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Abstract 

In 1971, Čirić introduced the concept of nearly topological spaces, which minimizes topological constraints 
while keeping key properties, this study examines this generality. We examine why poorer nearly 
topological spaces affect continuity, convergence, compactness, and connectedness, we want to develop 
new mathematical frameworks for functional analysis, approximation theory, and fixed-point theory by 
exploring how axiom and open set definition modifications impact these structures, we found that weaker 
structures may broaden topological applications beyond mathematics, we also examine how weaker forms 
impact mappings and continuous transformations. New tools and approaches for interdisciplinary 
mathematics and related fields are the goal of this program, this study proves that continuous mappings to 
other spaces need topological space regularity and normalcy, it addresses how virtually topological spaces 
enhance classical topology and affect dynamical systems, algebraic topology, and functional analysis, 
studies on these areas enhance topology and related fields, we focus on the effects of weak topological 
forms in nearly topological spaces, particularly the function \( f \) and its importance in compact regular 
spaces, this study details reduced regularity and normalcy to understand their relations in essentially 
topological spaces, the findings enhance topological categorization, provide the framework for future 
research, and influence mathematical modelling and theoretical computer science by establishing structural 
stability under continuous mappings, notable contributions, virtual topological space theory advances, 
understanding the complex relationships between compactness, regularity, and normalcy. 

Keywords: Topological Spaces, Weaker Regular Forms, Weaker Natural Forms, Continuous Mappings, 
Topological Properties. 

 
1. INTRODUCTION AND BACKGROUND 

Topology studies spatial features conserved following continuous transformations to 
explain continuity, convergence, compactness, and connectedness. Several domains 
have benefitted from classical topological space analysis, recent research has studied 
weaker topological space definitions to comprehend mathematical structures and 
applications, and this work maps weaker nearly topological spaces. We study these 
weaker structures' characteristics, topological links, and applications, Čirić presented the 
"nearly topological space" notion in 1971, improving on traditional topology, almost 
topological spaces reduce topology restrictions to define open sets more freely while 
keeping important properties, this generalization helps functional analysis, approximation 
theory, and fixed-point theory [1], this study examines weaker nearly topological spaces 
to better understand mappings and the space. Changing essentially topological space 
assumptions or limiting open sets and mappings may weaken structures, these 
modifications widen topological applications and provide new possibilities, we start with 
a comprehensive examination of nearly topological space rules and features. We 
emphasize that nearly topological spaces have fewer open sets and continuity constraints 
than classical ones. It prepares us for lesser forms, next, we examine weaker nearly 
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topological spaces, we examine how axiom changes or limits influence weaker structures, 
we want to thoroughly study variations to identify new mathematical structures and their 
impacts, the study studies translations over smaller nearly topological domains, topology 
depends on mappings, therefore studying them in weaker structures may provide new 
insights and applications, we examine how modifications affect continuity definition and 
convergence behavior in weaker spaces, this study links convergence to reduced 
structural continuity, we examine how less nearly topological spaces affect compactness, 
connectedness, and separation, we study how applying these ideas to weaker structures 
affects them, this study shows how weaker structures work and their promise in many 
mathematical domains, this study may affect math fields, the mapping extends virtually 
topological spaces, allowing us to apply these notions to analysis, algebraic topology, 
mathematical physics, and more, this work may provide new mathematical tools and 
methodologies for numerous fields and increase research and application opportunities., 
to enhance topology, the article finishes by examining weaker forms of essentially 
topological spaces under mapping, we aim to study these structures to understand about 
continuous transformations and mappings' space interactions, weaker structures may 
disclose new mathematical frameworks and applications, expanding topology and 
promoting multidisciplinary collaboration, topology is mathematics' most creative field, 
comparable points apply to the group, weak topology is crucial for basic topological 
spaces over topological vector spaces or linear operator spaces like Hilbert space 
because of its mathematical importance, similar to a conventional vector space's basic 
structure, it relates to a topological vector space's continuous duality, weak topology 
allows researchers to identify portions of a weakly closed space closed (or compressed), 
functions that are constant about the weak topology called weakly continuous, let us 
ignore the broad issue and focus on new topology-designated properties, weak structures 
under f function mapping, the function with continuous inversion, the new continuous 
mapping concept, is invariant in all new topological spaces. In general topology, we 
approach continuous weak topology. 

Many scientists have built continuous topological space forms using f, they made relevant 
generalizations, the functions they perform determined their topological families and 
fundamental descriptions, and later thoughts and concepts developed in this field. Some 
of the following scholars have extensively studied these families and their effects on weak 
topological forms under f functions, many functional space topologies are becoming 
critical, where each structure in space X for all functions put on space H in another space 

V relies on some idea of functions "nearly" such that H ∈ X and V ∈ Y. Every topological 
family in an "almost" topological space has weak topology features, the function f expands 
"nearly topological space in functions." to give V a weak topology. 
 
2. RESEARCH OBJECTIVES, SIGNIFICANCE, PROBLEMS, AND QUESTIONS 

Certain topological space articles provide facts, ideas, generalizations, and definitions. 
Because it affects the semi-weak topological universe, we will study the f function in 
Compact Regular Space, Completely Compact Regular Space, Normal Regular Space, 
Normal Compact Regular Space, Continuous Compact Regular Space, and Mildly 
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Normal Compact Regular, this study introduces and studies topological spaces, which 
generalize topological groups, academics and specialists claim these places have 
continuous mappings, this paper examines invariance in most topological spaces under 
f. Using f, this approach describes virtually topological spaces, topological spaces' 
structure and behavior under continuous mappings depend on regularity and normalcy. 
Even after significant investigation, tiny modifications of these features in virtual 
topological spaces remain unknown and uncategorized. Continuous mappings affect 
compactness and regularity in nearly topological spaces; thus, we must concentrate on 
them. 

The questions addressed by our study: 

1)  How can a compact subset produce a space approximately compact regular? 

2)  Explain nearly compact regular regions. 

3)  What conditions make an extremely compact regular space virtually continuous 
with continuous mapping? 

4)  Can we identify normal and nearly normal compact regular spaces under subsets 
and coverings? 

5)  What further features make a nearly regular space relatively typical compact 
regular? 

