
Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 197

ASCHEDULER: ADOPTION OF QUERY PRIORITY IN QUERY

SCHEDULING FOR AVOIDING BAD QUERY MIX

M. ABDUL QADOOS BILAL
Taiyuan University of Technology, Taiyuan, 030000, China.

BAONING NIU

Taiyuan University of Technology, Taiyuan, 030000, China.

NAZIR AHMAD *

The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.

*Corresponding Author Email: nazeerrana@iub.edu.pk

Abstract

Performance of databse management systems relates to low response time with maximum throughput.
Therefore, it is necessary to adopt such scheme which can execute the workload with fewer time. Such
scheme wich can also helpful in parallel query processing or can process batch queries simultenously,
which can be used in developing the query mixes. Therefore, this research proposes a novel scheduler
named as ‘Ascheduler’. This proposed scheduler assigns the priority using modified MQI (Multiple Query
Interaction) to each query on the basis of its resource usage for the completion of its execution which is
coming for the developing the query mixes. The developed the query mixes by the proposed scheduler is
categorized into best, good, moderate and bad quer mixes. This categorization of the query mixes is on the
basis of resource utilization and their response time. It also keeps avoidance of developing bad query mixes
by using previously developed query mixes response time and resource utilization by keeping record of
priority of each query used in query mix as well as an individual query. The novel proposed scheduler
named ‘Ascheduler’ also reduces the overall execution time of workload and perforem better in the other
performace metrices like response time, categorization accuracy and interaction improvement score from
the existing schedulers like Forst Come First Serve (FCFS) and Shortest Job First (SJF).

Keywords: Multi-Tasking, Query Mix, Query Set, MPL3, Concurrent Queries, Database, Batch Queries,
Parallel Processing, Response Time, Query Scheduler.

1. INTRODUCTION

The basic feature of the computer science field is parallel processing. It allows a computer
machine to do several jobs simultaneously, and this feature is called multi-tasking. This
opens a new area of research in database management systems. Usually, a single query
executes its time slot and fetches data. It is quite demanding to develop such solutions
that can enhance the performance of a system with huge database size and meet the
high demand for data. It’s good to run more than one query simultaneously to avail multi-
tasking feature of the computer system.

The sequence of arriving of any query for both concurrent executing along with other
batch queries and its execution affects its response time [1] [2]. Response time of a query
is the usage of resources for that particular query at a specific time. The same scenario
applies to the query mix but at a high level because more than two queries run
concurrently at the same time in the query mix. Therefore, those concurrent queries need

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 198

more resources than a single query [3] [4]. We operate within the realm of a database
system handling a diverse workload of queries.

These queries are categorized as 𝑄1, 𝑄2, … , 𝑄𝑇, each uniquely characterized by its
attributes. These query types possess the flexibility to be instantiated with a range of
parameter values, generating numerous distinct query instances. Importantly, each of
these query templates is treated as an individual query type.

Parameters: Our optimization problem involves the following parameters:

 T: The set of query types, denoted as Q1, Q2 ,…, QT

 N: The total number of unique query instances resulting from instantiating query
templates with different parameter values.

 P: is indeed used in the optimization problem to model the flexibility and
customization of query templates, and its plays a vital role in determining the comp
ability of query instance with specific time slots.

Variables: We introduce binary decision variables 𝑋𝑖𝑗𝑡. Representing whether query
instance i of query type j is scheduled for execution at time slot 𝑡. These binary variables
are integral to modeling the scheduling process.

Objectives: The primary objective is to optimize query scheduling in order to minimize the
overall execution time. This can be mathematically expressed as:

Minimize: = 𝐸 = ∑𝑖, 𝑗, 𝑡𝐶(𝑖) ⋅ 𝑋𝑖𝑗𝑡

Here, E represents the overall execution time, and 𝐶(𝑖) is the execution time of query
instance i.

Constraints: To ensure a feasible solution, we have several constraints:

 Unique Assignment Constraint: Each query instance is assigned to exactly one time
slot:

∑1∑𝑡𝑋𝑖𝑗𝑡 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗.

 Compatibility Constraint: Each query instance should be compatible with the
parameter values configured for the specific time slot:

𝑋𝑖𝑗𝑡 = 0 If the parameters of query instance i are not compatible with the configuration at

time slot 𝑡.

