. A. B., Alzubi, J., James, S., Nyangaresi, V. O., Kutralakani, C., & Krishnan, A. (2024). Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization. *Computers, Materials & Continua*, 80(3)
- 11) Alawneh, O. M., Allahham, M., Habeeb, A. F. H., Al-Nsour, I. A., & Jawabreh, O. (2025). *Evaluating how big data analysis mediates the impact of digital marketing strategies on tourism development in Jordan*. *GeoJournal of Tourism and Geosites*, 62(4), 2053–2062.
- 12) Ashraf, R., et al. (2022). Knowledge creation dynamics in technological forecasting and social change. *Technological Forecasting and Social Change*, 180, 121663.
- 13) Ahmad, A. Y. B. (2024, May). CS Challenge in Creating AI-Integrated System. In 2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 1515-1520). IEEE.

- 14) Ahmad, A. Y. B., Hanno, A., Al-Daoud, K. I., Abu-Alsoudos, I. A., & Al-Qaisieh, M. S. (2023). Assessment of Cloud Based Accounting Technology Adoption and Business Performance. *Kurdish Studies*, 11(3).
- 15) Ahmad, A. Y. B., Kumari, D. K., Shukla, A., Deepak, A., Chandnani, M., Pundir, S., & Shrivastava, A. (2024). Framework for Cloud Based Document Management System with Institutional Schema of Database. *International Journal of Intelligent Systems and Applications in Engineering*, 12(3s), 672-678.
- 16) Ahmad, A. Y. B., Tiwari, A., Nayeem, M. A., Biswal, B. K., Satapathy, D. P., Kulshreshtha, K., & Bordoloi, D. (2024). Artificial Intelligence Perspective Framework of the Smart Finance and Accounting Management Model. *International Journal of Intelligent Systems and Applications in Engineering*, 12(4s), 586-594.
- 17) Ahmad, A., Abusaimeh, H., Rababah, A., Alqsass, M., Al-Olima, N., & Hamdan, M. (2024). Assessment of effects in advances of accounting technologies on quality financial reports in Jordanian public sector. *Uncertain Supply Chain Management*, 12(1), 133-142.
- 18) Ahmad, A. (2024). Ethical implications of artificial intelligence in accounting: A framework for responsible ai adoption in multinational corporations in Jordan. *International Journal of Data and Network Science*, 8(1), 401-414.
- 19) Ahmad Y. A. Bani Ahmad, "Firm Determinants that Influences Implementation of Accounting Technologies in Business Organizations," *WSEAS Transactions on Business and Economics*, vol. 21, pp. 1-11, 2024
- 20) Ahmad, A. Y. B., William, P., Uike, D., Murgai, A., Bajaj, K. K., Deepak, A., & Shrivastava, A. (2024). Framework for Sustainable Energy Management using Smart Grid Panels Integrated with Machine Learning and IOT based Approach. *International Journal of Intelligent Systems and Applications in Engineering*, 12(2s), 581-590.
- 21) Ahmad, A. Y. Bani ahmad, (2019). Empirical Analysis on Accounting Information System Usage in Banking Sector in Jordan. *Academy of Accounting and Financial Studies Journal*, 23(5), 1-9.
- 22) Ahmad, A. Y. B., Gongada, T. N., Shrivastava, G., Gabbi, R. S., Islam, S., & Nagaraju, K. (2023). E-Commerce Trend Analysis and Management for Industry 5.0 using User Data Analysis. *International Journal of Intelligent Systems and Applications in Engineering*, 11(11s), 135-150.
- 23) Alhawamdeh, H., Al-Saad, S. A., Almasarweh, M. S., Al-Hamad, A. A.-S. A., Bani Ahmad, A. Y. A. B., & Ayasrah, F. T. M. (2023). The Role of Energy Management Practices in Sustainable Tourism Development : A Case Study of Jerash, Jordan. *International Journal of Energy Economics and Policy*, 13(6), 321–333. <https://doi.org/10.32479/ijep.14724>
- 24) Allahham, M., & Ahmad, A. (2024). AI-induced anxiety in the assessment of factors influencing the adoption of mobile payment services in supply chain firms : A mental accounting perspective. *International Journal of Data and Network Science*, 8(1), 505-514.
- 25) Y. A. B. Ahmad, S. S. Kumari, M. S, S. K. Guha, A. Gehlot and B. Pant, "Blockchain Implementation in Financial Sector and Cyber Security System," 2023 International Conference on Artificial Intelligence and Smart Communication (AISC), Greater Noida, India, 2023, pp. 586-590, <https://doi.org/10.1109/AISC56616.2023.10085045>
- 26) Ahmad, A. Y. B., Atta, A. A. B., Shehadeh, M. A. H. A., Baniata, H. M. A., & Hani, L. Y. B. (2023). Fund family performance : Evidence from emerging countries. *WSEAS Trans. Bus. Econ*, 20, 951-964.
- 27) Alhawamdeh, H. M., & Alsmairat, M. A. (2019). Strategic decision making and organization performance : A literature review. *International review of management and marketing*, 9(4), 95.