Define and analyze these lower forms of regular spaces to understand nearly topological 
spaces' structures and behavior under continuous mappings, this effort will classify and 
characterize these spaces to improve topology and applications, we consider both weak 
topologies while transferring the continuous function f to various topologies, show these 
spaces share continuous function f mapping properties, the thesis, "On Some Weaker 
Regular and Normal Forms of Almost Topological Space Under the Continuous Mapping," 
is important in topology, this study's main contributions and relevance: 

Nearly Topological Space Advancement: This study defines and explores nearly compact 
regular, almost entirely compact regular, and almost continuous compact regular spaces, 
advancing their theory and providing new insights. The findings show complex 
relationships between regularity, compactness, and normalcy in virtually topological 
spaces. Understanding these linkages categorizes topological spaces and creates 
inheritance and expression criteria, the basis for Future Research: Results enable 
research of almost compact regular spaces under alternative continuous mappings and 
generalizations of almost entirely compact regular spaces. Topological space analysis 
may reveal new features or subclasses, mathematics, and Theoretical Applications: This 
study defines compactness and normality for nearly regular spaces, affecting 
mathematical modeling and theoretical computer science, these fields may rely on these 
spaces' structural stability and resilience under continuous mappings, topological Space 
Theory Contribution: This work discovers topological space hierarchies to the better 
categorization of regular spaces, particularly normal compact regular spaces, and slightly 
normal compact regular spaces, more Continuous Mapping Knowledge: This study 
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explores virtual topological space regularity and normality using continuous mappings. 
Continuous mappings to other topological spaces emphasize their relevance and 
potential applications in dynamical systems, algebraic topology, and functional analysis. 
This study presents virtual topological spaces and continuous mappings, advancing 
topology and preparing topological space and application research. 
 
3. TOPOLOGICAL SPACES, TOPOLOGICAL MAPPING SPACE, COMPACT SPACE, 

AND NORMAL SPACE 

This paper will explore weak topological spaces under the continuous function of mapping 
literature. Start with fundamental observations and suggestions. Show these sites. We 
map all weak topological spaces under the continuous function f and examine their 
features. Few essential discoveries and ideas explain everything. We analyze outcomes 
using continuous function graphs. We study all weak topological spaces' features under 
function assignment f. 

Topological maps are distance-function graphs. We use the typical topological map to 
tackle similar space problems. 

1924 says every separable space contains open-closed subspaces, this trait is adequate 
for a measured ordinary space, thus, we can only separate the measure of an ordinary 
space if we can transfer it.  

In 1934, J. Leray and J. Schauder defined the degree of mapping of entirely continuous 
motions in Banach space theory [2]. Schauder proposed a field invariance hypothesis for 
weakly compressed Banach spaces with a single fully continuous motion [31, 32]. 

This research exclusively investigates continuous mappings. Many mappings are 
"pleasant" from various angles: Classify mappings f:X → Y using the properties of single 

point counter-images, f−1y, y ∈ Y. 

A mapping is metrisable if all f−1y spaces are metrisable. Compact metrizable mappings, 
f−1yare compacta, are examples. 

A compact mapping exists if all f−1y are compact. A closed, compact mapping is great. 
An n-compact mapping has compact counter-image bounds, f−1y. Counter-images of S-
mappings, f−1y, are spaces with countable bases, making them fascinating. 

A mapping f:X → Y is 𝑚-mapping if every point y ∈ Y has a neighborhood y with f−1y in 
𝑚 This idea underpins modern dimension theory [30]. 

A mapping may have additional features, such as a closed continuous f:X → Y for 
compact X and Hausdorff Y, theorems of Z. Frolik are essential in this field: 

1.  A perfectly regular space X is paracompact and complete (in Cech's sense) if and 
only if it maps perfectly onto a whole metric space. The second Z. Frolik theorem is 
typeA. 

2. Close f:X → Y, complete metric on X. Only Cech's whole space Y is metric [30], the 
Heine-Borel Theorem's closed and bounded interval enhances compactness [7]. 
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Definition 2.1: A compact topological space X has a finite subcover for every open cover. 
If K is a compact subset of X, its subspace topology is compact. 

A subset K of X is compact if any open subset covering it has a finite subcover under the 
subspace topology. 

Compact topological spaces under continuous mappings have compact images, a 
carryover from metric space. Compactness and sequential compactness are only 
equivalent in topological spaces with added structure, topologically, total boundedness 
and other compact metric space properties are not comparable [10]. 

Sets with finite intersections have nonempty intersections in every finite subcollection. 
Due to De Morgan's Identities, a subset of a topological space X is closed if and only if its 
counterpart in X is open [10]. 

Disjoint closed sets A and B in Hausdorff spaces result in open sets U and V with A ⊂ U 
and B ⊂ V. In conclusion, disjoint closed sets have open neighborhoods. Normal 
Hausdorff spaces have this. We include the Hausdorff condition in the definition of a 
normal space to close points, thus, open neighborhoods are discontinuous at different 

places. Disjoint subsets in R, such {𝟎} and (𝟎, 𝟏), may not have open neighborhoods, 
requiring closed A and B [60]. 

For example, the open sets of X are {𝒂, 𝒃, 𝒄, 𝒅, 𝒆}, {𝒂, 𝒃, 𝒄}, and {𝒃, 𝒄, 𝒅}, these sets 
create a topology on X that meets axiom (T0) but not (T1). X's closed sets are ∅, {𝒆}, {𝒅, 
𝒆}, {𝒂}, {𝒂, 𝒊, 𝒆}, {𝒂, 𝒄}, {𝒂, 𝒄, 𝒆}, {𝒂, 𝒃, 𝒄 Consider A and B disjoint closed, proper subsets 
of X. One of 𝑨 and B must include 𝒂 and the other 𝒆 as the two closed sets lacking 𝒂 are 

{𝒅, 𝒆} and {𝒆}. A is {𝒂, 𝒃, 𝒄}, {𝒂, 𝒄}, or {𝒂}, whereas B is {𝒅, 𝒆} or {Any option of 𝑶𝑨 = {𝒂, 
𝒃, 𝒄} and 𝑶𝑩 = {𝒅, 𝒆} meets axi X is not a (T3) space since it is the only open set that 
includes the closed set {𝒂, 𝒅, 𝒆}, therefore, (T0) and (T4) do not imply (T3) [34]. 
 
4. REGULAR SPACE AND COMPLETELY NORMAL SPACE 

For any closed set A and point 𝒃 ∉ A, a topological space X is a (T3) space if it possesses 
disjoint open sets 𝑶𝑨 and 𝑶𝒃 such that A ⊆ 𝑶𝑨 and b ⊆ Two simple examples prove 

axiom (T3) is independent on T0, T1, and T2: Given X = {𝒂, 𝒃, 𝒄}, its open sets are ∅, {𝒂}, 
{𝒃, 𝒄}, and {𝒂, 𝒃, 𝒄 These are X's only closed sets. X meets axiom (T3), but axiom (T0) 
fails because open sets cannot differentiate 𝒃 and 𝒄, thus, axiom (T3) does not imply T0 
[34]. 