Our optimization problem seeks to devise an optimal query execution schedule within a
database system, catering to report generation needs. By minimizing the overall
execution time while adhering to a set of constraints, we aim to enhance the operational

efficiency of the system. The binary decision variables 𝑋𝑖𝑗 play a key role in determining
the scheduling of query instances, thus achieving the desired optimization objectives.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 199

For measuring the performance of any database system, it is needed to deal with
workload management because there are several requests for execution of the database
or several queries, from which different queries are executed at different times. Many
other factors like resource allocation, resource availability, and data stored on different
geographical locations on a disk.

As with the passing of each day, the data volume of databases increases at a very high
rate. It becomes a primary reason for decreasing the performance of the database. For
any human, it is impossible to manage such large and diverse data. As mentioned earlier,
it created the need to build such databases that can handle the issue, as mentioned
earlier [1] [2].

Prediction of database queries response time plays a crucial role while managing massive
database systems, especially in the workload, which is the result of running various
queries at the same time on the request of users because it may enable Database
Administer (DBA) to know system behaviour, which helps him in coordination with system
and provides some assessment about its performance [3].

Waiting of resources for execution of concurrent queries is based on resource contention,
which depends on queuing theory. Any computational graph containing computing units
on its edges and numerical information transmitted from its directed edges after
calculation in a sequence node to node [4].

In the workload of any database, it is reported that a phenomenon of interaction exists
among the queries. It means that a query can be executed in isolation and the
combination of more than one. As far as query interaction permits for query execution in
conjunction, it also showed that their implementation might positively or negatively affect
the execution of the individual query. If execution effect positively, one query utilizes the
data in buffer pool directly without waiting, which is called by another query for execution
and time for computation on that data is saved. But if the execution effect is negative,
then one query interferes with another query execution, and both require different
resources, which may cause locking.

Literature reports an important phenomenon named interaction among the database
queries while running on the system. Therefore, it may enable the query to execute in
isolation or in combination with other queries. The query interaction becomes the cause
of positive or negative effects on those queries that are running simultaneously. The
interaction of query may direct towards the interaction of query mixes. It may be possible
that the interaction of query mixes provides interesting results.

2. RELATED WORK

The purpose of each scheduler is to automatically choose the preferences of queries in
any database system [5]. If it is needed to measure the performance of the database
system, then managing the workload of that specific database becomes essential. The
database's workload develops with the combination of several queries randomly running

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 200

and several times with each other. Other parameters like availability of resources,
resource allocation, and geographical storage location of data on disk.

The volume of data in databases has increased rapidly with each passing day. Therefore,
databases perform poorly. The fact that human beings cannot handle such vast and
diverse data creates the need to build database-based applications that address these
issues [6] [7] [8] [9] [10]. If resources are already in use, the system must wait for those
resources to avoid locking conditions. The system also must wait for the required
resources to execute the query. In order to execute the desired operation, the CPU, RAM,
cache, and I/O devices may become the subject of competition [11] [12] [13].

Query response time may also affect due to these reasons, which are query progress
imaging, query arranging, and capacity management [14].

Database query response time plays a crucial role while managing massive database
systems, especially in the workload, which may show the result of running the bulk of
queries at the same time on the request of users because it may help the database
administer (DBA) to the whole work efficiently because of coordination within the system
and increase overall performance [15] [16]. A queuing theory determines how long it takes
to execute queries based on the necessary resources [17].

A scale information system, just like a search engine, is mainly concerned with the amount
of data which they can show the less amount of time (effectiveness). Still, they don't
focus on the relevant results, which users want to get (efficiency). Users mostly analyze
the speed of data (time for showing results of any search which any user uses) received,
not the repetition (number of repetitions for acquiring desired results) in which data is
received [18].

Data is retrieved from the database system by executing query execution plans which
specify how data is accessed from the database system's source tables. The selection
of any query execution plan among several other possible plans is query optimization [19]
[20] [21].

Prediction of response time is crucial issue in several database management jobs like
scheduling of query [22] [23] [24] visualization of query progress, balancing of load [25]
[26] [27]. Formerly cardinality of query execution plans are not accurate [28] [29].