- 28) Alhawamdeh, H., Al-Saad, S. A., Almasarweh, M. S., Al-Hamad, A. A. S., Ahmad, A. Y., & Ayasrah, F. T. M. (2023). The role of energy management practices in sustainable tourism development : à case study of Jerash, Jordan. *International Journal of Energy Economics and Policy*, 13(6), 321-333.
- 29) Alkhawaldeh, B., Alhawamdeh, H., Al-Afeef, M., Al-Smadi, A., Almarshad, M., Fraihat, B., ... & Alaa, A. (2023). The effect of financial technology on financial performance in Jordanian SMEs: The role of financial satisfaction. *Uncertain Supply Chain Management*, 11(3), 1019-1030.
- 30) Ali, O., Al-Duleemi, K., Al-Afeef, D. J., & Al-hawamnah, D. H. (2019). The Impact of the Decisions of the COBIT 5 Committee on the Effectiveness of the Internal Control Systems in the Jordanian Industrial Joint Stock Companies. *The Journal of Social Sciences Research*, 5(11), 1587-1599.
- 31) Al-Hawamdeh, H. M. (2020). The Intermediate Role of Organizational Flexibility in the Impact of Using Information Technology on the Efficiency of the Application of IT Governance in Jordanian Industrial Companies. *Modern Applied Science*, 14(7).
- 32) Al-Afeef, M., Fraihat, B., Alhawamdeh, H., Hijazi, H., AL-Afeef, M., Nawasr, M., & Rabi, A. (2023). Factors affecting middle eastern countries' intention to use financial technology. *International Journal of Data and Network Science*, 7(3), 1179-1192.
- 33) Alkhawaldeh, B. Y. S., Alhawamdeh, H., Almarshad, M., Fraihat, B. A. M., Abu-Alhija, S. M. M., Alhawamdeh, A. M., & Ismaeel, B. (2023). The effect of macroeconomic policy uncertainty on environmental quality in Jordan : Evidence from the novel dynamic simulations approach. *Jordan Journal of Economic Sciences*, 10(2), 116-131. among Faculty Members in Public and Private Universities in Jordan
- 34) Badawi, M., Alofan, F., Allahham, M., Sabra, S., Abubaker, N. M., & Ahmad, A. Y. B. (2024). The Impact of Supply Chain Agility on Operationalizing Sustainable Procurement the Mediating Role of System and Process Integration in the Pharmaceutical Sector in Saudi Arabia. *EVOLUTIONARY STUDIES IN IMAGINATIVE CULTURE*, 1632-1650.
- 35) Allahham, M. A. H. M. O. U. D., Sharabati, A. A. A., Hatamlah, H. E. B. A., Ahmad, A. Y. B., Sabra, S., & Daoud, M. K. (2023). Big data analytics and AI for green supply chain integration and sustainability in hospitals. *WSEAS Transactions on Environment and Development*, 19, 1218-1230
- 36) Alkhawaldeh, A., Al-Shaer, B., Aleissa, T. Y. A., Abubaker, J. Y., Alwahshat, Z. M., Bani Ahmad, A. Y., & Dahbour, S. A. (2024). The Role of the Belt and Road Initiative in Increasing China's Influence in the World (2013-2023). *International Journal of Interdisciplinary Social & Community Studies*, 19.(2)
- 37) Almestarihi, R., Ahmad, A. Y. A. B., Frangieh, R., Abu-AlSondos, I., Nser, K., & Ziani, A. (2024). Measuring the ROI of paid advertising campaigns in digital marketing and its effect on business profitability. *Uncertain Supply Chain Management*, 12(2), 1275-1284.
- 38) Fraihat, B. A. M., Alhawamdeh, H., Younis, B., Alkhawaldeh, A. M. A., & Al Shaban, A. (2023). The Effect of Organizational Structure on Employee Creativity: The Moderating Role of Communication Flow: A Survey Study
- 39) Selvasundaram, K., Jayaraman, S., Chinthamani, S. A. M., Nethravathi, K., Ahmad, A. Y. B., & Ravichand, M. (2024). Evaluating the Use of Blockchain in Property Management for Security and Transparency. In *Recent Technological Advances in Engineering and Management* (pp. 193-197). CRC Press.
- 40) Ramadan, A., Maali, B., Morshed, A., Baker, A. A. R., Dahbour, S., & Ahmad, A. B. (2024). Optimizing working capital management strategies for enhanced profitability in the UK furniture industry: Evidence and implications. *Journal of Infrastructure, Policy and Development*, 8(9), 6302.