We can easily prove that each subspace Y of a (Ti) space X with 𝒊=𝟎, 𝟐, or 𝟑 is likewise 
a Ti space. All Hausdorff and regular topological space subspaces are regular. Different 
for (T4) and normal spaces: Some normal topological space subspaces violate the (T4) 

axiom. Let X = Y 𝖴 ∞, where ∞ is not in Y. Y consists of pairwise ordered real numbers 
(𝒙𝟏, 𝒙𝟐) satisfying 𝒙𝟐 ≥ 𝟎. We provide X topology. Please clarify whether ∞ ∈ 𝟎 and if 𝟎 
− {𝒂 is open. An open set (𝟎) has all pairings except a restricted number (𝒙𝟏, 𝟎). If ∞ ∉ 𝟎, 
𝟎 is open if it ⊆ Y and is open in the same sense as, this topology makes X a Hausdorff 
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space and valid axiom (T4), the subspace Y has the same topology, hence it is not normal 
[34]. 

Topological spaces with all subspaces (T4) are interesting. Urysohn first examined them 
and demonstrated that the (T5) axiom of separation characterizes them: A pair of 

separated sets A and B makes X a (T5) space, there exist disjoint open sets 𝑶𝑨 and 𝑶𝑩 
with A and B ⊂ them [34], the T4 axiom (normalcy axiom) is essential to understanding 
topological spaces' structure and properties. If two disjoint closed subsets have disjointed 
open sets that include them, Schauder (1929) defines a topological space as T4. Division 
and management of subsets without overlap is possible since the space is separable. 
Schauder found that every subspace of T2 and T3 had Hausdorff and regular properties, 
but not T4. Schauder (1929) proved normal topologies may have non-T4 subspaces, this 
finding reveals how separation axiom levels affect subspaces in subtle ways. Schauder 
offered the example of a normal (T4) topological space X with a non-T4 subspace Y, 
though topological principles should preserve normality, X has this peculiarity. Such 
examples show the need for careful attention while dealing with T4 space subspaces, 
which may vary from the main space. Schauder found the T5axiom by researching 
separation axiom correlations. Schauder defined a T5 space as one where a disjoint open 
set may include any pair of separated sets (A and B). Since this axiom implies T4, all T5 
spaces are T4. Not all T4 spaces are T5, indicating a hierarchical separation axiom 
structure that extends topological space categorization [34]. 

Finally, Schauder's 1929 functional space area invariance work highlighted T4 spaces 
and subspaces. His work on T4 features in subspaces and the T5 axiom advanced 
topological separation axioms and paved the way for future research. A (T1) + (T5) space 
is normal and Hausdorff since (T5) implies (T4), topological spaces with (T1) and (T5) 
axioms are normal [34]. 
 
5. COMPLETELY REGULAR SPACES, WEAK TOPOLOGICAL SPACES, AND 

ALMOST TOPOLOGICAL SPACES 

In his topology metric research, Urysohn created the axiom (T). Tychonoff recast it and 
stressed its usefulness for compactifications. Axiom (T) became relevant when Weil 
proved that a topological space is uniformizable if and only if it holds [34]. 

A fully regular topological space X is defined by continuous f ∶ X → [𝟎; 𝟏] with f(𝒙) = 𝟎 and 
f (F) = {𝟏}, where F is a nonempty closed set and 𝒙 ∈ X Not all regular spaces are 
Hausdorff, the trivial topology, with just and X as closed sets, is vacuously totally regular 
but not Hausdorff if X has more than one point. Tychonoff spaces are Hausdorff and fully 
regular [35]. 

Topological set theory employs essentially to signify all but a few elements in infinite 
groups. 

Singal and Arya recommended almost regular spacing in 1969. Read publications [6, 19] 
for context, the topology of topological groups enables continuous operations and 

inversion mapping (𝒙 → 𝒙−𝟏). Many researchers and mathematicians have been 
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interested in this idea since its debut. Mathematician contributions to topology are many. 
A.D. Alexandroff, N. Bourbaki, M.I. Graev, S. Kakutani, E. van Kampen, A.N. Kolmogorov, 
A.A. Markov, Pontryagin, and others gave early topological space theory contributions 
A.V. Arhangel'skii, M.M. Choban, W.W. Comfort, D. Dikranjan, E. van Douwen, V.I. 
Malykhin, J. van Mill, B.A. Pasynkov, D. Shakhmatov, M. Tkachenko contributed widely 
to Recent math literature that offers similar topological group notions and generalizations. 
S-topological groups [8, 10], semi-topological [4, 5, 33]. S-, quasi-S-, irresolute, and para-
topological groups are well-known. 

In 1970, N. Levine [16] introduced generalized closed sets in a topological space to 
expand the family of closed sets. Since generalized closed sets are natural 
generalizations of closed sets, many mathematicians have investigated them (see [16, 
17, 18]), the separation axiom is a classic issue in general topology and many other fields. 
Different mathematicians have studied separation axioms in literature, the 1973 Singal et 
al. proposal included very regular, virtually normal, and somewhat normal areas. Ekici, 
Malghan, Navalagi, Noiri, and Park [22, 23, 24, 25, 26, 27] researched weaker separation 
axioms, whereas [28] studied continuity, this work aims to unify spaces using Á. Császár's 
generalized topology concept. 

Many papers have addressed these topics during the previous 70 years. Ferri, 
Hernández, and Wu [29] developed a Baire metrizable group topology with reduced left 
and right translation requirements. 

Some academics called Frolík's poor continuity "almost continuity" (see definition below), 
the second issue, topological games, influences topological dynamics and Banach space 
theory [20, 22]. Arhangel'skii and Reznichenko [3] investigated whether para-topological 
groups are topological, these studies include more continuous functions [3]. No surprise, 
that poor continuity plays a role. It began in early separate vs. cooperative continuity 
works [27,28]. All of these factors drive us to explore poor continuity in group activities. 

In [36], scientists developed new notions in practically weak topological spaces that 
allowed for almost compact space characterization and filter convergence-based product 
theorems. A is nearly compact if each open cover has a restricted subfamily of closures 
(or closure interiors). 

In 1968, Freiwald [53] introduced almost continuous functions to weak topological groups. 
Recently. Mashhour et al. [38] examined a-continuous functions. Hildebrand and Gene 
Crossley explored these functions [39]. According to Maheshwari et al. [41], functions 
were hardly continuous. Levire proposed weakly continuous topological functions in [42]. 
Husain discussed nearly continuous functions [43]. Mashhour et al. call essentially 
continuity pre-continuity [44]. Jankovic [45] presented nearly weakly continuous functions 
recently. Independent continuity and weak continuity indicate nearly terrible continuity. 

Later characterizations of basically weakly continuous functions enhanced Mashhour et 
al. [44]'s results, including specific constraints for almost continuous work. using "almost 
weakly continuous" instead of "very continuous" in several [44] and [46] conclusions. 
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6. PRELIMINARIES AND THEORY OF SETS 

Our weak topological space literature reviews will follow function f. To demonstrate that 
function f provides the following characteristics for all weak topological spaces: 
Continuous Compact Regular Space, Mildly Normal Compact Regular Space, and 
Normal Regular Space, the spaces are topological. 