3. METHODOLOGY

This section explains the methodology of the Ascheduler. First of all chooses the queries
from which the developing of the work loadis needed, select the a database for conducting
experiment. After that different number of repetition is assigned to each query randomly
for the development of the workload, then apply the algorithm of Ascheduler with modified
MQI (Mutiple Query Interaction) for developing query mixes, the process of query mixes
will remains going on and avoidence from the bad query mixes will be managed and
improved gradually. The process of the methodology pictorially represented below.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 201

Figure 1: Working Process

3.1 Experimental Evaluation

The details of the hardware and software used in this experiment are given below.
Processor: A Dual Intel Xeon Gold 6240 CPUs, each with 20 cores and 40 threads and
clocked at 2.60 GHz is used. The primary memory is 128 GB of DDR4 RAM for operating
at 2933 MHz. A 1TB NVMe SSD is used for data storage and retrieval. A 10 Gbps
Ethernet connections is used for seamless data transfer. Modelling performance has a
variety of scenarios and features used to predict database performance. The objectives
of performance optimization are parameters tuning query scheduling, and configuration
of the system. Seeing response time as a crucial point for focusing provides efficiency in
database queries operations.

3.2 Database Workload

This research took scale factor 10 for execution of workload. It used 10 queries of TPC-
H benchmark for developing workload, for developing query mixes and for determination
of Ascheduler’s efficiency. There 125 queries are used as workload by randomly
assigning different repetition to each selected query. The DBMS is POSTGRESQL. The
POSTGRESQL configuration advisor is manipulated; the parameters of configuration are
well tuned.

3.3 Ascheduler

In the dynamic landscape of database management and query optimization, the concept
of an “Ascheduler” emerges as a potential game-changer. This scheduler holds the
promise of harnessing the power of MQI (Multiple Queue interface) to revolutionize the
way queries are sequenced and executed within a complex database infrastructure. In
the world of database management and query optimization, scheduler is introduced as a
potential game-changing concept. It aims to use MQI to improve how queries are ordered
and executed in a complex database system.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 202

3.3.1. Role of a Scheduler

A scheduler's primary role is to decide the order and priority of tasks (in this case of
queries) for processing. "Ascheduler" aims to be fair and optimize resource allocation
while ensuring that query execution remains balanced. This is different from traditional
scheduling methods that might prioritize tasks based on factors like size or urgency.

3.3.2. Role of MQI

 Multiple Queue Interface (MQI), is modified as a dynamic element in this scheduling
approach. We modify it by allowing for the management of multiple queues, each with its
own attributes and priorities. Queries can be categorized based on factors like their
complexity, importance, or resource requirements. The scheduler can then adaptively
adjust the sequence in which queries are selected based on this information. This
adaptability enables the system to respond in real-time to changing workloads and
priorities.

3.3.3. Ascheduler’s Workflow Process

The queries can be selected and load to MPL once it would complete the 3 process the
again start reverse way.

Figure 2: Simplified view of Ascheduler’s Mechanism

3.4. Algorithm Process

The process implements a scheduling algorithm, represented by the ‘Ascheduler’
function. This function takes three input parameters: ‘W’, a list of query-weight pairs; ‘M’,
which signifies the multiprogramming level; and ‘MQI’, the threshold for Multiple Query
Interaction. The algorithm aims to intelligently scheduler queries to maintain a desired
multiprogramming level while adhering to the MQI constraint:

The algorithm begins by initializing an empty list called ‘RunningMix’, which is used to
keep the track of the queries currently running in the query mix. It then evaluates wheatear
the number of queries in ‘W’ is less than multiprogramming level ‘M’. If this condition
holds, it concludes that no scheduling is necessary, and the function returns ‘None’.

In case where the number of queries exceeds or matches the multiprogramming level,
the algorithm proceeds by sorting the list ‘W’ based on the weight (wi) of each query in
descending order. This sorting prioritizes heavies’ queries.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 203

The algorithm iterates through the sorted queries in ‘W’. For each query, it checks weather
the query can be schedules without violating the MQl constrains using the
‘can_scheduler_query’ helper function. If the query can be scheduled, it returns the name
of the query, signifying that this query should be executed next.

If no queries can be scheduled based on the current query mix and the MQI constraint,
the algorithm calls the ‘identifyGoodMixes’ function to in deify potential good query mixes.
These query mixes are collection of queries that can be executed while satisfying the MQI
constraint. Subsequently, it iterates through the sorted queries again, attempting to find
a query that can be schedules within the indentified good mixes.

The ‘can_scheduler_query’ function checks whether a query can be inserted into a query
mix without violating the MQI constraint. It verifies that the query is not already present in
the query mix and that adding the query would maintain an acceptable MQI level.