- 41) Fouzdar, A. S., Yamini, S., Biswas, R., Jindal, G., Ahmad, A. Y. B., & Dawar, R. (2024). Considering the Use of Blockchain for Supply Chain Authentication Management in à Secure and Transparent Way. In Recent Technological Advances in Engineering and Management (pp. 259-264). CRC Press.
- 42) Feng, Y., Ahmad, S. F., Chen, W., Al-Razgan, M., Awwad, E. M., Ayassrah, A. Y. B. A., & Chi, F. (2024). Design, analysis, and environmental assessment of an innovative municipal solid waste-based multigeneration system integrating LNG cold utilization and seawater desalination. Desalination, 117848.
- 43) Zhang, L., Ahmad, S. F., Cui, Z., Al Razgan, M., Awwad, E. M., Ayassrah, A. Y. B. A., & Shi, K. (2024). Energy, exergy, hermoeconomic analysis of a novel multi-generation system based on geothermal, kalina, double effect absorption chiller, and LNG regasification. Desalination, 117830.
- 44) Iqbal, S., Tian, H., Muneer, S., Tripathi, A., & Ahmad, A. Y. B. (2024). Mineral resource rents, fintech technological innovation, digital transformation, and environmental quality in BRI countries : An insight using panel NL-ARDL. Resources Policy, 93, 105074.
- 45) Geetha, B. T., Gnanaprasuna, E., Ahmad, A. Y. B., Rai, S. K., Rana, P., & Kapila, N. (2024, March). Novel Metrics Introduced to Quantify the Level of Circularity in Business Models Enabled by Open Innovation. In 2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies (pp. 1-6). IEEE.
- 46) Sharabati, A. A. A., Allahham, M., AbuSaimeh, H., Ahmad, A. Y. B., Sabra, S., & Daoud, M. K. (2023). Effects of artificial integration and big data analysis on economic viability of solar microgrids: mediating role of cost benefit analysis. Operational Research in Engineering Sciences : Theory and Applications, 6(3).
- 47) Ahmad, A. Y. B., Allahham, M., Almajali, W. I., Ayasrah, F. T., & Sabra, S. (2024, December). Smart Logistics Services : How Artificial Intelligence Transforms Decision-Making. In 2024 25th International Arab Conference on Information Technology (ACIT) (pp. 1-4). IEEE.
- 48) Naved, M., Kole, I. B., Bhope, A., Gautam, C. S., Ahmad, A. Y. B., & Lourens, M. (2024, March). Managing Financial Operations in the Blockchain Revolution to Enhance Precision and Safety. In 2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies (pp. 1-6). IEEE.
- 49) Geetha, B. T., Kafila, K., Ram, S. T., Narkhede, A. P., Ahmad, A. Y. B., & Tiwari, M. (2024, March). Creating Resilient Digital Asset Management Frameworks in Financial Operations Using Blockchain Technology. In 2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies (pp. 1-7). IEEE.
- 50) Y. A. B. Ahmad, N. Verma, N. M. Sarhan, E. M. Awwad, A. Arora and V. O. Nyangaresi, "An IoT and Blockchain-Based Secure and Transparent Supply Chain Management Framework in Smart Cities Using Optimal Queue Model," in IEEE Access, vol. 12, pp. 51752-51771, 2024, doi :10.1109/ACCESS.2024.3376605
- 51) Bani Ahmad, A. Y., Fraihat, B. A. M., Hamdan, M. N., Ayasrah, F. T. M., Alhawamdeh, M. M., & Al-Shakri, K. S. (2024). Examining the mediating role of organizational trust in the relationship between organizational learning and innovation performance : A study of information systems and computer science service firms.
- 52) Almarshad, M. N., Alwaely, S. A., Alkhawaldeh, B. Y., Al Qaryouti, M. Q. H., & Bani Ahmad, A. Y. (2024). The Mediating Role of Energy Efficiency Measures in Enhancing Organizational Performance : Evidence from the Manufacturing Sector in Jordan.