Sets and Elements [47]: Brain activity depends on grouping. Mental gathering, not 
physical. Forming and naming a group allows it to discuss and join others. A complex 
collection of ideas organizes and manipulates math groups. Naïve set theory is a 
language, not a theory. 

We write 𝒙 ∈ A to imply that A contains 𝒙, the sign ∆ is a variant of the Greek letter epsilon, 
which is the first letter of the Latin word element. For more flexibility, put 𝒙 ∈ A as A∋ 𝒙, 
this notation emphasizes its similarities to inequality symbols < and >, ignoring its 

provenance. Write 𝒙 ∉ A or A∌ 𝒙 to signify 𝒙 is not in A. 

Membership In naive set theory, a set is any collection of mathematical objects, their 
constituents. Uppercase letters (e.g., A or B) indicate sets, whereas lowercase letters 

(e.g., 𝒙 or 𝒚) represent things. If A is a set, write "is an element of A" for 𝒙. If 𝒙 is not in A, 
write 𝒙 ∉ A, the "∈" symbol signifies collection membership [48]. 

Equality of Sets [47]: Elements define sets, the set has just its parts. Most obviously, two 
sets are equal if and only if they share components. The set is pejorative when used here. 
Calling something a set, even mistakenly, implies disorganization. Assuming lines are 
points, two lines coincide if and only if they share points. We will handle distance, order, 
and other relations between points on a line separately from the idea of a line. Sets make 
isolating components straightforward. Lightness reduces a box to its contents. It 
represents our desire to perceive this collection as a whole, not just its components. As 
elements, sets function like atoms, forgetting their initial nature. Most current math 
literature uses set and element. Too much usage. Sometimes avoid them. The use of the 
word element instead of other appropriate terminology is harmful. Calling something an 
element implies its set. Except for nonmathematical terms like chemical elements or 
occasional exceptions from mainstream mathematical nomenclature (ancient books 
name lines, planes, and other geometric image elements). Euclid's Elements is a 
geometry classic. 

Definition 3.1 [47]: Elements must have sets. Sometimes a set is empty, but the set exists, 

this set is unique because components decide it. ∅ is the empty set. 

Definition 3.2 [49]: A finite set E is either empty or equal to {𝟏,..., 𝒏} for a normal number 
𝒏. E is countably infinite if it equals N normal numbers. A countable set is finite or infinite. 
Non-countable sets are uncountable. 

Definition 3.3 [52]: Disjoint sets (A ∩ B = ∅) have no shared objects. 

Definition 3.4 [52] calls it a "union" or "cup". 

A 𝖴 B: = {𝒙∈ (A𝖴 B) ∶ 𝒙∈A 𝒐𝒓 𝒙∈B} unites sets A and B. 
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(2) A⋃P: = {𝒙∈ (A𝖴 P) ∶ ∃ A∈P or𝒙 ∈𝑨} defines the set union. At least one A element has 
𝒙. 

See Definition 3.5 [52] for "intersection" and "cap" symbols. 

(1) The intersection of sets A and B is {𝒙 ∈ (A∩ B): 𝒙∈A and 𝒙∈B}. 

(2) A∩P = {𝒙∈ (A∩P) ∶∀A∈P or 𝒙∈A} is the intersection of a set A≠ ∅. Every element in A 
has 𝒙. 

A − B = {𝒙 ∈ A ∶ 𝒙 ∉ B} (Definition 3.6 [53]). If the set A is well-defined, we may call A − B 
as Bc, the complement of B. 

Definition 3.7 [52]: Disjoint sets have no shared elements (A ∩ B = ∅), theor 3.1 [52]. 
Commutativity, associativity, distributivity (1) Commutative and associative union and 
intersection: 

(i) A^B = B^A; (A^B) ^C = A^(B^C). 

(ii) A ∩ B = B ∩ A; (A ∩B) ∩C = A ∩ (B ∩ C). 

(2) Union and intersection distribute: 

(i) A𝖴 (B∩C) = (A∩B) ∩ (A∩C) A ∩ (B ∩ C) = A ∩ B 

Theor 3.2 [52]. De Morgan Laws 

(1) (A 𝖴 B) = (C \ A) ∩ (C \ B), (A ∩ B) = (C \ A). 𝖴 (C \ B) (2) C (A 𝖴 P) = ∩ {C \ A ∶ A ∈ 
P}, C \ ∩ P). 

Definition 3.8 [52]: A is a subset of Band if every element of A is also in B. B includes or 
supersets A. 
 
7. A TOPOLOGICAL SPACE 

Definition 3.9 [9]. The following components are consistent with X's structure if and only 
if the following axioms hold. Kindly verify the availability of X. 

The set τ includes both X and ∅. 

Here we have the second inquiry. The result of combining any two sets τ is the set τ. 

This brings us to our third inquiry, also included in τ are any two sets that contact each 
other. 

The equation 3.10 [50]: 1 states that X is a topological space and τ is an open set, while 

the basic topology is rather straightforward to grasp, X and ∅ denote the coarse topology 
on X, the broken topology of X's strong set includes all of its subsets. 

Make X nonempty, thus, τ𝒊 = {{∅}, X} and τ𝒅 = P(X) are indiscrete and discrete topologies, 

respectively. In every alternative topology on X, τ𝒊 ⊂ τ. 

Let τ𝟏 and τ𝟐 be X topologies. 𝟏 is weaker if it ⊆ τ𝟐, this means τ𝟐 is stronger than τ𝟏. 
Weak topology contains fewer open sets than strong. 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 

ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 58 Issue: 04:2025 
DOI: 10.5281/zenodo.15259864 

 

April 2025 | 232 

Make A a topological space X subset. A point 𝒙∈X is a Limit Point of A if its neighborhood 
U is either another point of A or the closure of A-{𝒙}. Refer to A–{𝒙}=A if 𝒙 ∉ A. A′ is A's 
limit points in X via derivation. 

See Definition 3.12 [54] for a topological space (X, τ). An open subset of X must be in τ. 

Lemma 3.1 [50]. U is open if and only if V𝒙 ⊆ X for every 𝒙 ∈ U. 

Definition 3.13 [54]: Let X be a topological space with topology τ and A be a non-empty 
subset, A may have several topologies without {but we want to give it a particular τ-derived 

topology, hence A is a subspace, we define X subset A in 3.14 [65]. Open set 𝑰𝒏𝒕(A) is 

defined as: 𝖴 {G ⊆ X ∶ G is open and G ⊆ A}, representing the interior of A in X, topological 
space X and A ⊆ X are defined in 3.15 [66], the closure of A is the closed set (A) = ∩ {K 
⊆ X ∶ K is closed and A⊆ K}, theor 3.3 [60], if H = G ∩ A in a subspace A of X, where G 
is o H pen in X, then H is open. 