Figure 3: Algorithm of Ascheduler

The ‘calculate_MQI’ function, which calculates the Multiple Query Interaction, is currently
a placeholder. It needs to be tailored to our specific context and should compute the MQI
based on a list of queries.

Similarly, the ‘identifyGoodMixes’ function is a placeholder indented to identify potential
query mixes of queries that can be executed tighter while adhering to the MQI constraint.

Finally, the code includes sample data for queries, the multiprogramming level (‘M’), and
the MQI threshold (‘MQI’). The ‘Ascheduler’ algorithm is invoked using this queries
workload to determine the query that should be scheduled next. If a query needs to be

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 204

schedules, its name is printed. If no query requires scheduling, a message indicating so
printed.

Figure 4: MQI for Good query Identification

4. RESULTS

This section describes the effectiveness of the Ascheduler. We present the comparison
of other scheduler like First Come First Serve (FCFS) and Shortest Job First (SJF) with
the Ascheduler. The Ascheduler is implemented on the POSTGRESQL and TPC-H
benchmark standard queries are used for analyzing. The following section is divided into
two parts one is experimental setup and other is Effectiveness of Ascheduler.

The evolution of the “Ascheduler” scheduling algorithms involves a comprehensive
assess meant of its performance within a computer system’s task management context.
The primary focus is on gauging its efficiency and effectiveness. This evaluation entails
establishing specific criteria for assessment, which often include response time,
turnaround time, waiting time, fairness, and resource utilization. By employing key
performance metrics such as average turnaround time, average waiting time, CPU
utilization, and throughput, the algorithms’ operational prowess can be accurately
measured. To provide a robust evaluation, comparison with established algorithms like
First-Come First-Served (FCFS), Shortest Job First (SJF) and Round Robin are essential
across different workloads. Simulated scenarios or real-world implementation are utilized
to observes the algorithm’s behavior under diverse condition, aiding in the collection of
relevant performance data.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 205

Additionally, factors like sensitivity to parameters changes, resource allocation efficiency,
adaptability to dynamic workloads, and scalability are scrutinized to ensure a
comprehensive evaluation of “Ascheduler’s” capabilities. The overarching goal is to
ascertain how effectively “Ascheduler” manages processes, allocates resource, and
adapts to varying scenarios ultimately defining its values within practical computing
environments. Changes, resource allocation efficiency, adaptability to dynamic
workloads, and scalability are scrutinized.

4.1. Categorization of Query Mixes

In our system, query mixes are meticulously categories primarily based on their instances,
a pivotal challenge dealt with by way of the scheduler to streamline efficient execution.
This categorization system is designer evaluate query mix effectiveness in phrases of
execution efficiency, main to the advent of 4 well-described classification of query mixes.

4.1.1. Best Query Mixes (30.0%)

Occupying the priority, these query mix 30.0% of our allocated resource. They have
earned this coveted repute by way of continually demonstrating super performance
characterized by using fast response time. Best Query Mixes represent the gold popular,
putting the bar for excellence in execution performance notably:

4.1.2. Good Query Mixes (forty 40%)

Directly underneath the “Best Query Mixes” in terms of response time, forty 40% of our
assists are channeled into good query mixes. While now not achieving the zenith of the
“Best” class, they boast commendable response times that make them necessary in our
good query mixes. A couple of example from this category includes:

4.1.3. Moderate Query Mixes (20.0%)

 Comprising 20.0% of our allotted assets, the “Moderate Query Mixes” exhibits moderate
response time of execution. They play a pivotal function in handling ordinary duties at a
widespread priority degree. An instance from this category:

4.1.4. Bad Query Mixes (10.0%)

Lastly, we carefully allocate 10.05 of our resources to the “Bad Query Mixes” These query
mixes contains such query mixes that showed poor performance by representing high
response time. To protect against performance degradation, they are recognized and
punctiliously avoided inside the execution queue:

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 206

Figure 5: Query Mix with Proportions

4.2. Avoidance of Bad Query Mixes

To mitigate database systems inefficiencies, the scheduler is made to actively recognize
and steer clear of “bad” query mixes. Poor query mixes frequently include queries that
impede the workload’s overall execution. The scheduler’s avoidance strategy could
consist of:

Dynamic Search prioritization: Giving queries in a poor query mix a lower priority or fewer
resources.