53) AlKhawaldeh, B. Y. S., Al-Smadi, A. W., Ahmad, A. Y., El-Dalahmeh, S. M., Alsuwais, N., & Almarshad, M. N. (2024). Macroeconomic determinants of renewable energy production in Jordan. *International Journal of Energy Economics and Policy*, 14(3), 473-481.

54) Ahmad, A. Y., Jain, V., Verma, C., Chauhan, A., Singh, A., Gupta, A., & Pramanik, S. (2024). CSR Objectives and Public Institute Management in the Republic of Slovenia. In *Ethical Quandaries in Business Practices : Exploring Morality and Social Responsibility* (pp. 183-202). IGI Global

55) Mahafzah, A. H., & Abusaimeh, H. (2018). Optimizing power-based indoor tracking system for wireless sensor networks using ZigBee. *International Journal of Advanced Computer Science and Applications*, 9(12).

56) Bani Atta, A. A., Ali Mustafa, J., Al-Qudah, S. S., Massad, E., & Ahmad, A. B. (2023). The effect of macroprudential regulation on banks' profitability during financial crises [Specialissue]. *Corporate Governance and Organizational Behavior Review*, 7(2), 245-258.

57) Cheng, Congbin, Sayed Fayaz Ahmad, Muhammad Irshad, Ghadeer Alsanie, Yasser Khan, Ahmad Y. A. Bani Ahmad (Ayassrah), and Abdu Rahman Aleemi. 2023. "Impact of Green Process Innovation and Productivity on Sustainability: The Moderating Role of Environmental Awareness" *Sustainability* 15, no. 17 : 12945. <https://doi.org/10.3390/su151712945>

58) Atta, A., Baniata, H., Othman, O., Ali, B., Abughaush, S., Aljundi, N., & Ahmad, A. (2024). The impact of computer assisted auditing techniques in the audit process : an assessment of performance and effort expectancy. *International Journal of Data and Network Science*, 8(2), 977-988.

59) ALLAHHAM, M., SHARABATI, A. A. A., HATAMLAH, H., AHMAD, A. Y. B., SABRA, S., & DAOUD, M. K. Big Data Analytics and AI for Green Supply Chain Integration and Sustainability in Hospitals. *Magboul, I., Jebreel, M., Dweiri, M., Qabajeh, M., Al-Shorafa, A., & Ahmad, A. (2024). Antecedents and outcomes of green information technology Adoption : Insights from an oil industry. International Journal of Data and Network Science*, 8(2), 921-934.

60) Daoud, M. K., Al-Qeed, M., Ahmad, A. Y. B., & Al-Gasawneh, J. A. (2023). Mobile Marketing : Exploring the Efficacy of User-Centric Strategies for Enhanced Consumer Engagement and Conversion Rates. *International Journal of Membrane Science and Technology*, 10(2), 1252-1262.

61) Daoud, M., Taha, S., Al-Qeed, M., Alsafadi, Y., Ahmad, A., & Allahham, M. (2024). EcoConnect : Guiding environmental awareness via digital marketing approaches. *International Journal of Data and Network Science*, 8(1), 235-242.