2) H fits in A if H = K ∩ A, where K is in X. 

3) A ∩ X: 𝒄𝒍A (H). 

4) A ∩ X (H) ⊇ A. 

Suppose 𝑨 and B are subsets of X (Theorem 3.4 [60]), then,  

1) 𝒊𝒏𝒕 (A) ⊆ A. 

2) A ⊆ B implies (A) ⊆ (B). 

3) 𝒊𝒏𝒕 (X) = X. 

4) 𝒊𝒏𝒕 (𝒊𝒏𝒕 (A)) = 𝒊𝒏𝒕 (A). 

5) 𝒊𝒏𝒕 (A ∩ B) = 𝒊𝒏𝒕 (A) ∩ 𝒊𝒏𝒕 (B). 

6) 𝒊𝒏𝒕 (A) 𝖴 𝑰 𝒊𝒏𝒕 𝒏𝒕 (B) ⊆ 𝒊𝒏𝒕 (A 𝖴 B). 

7) A is open if 𝒊𝒏𝒕 (A) = A. 

Proposition 3.4 [54]: Let A be a non-empty subset of X with a certain topology. Define the 

collection of subsets of A as τ𝑨: A has a topology of τA = {A ∩ 𝒖 ∶ 𝒖 ∈ τ}. 

Definition 3.16 [54]: If τ𝟏 and τ𝟐 are topologies on X and τ𝟏 ⊆ τ𝟐, then τ𝟏 is coarser. Or, 

τ𝟐 is finer or stronger than τ𝟏. 

Definition 3.17 [54]: Two X topologies are finer if none are coarser. 

According to definition 3.18 [53], a topological property P exists when a space X has it 
and Y has it, and vice versa. 

In topological space X, closed sets are open sets' complements. 

Definition 3.20 [64]: (X, τ) is a topological space with P as an element and N as a subset. 

If P ∈ G ⊆ N, then N is a neighborhood of P. 
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X topological spaces share the same properties: 

A simple neighborhood system is the closed neighborhoods of all X points. 

(ii) Neighborhoods of 𝒙 and F do not cross for any closed subset F of X and any point 𝒙 
∉ F. 

Lemma 3.2 [57]. Let U ⊆ X be a topological space. U is open in X if and only if it has a 

neighborhood of 𝒙 for each 𝒙 ∈ U. 

According to definition 3.21 [63], the smallest closed set is the closure of subset F ⊂ X. 
Member closure Isolated points are closures without limits. 

Definition 3.22 [54]. (Inverse function) f−𝟏: Y → X is the inverse of f. 

Definition 3.23 [9]: A topological space X is 𝐓𝟏-space if it fits the following axiom:  

∈X points may be in an open set without each other; therefore, open sets G and H exist 
with ∈G, ∉ G and ∈H, ∉ H. Not all open sets G and H are disjoint, according to Definition 
3.24 [9], a topological space X is a Hausdorff or 𝐓2-space if it has disjointed open sets 
for each pair of different points (∈X), thus, open sets G and H exist with ∈G, ∈H, and G∩ 

H= ∅.  

Note that Hausdorff spaces are always 𝐓𝟏-spaces. 

According to Theorem 3.5 [60], a topological space is Hausdorff if and only if the 

intersection of all closed neighborhoods of a point 𝒂 is the set {𝒂}, theorem 3.6 [68] closes 
all Hausdorff space X finite point sets. 

In Hausdorff space, all finite subsets 𝑨 ⊂ X are closed (Theorem 3.7 [48]). 

Claim 3.1 [69]. Every subspace is Hausdorff. 

Definition 3.25 [58]: Topological space coverings are X-combining sets. Open sets open 
the covering, this collection has space-covering subsets. 

For any open covering in a compact topological space X, there is a finite subcover. Also 
known as Heine-Borel property, the Finite Intersection property of a set collection is 
present if any finite subcollection intersects nonempty, theorem 3.8 [53] applies to all 
topological spaces (X, τ). 

1) Compact X. 

2) ⋂ 𝓕 = ∅ for any closed set families 𝓕 in X with finite intersection property. 

Consider A a subset of Hausdorff space X. A's limit point is 𝒙 ∈ X if each neighborhood 
U encounters A infinitely many times. 

A with subspace topology is a Hausdorff space if A ⊂ X, under Theorem 3.10 [72]. ∏𝑖∈I 
X𝒊 is Hausdorff if {X𝒊: 𝒊 ∈ I} is a Hausdorff Family. 

Hausdorff spaces are topological spaces that fulfill axioms (𝐓𝟎) and (𝐓𝟑) (Theorem 3.11 
[60]). 
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X is topological, then these statements are equivalent: 

Disjoint the neighborhood for any two distinct X positions. (Hausdorff). 

A point of X is the lone member of its closed neighborhood, the diagonal of the product 
space X × X is closed. 

A closed diagonal of the product space Y= XI exists for any set I. 

Y is a subspace of X, Lemma 3.4 [68]. Every compact coverage of Y by open sets must 
have a finite subcollection. 

Compact sets' closed subsets are compact. 

All compact Hausdorff space subspaces are closed, theorem 3.13 [68]. 

Every compact space's closed subspace is compact Theorem 3.14 [68]. 

Disjoint open sets U and V of Hausdorff space X will include 𝒙o and Y if Y is a compact 
subspace and 𝒙o is not in Y (Lemma 3.5 [68]), theorem 3.15 [58] gives the compact unit 
interval I=[𝟎, 𝟏]. 

A regular topological space X does not contradict the following axiom: 

When F is a closed subset of X and ∈X is not in F, disjoint open sets G and H exist with 
F ⊂G and p ∈H. 

 

A topological space is normal if every subspace of X is normal [74]. A topological space 

is normal if and only if disjoint open subsets U ⊇ A and V ⊇ B exist for all subsets A and 
B in X with A ∩ B = ∅.  

Mildly normal (𝒌 − normal) topological spaces are those with two disjoint regularly closed 
subsets A and B, and two open disjoint subsets U and V such that A ⊆ U and B ⊆ V [65]. 

Definition 3.36 [76]: (X, τ) is nearly regular if it has disjoint τs (open sets U and V) such 

that A ⊂ U and 𝒙 ∈ V for each τ-Regular closed subset A of X and each point 𝒙 ∉ A 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 

ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 58 Issue: 04:2025 
DOI: 10.5281/zenodo.15259864 

 

April 2025 | 235 

Theorem 3.19 [65]: For X, they are equivalent: 

X is almost typical. 

(2) Every closed set B and regularly open set A containing B have an open set U that is 
a subset of B and U̅, theorem 3.20 [76] states that (X, τ) is virtually regular if (X, τs) is 
regular. 