Isolation: Running problematic queries separately from other queries to reduce
undesirable consequence.

Resource Reallocation: Giving a terrible query mix of queries more resources to use in
order to speed up their response time. Limiting the execution of such queries from a
problematic query mix to avoid system’s overload.

Table 1: Query Mix with Time

Query Mix Category Proportion (%) Average Response Time

Best 30 2.5

Good 40 4,0

Moderate 20 6.8

Bad 10 10.2

The scheduler support a timely and effective workload management system by actively
avoiding undesirable query mixes and ensuring the availability of best, decent, and
moderate query mixes. By reducing delays and bottlenecks brought on by ineffective
query mixes, this method optimizes resource allocation and improves user’s experience.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 207

4.2.1. Query Interaction:

Query interaction exists while queries are executing in parallel. This phenomenon occurs
due to resource sharing among the queries executing simultaneously. The interaction of
queries represents influences due to existence of bonding in the parallelism. Query
interaction primarily affects on the response time of queries. Query interaction is
dedicated to elucidating intricacies of the methodology used for calculating query
interaction scores, offering a profound understanding enriched with meticulous
description. The importance of quantifying interaction between queries within query mixes
is underscored, as these interactions play a pivotal role in appropriately categorizing into
bad, good and moderate query mixes. This section outlines the quantification process,
which meticulously evaluates how individual queries interact with one another this
analysis encompasses aspects such as concurrency assessment, resource dependency
analysis and data depends evaluation. The outcome of this quantification process is the
assignment of query interaction scores, which quantatively represent the degrees of
interaction of queries within a query mix. For instance, query mix1 is assigned an
interaction score of 0.75, indicating a robust level of interaction among its queries. Query
mix2 receives a score of 0.5, denoting a moderate degree of interaction, while query
mix3's score of 0.3 suggests a relatively lower level of interaction among its queries.
These interaction scores are invaluable in guiding the scheduler's decisions regarding
resource allocation, execution order, and overall workload management strategies. By
providing a thorough understanding of the methodology behind calculating query
interaction scores and offering specific score examples equips readers with the
knowledge needed to navigate the complexities of query mix’s categorization and
optimize database system’s performance.

4.2.2. Query Interaction Quantification

The scheduler has tools for methodically evaluating how each query mix’s interaction with
other inquires. This entails assessing how queries interact in terms of execution duration,
resource usage, and performance. During query execution, the scheduler gathers
pertinent data and examines patterns of cooperation or conflict.

4.2.3. Impact on Categorization

A crucial input for the classification of query mixes is the quantification of query
interaction. The scheduler bases its evaluation of query mix’s overall effectiveness and
prospective placement within the established categories on the results from interaction
assessments.

4.2.4. Synergy and Contention Identification

The scheduler determines instances of synergy, where particular queries improve one
another's performance, and contention, where queries obstruct one another's execution,
by interaction quantification. Due to their synergistic effects, synergistic query mixes may
contribute to the "best" or "good" query mix categories. On the other hand, a query mix's
placement in the "moderate" or "bad" categories may be influenced by query pairs that

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 208

are producing de-acceleration in the execution and become cause of increase in
response time.

4.2.5. Enhanced Categorization Accuracy

The scheduler classifies query mixes with a higher degree of accuracy by taking query
interactions into account. With this method, judgments are made more thoroughly and
intelligently since it considers not just the performance of each individual query but also
the performance of that query in the query mix in conjunction of other queries.

4.2.6. Dynamic Adjustment of Categories

The scheduler can dynamically change query mix categorizations thanks to the quantified
interactions. The scheduler may hone its classification over time to more closely represent
the observed performance patterns if a query mix's interactions consistently display
synergy or contention. In conclusion, a key step in the categorization of query mixes is
the measurement of query interactions. The scheduler can effectively classify query
mixes into the "best," "good," "moderate “or” bad" categories by having a thorough grasp
of how queries interact with one another in any query mix. This improves the workload
management system's effectiveness and efficiency.