62) Fraihat, B. A. M., Ahmad, A. Y. B., Alaa, A. A., Alhawamdeh, A. M., Soumadi, M. M., Aln'emi, E. A. S., & Alkhawaldeh, B. Y. S. (2023). Evaluating Technology Improvement in Sustainable Development Goals by Analysing Financial Development and Energy Consumption in Jordan. *International Journal of Energy Economics and Policy*, 13(4), 348

63) Al-Dweiri, M., Ramadan, B., Rawshdeh, A., Nassoura, A., Al-Hamad, A., & Ahmad, A. (2024). The mediating role of lean operations on the relationship between supply chain integration and operational performance. *Uncertain Supply Chain Management*, 12(2), 1163-1174.

64) Lin, C., Ahmad, S. F., Ayassrah, A. Y. B. A., Irshad, M., Telba, A. A., Awwad, E. M., & Majid, M. I. (2023). Green production and green technology for sustainability: The mediating role of waste reduction and energy use. *Heliyon*, e22496.

65) K. Daoud, D. Alqudah, M. Al-Qeed, B. A. Al Qaied, and A. Y. A. B. Ahmad, "The Relationship Between Mobile Marketing and Customer Perceptions in Jordanian Commercial Banks : The Electronic Quality as A Mediator Variable", *ijmst*, vol. 10, no. 2, pp. 1360-1371, Jun. 2023

66) Mohammad Jebreel, Mohammad Alnaimat, Amjad Al-Shorafa, Majed Qabajeh, Mohammad Alqsass, & Ahmad Bani Ahmad. (2023). The Impact of Activity Ratios on Change in Earnings (Case

Study:Based on Jordanian Food Companies). *Kurdish Studies*, 11(2), 4551–4560. Retrieved from <https://kurdishstudies.net/menu-script/index.php/KS/article/view/1044>

67) Mohammad Alqsass, Munir Al-Hakim, Qais Al Kilani, Lina Warrad, Majed Qabajeh, Ahmad Y. A. Bani Ahmad, & Adnan qubbaja. (2023). The Impact of Operating Cash-Flow on Earnings Per Share (Case Study Based on Jordanian Banks). *Kurdish Studies*, 11(2), 2718–2729. Retrieved from <https://kurdishstudies.net/menu-script/index.php/KS/article/view/831>

68) Mohammad Alqsass, Munir Al-Haki, Mohammad Dweiri, Majed Qabajeh, Dmaithan almajali, Ahmad Bani Ahmad, & Adnan Qubbaja. (2023). The Impact of Current Ratio on Net Profit Margin (Case Study : Based on Jordanian Banks). *Kurdish Studies*, 11(2), 2894–2903. Retrieved from <https://kurdishstudies.net/menu-script/index.php/KS/article/view/834>

69) Mustafa, J. A., ATTA, A. A. B., AHMAD, A. Y. B., SHEHADEH, M., & Agustina, R. (2023). Spillover Effect in Islamic and Conventional Fund Family : Evidence from Emerging Countries. *WSEAS Transactions on Business and Economics*, 20, 1042-1058.

70) Mohsin, H. J., Hani, L. Y. B., Atta, A. A. B., Al-Alawnh, N. A. K., Ahmad, A. B., & Samara, H. H. (2023). THE IMPACT OF DIGITAL FINANCIAL TECHNOLOGIES ON THE DEVELOPMENT OF ENTREPRENEURSHIP : EVIDENCE FROM COMMERCIAL BANKS IN THE EMERGING MARKETS.

71) Ni, L., Ahmad, S. F., Alshammari, T. O., Liang, H., Alsanie, G., Irshad, M., ... & Ayassrah, A. Y. B. A. (2023). The role of environmental regulation and green human capital towards sustainable development : The mediating role of green innovation and industry upgradation. *Journal of Cleaner Production*, 138497.