According to Theorem 3.21 [76], (X, τ) is virtually regular, meaning that for each 𝒙 ∈ X 
and each regularly open neighborhood U of 𝒙, there exists a regularly open set V such 
that 𝒙 ∈ V ⊂ 𝒄𝒍 

Lemma 3.7 [76] states that if A and B are disjoint open sets in (X, τ), then τ𝑎 (A) and τ𝑎 
(B) are also disjoint open sets in (X, τs) containing them 

Definition 3.37 [65]: A topological space X is virtually normal if for every two disjoint closed 
subsets A and B, one of which is regularly closed, there exist two open disjoint subsets 

U and V such that A ⊆ U and B ⊆ V. 

An almost regular compact space is almost compact. 

Corollary 3.2 [75]: A tiny, fairly regular space is slightly normal (κ-normal). 

Compact ⇒ almost compact ⇒ almost compact Normal ⇒ almost normal ⇒ slightly normal 
 
8. A MAPPINGS FUNCTIONS 

Definition 3.38 [54]. Consider two non-empty sets (X and Y may be equal). A function or 
single-valued mapping from X to Y assigns each X element a unique Y element, the 

element 𝒚 of Y assigned to 𝒙 under the rule f is the image of 𝒙 or the value of f at 𝒙. Image 

of 𝒙: 𝒚 = f(𝒙). 

Definition 3.39 [9]: A function f: R → R is continuous at a point ∈ R if f [ Up] ⊂ Vf () for any 
open set containing f (). 

If everywhere, f is continuous.  

Venn diagrams may help visualize this idea.  

Remark 3.1 [52]. Let X, Y be sets and f: X → Y be a function. Relation definitions define 

D(f) as f's domain and R(f) as {f(𝒙) ∶𝒙 ∈ D(f)} as its range. If X ⊂Z, then D(f) ⊂ Z, where Y 
is the function's target. 

Definition 3.40 [54]. Let f: X → Y be a topological function. Let 𝒙𝟎 ∈ X. To make f 
continuous at 𝒙𝟎, there must be an open set 𝒖 in X such that 𝒙 ∈ 𝒖 ⊆ f−𝟏(V) for any open 

set V containing f(𝒙𝟎). 

Definition 3.41 [54]: A one-one or injective function f: X → Y is one-one or injective if 

distinct elements of X have distinct pictures in Y, i.e., f(𝒙𝟏) = f(𝒙𝟐) for 𝒙𝟏, 𝒙𝟐 
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A function f: X → Y is onto or surjective if its range is Y and its components are the image 
of X elements, as defined in Definition 3.42 [54], the definition of a bijective function is 
when it is both injective and onto (definition 3.43 [54]). 

Definition 3.44 [54]: Function Composition Let f:X → Y and 𝒈:Y → Z be any two functions, 
the function (𝒈𝒐f) from X to Z is defined by (𝒈𝒐f) (𝒙) = 𝒈(f(𝒙)), theorem 3.22 [55]. Let f: A 
→ B be a function. Bijectivity requires f−𝟏 to be a function from B to A. 

Definition 3.45 [55]: Functions f ∶ A →B and 𝒈 ∶ B → C have a codomain, the function 𝒈°f, 
which combines f and 𝒈, is defined as: Assuming 𝒙 ∈ A, 𝒈°f (𝒙) = 𝒈 (f (𝒙)), so, 𝒈°f maps 
A to C, resulting in A → C. 

Definition 3.46 [55]: The identity function on a set A is 𝒊A ∶A → A, where 𝒊A (𝒙) = 𝒙 for 
every 𝒙 ∈ A. 

Definition 3.47 [52]: A one-to-one map f: ℕ→A exists for infinite sets. 
 
9. A CONTINUITY AND HOMEOMORPHISM IN TOPOLOGICAL SPACES 

Topological Spaces and Functions 

Definition 3.48 [50]: 

•  X, 𝑻) and (Y, F) are topological spaces. 

•  A function f: X→ Y is open if, for any open set U ⊆ X, the image f (U) is open in Y, 
theorem 3.23 [9]: 

•  Assume (X, τ) is a topological space and F is a family of continuous functions from X 

to the topological space (X, τ 𝑎). 

•  The resulting weak topology of F is weaker than τ, theorem 3.24 [65]: 

•  If f: (X, τ) → (Y, τ′) is continuous, then f is continuous. 

•  If 𝓞 ∈ τ′ then f−𝟏(𝓞) ∈ τ (the inverse image of an open set is open). 

•  If F is closed in Y, then f−𝟏(F) is closed in X. 

•  For every A ⊂ X ∶ f [𝒄𝒍X (A)] ⊂ 𝒄𝒍Y(f[A])), theorem 3.49 [48]: 

•  f is continuous at 𝒙 if, for each neighborhood V of f(𝒙), there is a neighborhood U of 𝒙 

with f (U) ⊂ V. 

•  f: X → Y is continuous if and only if it is continuous at each 𝒙 ∈ X, theorem 3.25 [48]: 

•  If f ∶ X → Y and 𝒈 ∶ Y → Z are two continuous functions, then (𝒈𝒐f) ∶ X → Z is a 
continuous function, theorem 3.50 [54]: 

•  If A is a subset of X, its image set f(A) is a subset of Y defined by f(A) = {f(𝒙): 𝒙 ∈ A}. 

•  If B is a subset of Y, its inverse image f−𝟏(B) is the subset of X defined by f−𝟏(B), 
theorem 3.29 [62]: 
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•  The property of a space being Hausdorff is preserved by homeomorphism, theorem 
2.13 [9]: 

•  The unit interval [0,1] is non-denumerable. 

•  A set X is said to have the power of the continuum or has cardinality if it is equivalent 
to the unit interval [0,1]. 

Corollary 3.3 [59]: 

•  If f is a continuous mapping of a topological space X into a Hausdorff space Y, then 
the graph of f is closed in X × Y, theoretical Definitions of Topological Spaces 

•  Theorem 3.31: If X is compact and F is closed in X, then F is compact. 

•  According to Theorem 3.32, a compact Hausdorff space X lacks a perfect subset if f 
continuously maps Q onto it. 

•  The continuous image of a compact space is compact. 

•  Continuous f: X → Y implies compact f (X) (Theorem 3.34). 

•  Theorem 3.35: A homeomorphism exists if f: X → Y is a continuous bijection and X 
and Y are compact and Hausdorff. 

A one-to-one, onto, and continuous function from a compact space X to a Hausdorff space 
Y is a homeomorphism. 

Fully or functionally Hausdorff Spaces 

•  A topological space X is considered completely or functionally Hausdorff if a continuous 

function f ∶ X → [𝟎, 𝟏] such that f (𝒙) = 𝟎 and f (𝒚) = 𝟏. 

•  A completely regular 𝑻𝟏 space is called a Tychonoff space. 

Compact Hausdorff Spaces 

•  A compact Hausdorff space is normal. 

•  Every closed subspace of a normal space is normal. 

•  The closed continuous image of a normal space is normal. 

Urysohn’s Lemma and Tietze’s Lemma 

•  X is normal if and only if there is a continuous function f ∶ X → [𝟎, 𝟏] such that f (A) = 𝟎 
and f (B) = 𝟏. 

•  Every T4 space is Tychonoff. 

Understanding the Concept of Almost Continuous and Closed Mappings 

Definition and Definitions of Almost Continuous and Closed Mappings 

•  Definition 3.59 [51]: A function f: X → Y is almost continuous if the inverse images of 
regularly open sets of Y are open in X. 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 

ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 58 Issue: 04:2025 
DOI: 10.5281/zenodo.15259864 

 

April 2025 | 238 

•  Definition 3.60 [77]: The identity f: X → Y is approximately open if the image of every 
regularly open subset of X is an open subset of Y. 

Definition 3.61 [77]: The identity f: X → Y is approximately closed if the image of every 
regularly closed subset of X is a closed subset of Y. 

Theorems and Consequences on the Almost Continuous Match 

•  Theorem 3.11 [40]: For the identity f: X → Y, the following are equivalent: f is 
approximately continuous, the inverse image of every regular open subset of Y is a 
subset of X, and the inverse image of every regular closed subset of Y is a closed 
subset of X. 

•  Definition 3.62 [66]: The function f: X → Y is approximately continuous if for every 𝒙 ∈ 
X and for every regular open set V containing f(𝒙), there exists an open set U containing 
𝒙 such that f (U) ⊆ f. 

•  Definition 3.63 [71]: The function f: X → Y is almost continuous at 𝒙𝟎 ∈ X if and only if 
for each open V ⊂ Y containing f(𝒙𝒐), c𝒍(f−𝟏(V)) is a neighborhood of 𝒙𝟎. 

•  Definition 3.64 [71]: The function f: X → Y is almost continuous if and only if c𝒍(f−𝟏(V)) 
= f−𝟏(c𝒍 (V)) for each open subset V of Y. 

Remarks and Theorems on Almost Continuous Mappings 

•  Theorem 3.38 [71]: If f: X → Y is continuous and U is an open subset of X, then f | U is 
a. continuous. 

•  Theorem 3.39 [77]: If f is an open continuous mapping of X onto Y and if 𝒈 is a mapping 
of Y into Z, then 𝒈𝒐f is almost-continuous if f𝒐𝒈 is almost-continuous. 

•  Theorem 3.40 [77]: If there exists a neighborhood N of 𝒙 such that the restriction of f 
to N is almost continuous at 𝒙, then f is almost continuous at 𝒙. 

•  Theorem 3.41 [77]: If f is a mapping of X into Y and X = X1 U X2, where X𝟏 and X𝟐 

are closed and f\X𝟏 and f\X𝟐 are almost continuous, then f is almost continuous at 𝒙. 

•  Theorem 3.42 [77]: If f is an almost-continuous, closed mapping of regular space X 
and space Y, then Y is almost-regular. 

 
10. WEAKER REGULAR SPACE UNDER THE CONTINUOUS MAPPING 

Weak regular spaces are topological spaces with certain regular space features. In 
topology, weak regular spaces are important because they reveal the variations and limits 
of regularity and help mathematicians understand the structure and relationships between 
different types of spaces, a weak regular space under a given mapping has a weak 
topology induced by that mapping, in which the open sets are generated by the preimages 
of open sets in the target space under the mapping, this framework retains the separation 
properties of regular spaces while allowing for a weaker notion of convergence, making 
it useful for studying convergence behavior and continuity with respect to specific 
mappings, it is useful for investigating convergence and continuity in situations where the 
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original topology is too restrictive, the interaction between the regularity properties and 
the mapping's weak topology allows for a nuanced understanding of the underlying space 
and its relationship to the target space, a weakly regular space is a topological space that 

meets two conditions: for any point 𝑥 and closed set F not containing 𝑥, it exists disjoint 
open sets U and V with 𝑥 in U and F in V. For any point 𝑥 and open set U containing 𝑥, 
there exists an open set V with 𝑥 in Vand, the closure of Vis in U, like a compact space, 
an almost compact space has a limited subcover for every open cover. This feature is 
weaker than compactness, continuous functions on nearly compact regular spaces 
maintain topological structure, guaranteeing smooth transitions and consistent behavior. 

In summary, weak regular spaces provide valuable insights into the structure and 
relationships between different types of spaces, offering insights into the variations and 
limits of regularity, the theorem states that if a space is almost compact regular space in 
a topological space Y, then f(A) is almost compact regular space in Y, this is because if 
X is a compact regular space, then f(A) is almost compact in Y, this is because every 
open cover of the space has a finite subcover, which ensures that f(A) has similar 
compactness properties as X, regularity ensures that f(A) inherits some of the separation 
properties from X. It also ensures that the preimage of any open set in Y is an open set 
in X, this property guarantees that the image f(A) preserves the continuity of the mapping. 
An almost compact space possesses numerous compactness-like features. It signifies 
that f(A) meets most compactness qualities but may not meet technical constraints, 
weakly regular and nearly compact spaces are topological ideas that explain space 
features.  

Although similar, they are not the same, topology requires understanding these ideas 
because they give intriguing instances and insights into topological spaces' structure and 
behavior, the continuity of functions in these spaces preserves topological structure under 
mappings, enhancing the study of these spaces and their features, almost totally compact 
regular spaces are topological spaces with compactness and regularity, the idea of a finite 
subcover and continuous functions on such spaces allow topology to analyze well-
behaved spaces and mappings between them, in the proof, assume f: X → A is a 
continuous mapping into Y with f/F: F → f(F). By Definition 3.32 and Theorem 3.28, (A, 

τF) ≅ (f(F), τf(F)) such that τ = {F𝒊| F𝒊 ⊂ X}; F𝒊 ∈ τ ⇔ F𝒊 is closed, theorem 4.2 presents 
a new definition of an almost completely compact regular space. If X is a regular compact 
space, and f is a continuous mapping, then f(F) is almost completely compact regular 
space in Y, theorem 4.2 implies that the image of any closed set F under a continuous 
mapping f from a regular compact space X into the complement of a closed set A in a 
topological space Y will be an almost completely compact regular space in Y. 