72) Peng, Yixuan, Sayed Fayaz Ahmad, Ahmad Y. A. Bani Ahmad, Mustafa S. Al Shaikh, Mohammad Khalaf Daoud, and Fuad Mohammed Hussein Alhamdi. 2023. "Riding the Waves of Artificial Intelligence in Advancing Accounting and Its Implications for Sustainable Development Goals" *Sustainability* 15, no. 19 : 14165. <https://doi.org/10.3390/su151914165>

73) Peiran Liang, Yulu Guo, Sohaib Tahir Chaudhary, Manoj Kumar Agrawal, Sayed Fayaz Ahmad, Ahmad Yahiya Ahmad Bani Ahmad, Ahmad A. Ifseisi, Tiancheng Ji, 2024, "Sustainable development and multi-aspect analysis of a novel polygeneration system using biogas upgrading and LNG regasification processes, producing power, heating, fresh water and liquid CO₂," *Process Safety and Environmental Protection*,

74) Peiran Liang, Yulu Guo, Tirumala Uday Kumar Nutakki, Manoj Kumar Agrawal, Taseer Muhammad, Sayed Fayaz Ahmad, Ahmad Yahiya Ahmad Bani Ahmad, Muxing Qin, 2024. "Comprehensive assessment and sustainability improvement of a natural gas power plant utilizing an environmentally friendly combined cooling heating and power-desalination arrangement", *Journal of Cleaner Production*, Volume 436,,140387

75) Al-Ayyaf, Abdulrahman Ibrahim., and Al-Nsour, Iyad Abdel Fattah. (2024). Effect of innovation in communication message on financial customer relationships: New evidence from Saudi Arabia. *Journal of Asian Business Strategy, Asian Economic and Social Society*, 14(1), 61-69. <https://doi.org/10.55493/5006.v14i1.5054>

76) Al-Nsour, Iyad A. (2013). Examine the Relationship between Internal Marketing & Internal Service Quality in Saudi Public Hospitals. *Research on Humanities and Social Sciences*, 3 (19), 27-41.

77) A. Al-Nsour Iyad A, Hasnin, Eman Abdelhameed.m Almurad, Hussein Mohamad., and Allahham, Mahmoud Izzat. (2024). *Journal of Information Systems Engineering & Management*, 10 (54s), 1012-1029.

78) Al-Nsour, A. I., and Aiaf, A.A. (2024). Effect of Innovation in Communication Message on Financial Customer Relationships : New Evidence from Saudi Arabia. *Journal of Asian Business Strategy*, 14(1), 61–69. <https://doi.org/10.55493/5006.v14i1.5054>.

79) A. Al-Nsour, I, (2020). Effect of Brand Enhancement on Buying Behavior Towards the Sport Sponsorship Companies in Riyadh, KSA. *International Journal of Business, Economics and Management*, 7(2), 110-119.

80) Al-Nsour, I, (2023). The Impact of Social-media Celebrity on Buying Behavior of Retailer Customers in Riyadh, KSA. *Jordan Journal of Business Administration*, 20(1). <https://doi.org/10.35516/jjba.v19i4.1719>

81) Al-Nsour, I, A., Tarfoder, A, K., and Mhd Yusak, Nurul Aqilah. (2023). Impact of Social Media Marketing on the Buying Intention of Fashion Products. *Res Militaris*, 3 (13),617 – 632.

82) Al-Nsour, I. (2019). The Role of Sports Sponsorship in Improving Brand Equity: A Study on The Saudi Fans in Riyadh. *Science Arena Publications. International Journal of Business Management*, 4 (4), 97-113.

83) Al-Nsour, I. (2020). Effect of Brand Enhancement on Buying Behavior Towards the Sport Sponsorship Companies in Riyadh, KSA. *International Journal of Business, Economics and Management*, 7(2), 110-119.

84) Alnsour, I. (2022). The impact of the use of electronic social platforms on the pre- behavior of the Saudi buyer during the coronavirus pandemic. *Journal of Administrative and Economic Sciences*, Qassim University, 15(1), 102–132.

85) Al-Nsour, I. (2023). The Impact of Social Media Celebrity on Buying Behavior of Retailer Customers in Riyadh, KSA. *Jordan Journal of Business Administration*, 20(1). <https://doi.org/10.35516/jjba.v19i4.1719>.

86) Al-Nsour, I. (2024). Impact of Social-media Engagement and Entertainment on the Buying Intention from Online Fashion Stores in Jordan. *Jordan Journal of Business Administration*, 20(3). <https://doi.org/10.35516/jjba.v20i3.1014>.

87) Al-Nsour, I. A. (2017). WOM Effectiveness in Improving the Purchasing Behavior : Comparative Study on the Private Hospitals Inpatients in Jordan and Saudi Arabia. *Arab Economic and Business Journal*, 12(1), 13-28. <https://doi.org/10.1016/j.aebj.2017.04.003>.