Weak regularity and almost complete compactness are two distinct properties of 
topological spaces that are related in certain ways. A nearly fully compact regular space 
is a topological space known for its close compactness, covering everything but a finite 
subset of space, and consisting of three components: a regular space, a compact space, 
and an almost fully compact space, regular spaces satisfy certain separation axioms, 
while compact spaces ensure that every open cover has a finite subcover. Almost fully 
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compact spaces exhibit most of the properties of a compact space but may lack some 
specific aspects, usually related to the way infinite sets behave, the continuous function 
of a nearly fully compact regular space preserves the topology of the space, this concept 
combines continuity, compactness, and regularity while relaxing the requirement of 
complete continuity. This means that the initial images of open sets under continuous 
functions must be only "almost open", rather than completely open, compactness ensures 
that any open cover of a space has a finite subcover, providing a sense of boundary, and 
regularity allows points to be separated from closed sets using separate open sets, 
providing a richer framework for studying topological structures, understanding the 
properties and behavior of functions within these spaces opens this up, the book opens 
up prospects for exploring approximation theory, functional analysis, and other areas of 
mathematics, the relationship between approximately continuous compact regular 
spaces and continuous functions lies in their ability to approximate approximately 
continuous functions with continuous functions. 
 
11. WEAK NORMAL SPACE UNDER THE CONTINUOUS MAPPING 

Disconnected open sets may separate closed sets from points. A topological space is a 
"nearly fully compact regular space" if it is compact except for a finite subset. While not 
requiring total continuity, topology requires continuous functions. Compact, nearly 
continuous regular spaces are regular, continuous, and compact. Open sets under 
continuous functions should have "nearly open," not entirely open, starting pictures. In 
this form of space, compactness gives every open cover a finite subcover, giving it a 
feeling of finiteness. In topology, weak normal spaces study properties that stay intact 
after continuous transformations. Regularity allows discontinuous open sets to distinguish 
points and closed sets, making topological structure investigation more complete. 
Finiteness requires the separation of disjoint closed sets by disjoint open sets, whereas 
weak normal spaces separate closed sets and points by open sets. Dividing closed sets 
by open sets is OK as long as one open set's closure does not cross another. Weak 
normal spaces are essential in topology and related mathematics because they allow the 
study of natural spaces with partial borders, bridging the gap between natural and non-
natural spaces. In algebraic topology, functional spaces, and general topology, and by 
studying the unique properties of weak natural sp., knowing how weak naturalism 
interacts with other topological ideas like a countable contraction, which deals with certain 
covers of space, is crucial to understanding the complex structure of topological spaces 
and their behavior, weakly regular and regular spaces are important topological concepts 
that represent continuity and convergence. Regular spaces separate closed disjoint 
subsets from open disjoint sets, allowing fundamental topological constructions and 
theorems. According to the T3 axiom, disjoint open sets may divide a closed set from a 
point outside it. Regularity is weaker but more ubiquitous than normalcy. Continuous 
functions retain the topological properties of a regular space because they allow 
comparison and analysis, identify continuous mapping structures, and establish 
connections across topological spaces. Topology requires continuous functions. Regular 
spaces are topological spaces with separation features that allow disjoint open sets to 
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divide closed disjoint sets. Compactness, regularity, and normalcy form a topological 
space regular compact regular. The presence of a finite subcover for each open cover is 
a feature of Compactness, which indicates that a space is "small" in the finite sense, there 
are open, disconnected sets that separate any point from a closed set that does not 
include it, and regularity ensures, the most stringent requirement for regularity is that it 
must be possible to separate any two closed, disconnected sets by open, disconnected 
sets, in topology, a compact, semi-normal regular space is a specialized concept that 
combines regularity, nearly normality, and compactness, because of the large degree of 
structure and separation that this combination ensures, such spaces are useful in 
mathematics for constructing complex spaces and evaluating their properties, 
compactness contributes to the good character of the space and its usefulness in 
geometry and analysis by ensuring that every open cover has a finite sub-cover, by using 
disconnected open sets to separate points and closed sets, regularity makes it possible 
to examine continuity and convergence, there are open, disconnected sets that include 
any two closed, disconnected sets, according to the relaxation form of naturalness known 
as "semi-normality", compactness, regularity, and near-normality are three desirable 
properties of a topological space that are satisfied by a regular space Naturally compact, 
Close to natural compact Many branches of mathematics, such as functional analysis, 
topological algebra, and dimension theory, use regular spaces because they allow 
smooth and consistent modification of spaces over continuous functions. If X is a compact 
regular space and there are two disjoint closed subsets, one of which is regularly closed, 
then f(N) is an approximately natural compact regular space in Y, according to Theorem 
5.3. Open sets with disjoint closed subsets A and B and their closures are likewise disjoint 
making the topological space nearly natural. The theory ensures "an approximately 
natural compact regular space" for the image f(N). Regular spaces are topological spaces 
with regularity, compactness, and normalcy, but they must be finite and have a finite 
subcover for every open cover. Regularity separates points from closed sets using open 
sets, although normalcy is weaker. Continuous functions between spaces retain 
topological structure, therefore input space changes have minimal influence on output 
space. 
 
12. CONCLUSIONS AND FUTURE STUDY 

This concept provides a complete foundation for understanding compactness, regularity, 
and normalcy in roughly topological future research has great potential, including studying 
the properties of approximately compact regular spaces under different continuous 
mappings, generalizations to almost perfectly compact regular spaces, analysis of 
regularity-normality interactions in almost perfectly compact topological spaces, and the 
behavior of perfectly compact regular spaces under continuous mappings, this study aims 
to provide a comprehensive understanding of weaker regular and normal forms in 
approximately topological spaces, which improves theoretical knowledge and opens up 
new practical applications in mathematical modelling, theoretical computer science, 
dynamical systems, algebraic topology, and functional analysis, the authors think this 
integrated method will promote topological space study and discoveries, the main results 
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of this study are the definitions of approximately compact, approximately perfectly 
compact, approximately continuous, normal, and somewhat normal compact regular 
spaces, these findings help explain weaker regular and normal forms in roughly 
topological spaces and their behavior under continuous mappings, revealing the 
complicated relationship between regularity, compactness, and normalcy, this study 
presents a basic knowledge of the features and behavior of roughly topological spaces 
under continuous mappings More topological space research will open fresh discoveries 
by investigating regular and weaker normal forms, this study, “On Some Regular and 
Weakest Normal Forms of Approximately Regular Topological Spaces under Continuous 
Mapping,” provides many research avenues. These include studying approximately 
compact regular spaces under different continuous mappings, almost fully compact 
regular spaces, the interaction between regularity and normality in approximately 
topological spaces, and the specific conditions under which regular compact spaces 
behave under different continuous mappings, these studies explore theoretical and 
practical advances in dynamical systems, algebraic topology, and functional analysis, this 
work has opened several theoretical and practical options for approximately topological 
space exploration by exploring regular and least normal forms under continuous 
mappings, this study opens several opportunities for future research on approximately 
topological spaces, revealing new theoretical insights and practical applications. Studies 
of continuous layouts' regular and lesser normal forms might reveal topological spaces' 
properties. 
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