88) Al-Nsour, I. A. (2022). The Effect of Sports Sponsorship Activities on the Brand Equity : A Study on Sports Clubs and Their Fans in Jordan. *Jordan Journal of Business Administration*, 18(1), 123-144.

89) Al-Nsour, I. A. (2024). Building à Model for E-Interaction Via Facebook Platform : "The IN-IMSIU Model for E-Interaction". *Journal of Management World*, 2024(5), 348-362. <https://doi.org/10.53935/jomw.v2024i4.1120>.

90) Al-Nsour, I. A. (2023). Impact of Political Marketing Mix on Voting to the Parliamentary Candidate : A Study on the Jordanian Public Trends towards the Voting of the 19th Parliament. *Jordan Journal of Business Administration*, 19(1). <https://doi.org/10.35516/jjba.v19i1.742>.

91) Al-Nsour, I. A. A. (2023). The Impact of Social-media Celebrity on Buying Behavior of Retailer Customers in Riyadh, KSA. *Jordan Journal of Business Administration*, 20(1). <https://doi.org/10.35516/jjba.v19i4.1719>.

92) A. Y. A. Bani Ahmad, Y. M. A. Tarshany, F. T. M. Ayasrah, F. S. Mohamad, S. I. A. Saany and B. Pandey, "The Role of Cybersecurity in E-Commerce to Achieve the Maqasid of Money," 2023 International Conference on Computer Science and Emerging Technologies (CSET), Bangalore, India, 2023, pp. 1-8, doi: 10.1109/CSET58993.2023.10346972.

93) Rumman, G., Alkhazali, A., Barnat, S., Alzoubi, S., AlZagheer, H., Dalbouh, M., ... & Darawsheh, S. (2024). The contemporary management accounting practices adoption in the public industry: Evidence from Jordan. *International Journal of Data and Network Science*, 8(2), 1237-1246.

94) Singh, R., Gupta, N. R., & Ahmad, A. Y. (2024). An Empirical Study on Challenges of Working From Home During COVID-19 on Work-Life Domains in the Education Sector in Bengaluru. In S. Singh, S. Rajest, S. Hadoussa, A. Obaid, & R. Regin (Eds.), *Data-Driven Intelligent Business Sustainability* (pp. 111-121). IGI Global. <https://doi.org/10.4018/979-8-3693-0049-7.ch008>

95) William, P., Ahmad, A. Y. B., Deepak, A., Gupta, R., Bajaj, K. K., & Deshmukh, R. (2024). Sustainable Implementation of Artificial Intelligence Based Decision Support System for Irrigation Projects in the Development of Rural Settlements. *International Journal of Intelligent Systems and Applications in Engineering*, 12(3s), 48-56.

96) Wang, C., Ahmad, S. F., Ayassrah, A. Y. B. A., Awwad, E. M., Irshad, M., Ali, Y. A., ... & Han, H. (2023). An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. *Heliyon*, 9(8).

97) Yahiya Ahmad Bani Ahmad (Ayassrah), Ahmad ; Ahmad Mahmoud Bani Atta, Anas ; Ali Alawawdeh, Hanan; Abdallah Aljundi, Nawaf; Morshed, Amer; and Amin Dahbour, Saleh (2023) "The Effect of System Quality and User Quality of Information Technology on Internal Audit Effectiveness in Jordan, And the Moderating Effect of Management Support," *Applied Mathematics & Information Sciences*: Vol. 17: Iss. 5, Article 12. DOI : <https://dx.doi.org/10.18576/amis/170512>

98) Zhan, Y., Ahmad, S. F., Irshad, M., Al-Razgan, M., Awwad, E. M., Ali, Y. A., & Ayassrah, A. Y. B. A. (2024). Investigating the role of Cybersecurity's perceived threats in the adoption of health information systems. *Heliyon*, 10(1).

99) Raza, A., Al Nasar, M. R., Hanandeh, E. S., Zitar, R. A., Nasereddin, A. Y., & Abualigah, L. (2023). A Novel Methodology for Human Kinematics Motion Detection Based on Smartphones Sensor Data Using

100) Wu, J., Ahmad, S. F., Ali, Y. A., Al-Razgan, M., Awwad, E. M., & Ayassrah, A. Y. B. A. (2024). Investigating the role of green behavior and perceived benefits in shaping green car buying behavior with environmental awareness as a moderator. *Heliyon*, 10(9).

101) Yahiya, A., & Ahmad, B. (2024). Automated debt recovery systems: Harnessing AI for enhanced performance. *Journal of Infrastructure, Policy and Development*, 8(7), 4893.

102) Al-Waely, D., Fraihat, B. A. M., Al Hawamdeh, H., Al-Taee, H., & Al-Kadhimi, A. M. M. N. (2021). Competitive Intelligence Dimensions as à Tool for Reducing the Business Environment Gaps : An Empirical Study on the Travel Agencies in Jordan. *Journal of Hunan University Natural Sciences*, 48(11).

103) Zhao, T., Ahmad, S. F., Agrawal, M. K., Ahmad, A. Y. A. B., Ghfar, A. A., Valsalan, P., ... & Gao, X. (2024). Design and thermo-enviro-economic analyses of a novel thermal design process for a CCHP-desalination application using LNG regasification integrated with a gas turbine power plant. *Energy*, 295, 131003.

104) Bertello, A., De Bernardi, P., & Ricciardi, F. (2024). Open innovation : Status quo and quo vadis— An analysis of a research field. *Review of Managerial Science*, 18(2), 633–683.

105) Chadee, A., et al. (2025). Sustainable use of electric arc furnace slag as à fine aggregate replacement for concrete. *Journal of Sustainable Research*, 7(1), e250012.

106) Chu, A. C., et al. (2024). Dynamic effects of tourism shocks on innovation in an open-economy Schumpeterian growth model. *Economic Modelling*, 131, 106619.

- 107) Cozzi, M. (2023). Public debt and welfare in a quantitative Schumpeterian growth model with incomplete markets. *Journal of Macroeconomics*, 77, 103539.
- 108) Garud, R., Gehman, J., & Giuliani, A. P. (2014). Contextualizing entrepreneurial innovation : A narrative perspective. *Research Policy*, 43(7), 1177–1188.
- 109) Jafari-Sadeghi, V., et al. (2021). Digital transformation, technology entrepreneurship, and market expansion : The role of technology readiness, exploration, and exploitation. *Journal of Business Research*, 124, 100–111.
- 110) Kusnadi, A., et al. (2023). Designing halal product traceability systems using UML and integration of blockchain with ERP. *Register: Jurnal Ilmiah Teknologi Sistem Informasi*, 9(1), 29–41.
- 111) Li, L., et al. (2017). Digital transformation by SME entrepreneurs : A capability perspective. *Information Systems Journal*, 28(6), 1129–1157.
- 112) Masucci, M., Brusoni, S., & Cennamo, C. (2020). Removing bottlenecks in business ecosystems: The strategic role of outbound open innovation. *Research Policy*, 49(1), 103823.
- 113) Osorno-Hinojosa, R., Koria, M., & del Carmen-Ramírez-Vázquez, D. (2022). Open innovation with value co-creation from university–industry collaboration. *Journal of Open Innovation : Technology, Market, and Complexity*, 8(1), 32.
- 114) Singh, S. (2022). The COVID-19 pandemic and the formal sector crisis in IT and ITeS. *Economic & Political Weekly*, 57(14), 43.
- 115) Song, Z., et al. (2024). Do Fintech algorithms reduce gender inequality in bank loans ? A quantitative study from the USA. *Journal of Applied Economics*, 27(1), 2324247.
- 116) Vaismoradi, M., Turunen, H., & Bondas, T. (2013). Content analysis and thematic analysis: Implications for conducting a qualitative descriptive study. *Nursing & Health Sciences*, 15(3), 398–405.
- 117) Venturini, F. (2012). Looking into the black box of Schumpeterian growth theories : An empirical assessment of R&D races. *European Economic Review*, 56(8), 1530–1545.
- 118) Zhang, W., et al. (2024). Does digital transformation empower green innovation ? Evidence from listed companies in heavily polluting industries in China. *Finance Research Letters*, 66, 105685.
- 119) Zhao, X., et al. (2024). The impact of digital transformation on firm performance. *Industrial Management & Data Systems*, 124(8), 2567–2587.