Figure 6: Query Interaction Scores

The process of quantifying query interaction and categorizing query mixes mathematically
is systematic approach that enables the scheduler to informed decision about workload
management this process involves server interconnected stage that contributes the
optimization of resource allocation and performance categorization. At the core of this
process is data collection. During the execution of query mixes, the scheduler gathers
crucial information such as the execution times and resource usage of individual queries.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 209

This raw data forms the basis for understanding how queries behave in isolation. Next,
the scheduler engages in correlation analysis. By evaluating the correlation between the
execution time and resource usage of different queries within a query mix, the scheduler
gains insights into the interdependent of these variables This correction serves as a
foundational elements for assessing the digress of interaction between queries within a
query mix. Building upon correlations, the scheduler proceeds to calculate interaction
scores. These scores encapsulate the essence of query interactions by considering the
correlation coefficient, the individual execution times of queries, and their resource usage.
The interaction score quantifies the extent to which queries collaborate or compete within
a query mix with other concurrently running queries. Leveraging the calculated interaction
scores, the scheduler then categorizes query mixes into different performance tires.

Positive and high interaction scores indicate synergistic behavior among queries,
suggesting that these query mixes could be categorized as "best" or "good." Conversely,
negative interaction scores point towards contention, possibly resulting in categorization
as "bad" or "moderate" query mixes. The process is iterative and dynamic. As the
scheduler encounters and processes more query mixes, it continuously refines its
calculations and formulas based on real-world data. This dynamic learning and adaptation
ensure that the scheduler's decision-making evolves to accurately capture the nuances
of query interactions. Importantly, interaction scores influence resource allocation
strategies. Positive interaction scores guide the scheduler to allocate more resources to
mixes with collaborative queries, harnessing their combined efficiency. Meanwhile,
negative interaction scores trigger resource adjustments to mitigate performance issues
stemming from contentions within query mixes.

The scheduler's performance evaluation is an integral part of this process. By comparing
the predicted categorizations with the actual performance outcomes, the scheduler
identifies any discrepancies and inconsistencies. This feedback loop drives further
enhancement of the mathematical models and methodologies used for quantifying query
interactions and categorizing mixes. In conclusion, the mathematical approach to
quantifying query interactions and categorizing query mixes is a data-driven and iterative
process that underpins the scheduler's ability to optimize workload management. By
considering correlations, calculating interaction scores, and adapting dynamically, the
scheduler ensures optimal resource allocation and performance categorization based on
the collaborative or competitive nature of queries within query mixes.

4.3. Effectiveness of Ascheduler

The Ascheduler is more efficient than FCFS and SJF. With the passage of time the FCFS
become poor because it can’t avoide from the bad query mixes and SJF depicted worst
scanrio overall. The figures represents the overall performance of Ascheduler, FCFS and
SJF.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 210

4.3.1. Ascheduler Vs Other Scheduling Algorithms

We used several scheduling algorithms in our experiment like Ascheduler, First Come
First Serve (FCFS) and Shortest Job First (SJF). The primary objective of this research
is to test the AScheduler. Quantification of query interaction in query mixes by using labels
provides very good results. 125 queries are selected for the workload.

Figure 7: Workload Completion Time of Three Scheduler

Table 2: Efficiency of Ascheduler algorithm with FCFS and SJF

Completion
Time

Ascheduler FCFS SJF
Ascheduler
Saved Time
(vs.FCFS)

Ascheduler
Saved Time

(vs. SJF)

Seconds 50580 54780 56520 4200 5940

Minutes 843 913 942 70 99

Hours 14.05 15.22 15.7 1.17 1.65

4.3.2. Detailed Results of the Experiments

Efficient of A scheduler presents a comparison of completion times for different
scheduling algorithms used in computer systems, alongside a mysterious "Ascheduler"
algorithm. The completion time represents the total time taken to execute a set of
processes or jobs. In this context, "FCFS" (First-Come, First-Served) and "SJF" (Shortest
Job First) are two well-known scheduling algorithms in operating systems. The table
showcases how the "Ascheduler" algorithm performed in comparison to these established
methods. The "Saved Time" columns indicate how much time "Ascheduler" saved
compared to both FCFS and SJF.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 211

Positive values in the "Saved Time" columns suggest that "Ascheduler" performed better
in terms of reducing execution time.

 "Ascheduler" completed its tasks in 50,580 seconds, while FCFS required 54,780
seconds, and SJF took a longer 56,520 seconds.

 When evaluating "Ascheduler" against FCFS, it emerged as the clear winner, saving
an impressive 4200 seconds (or approximately 70 minutes) in execution time.

 Compared to SJF, "Ascheduler" exhibited even more substantial efficiency,
reducing the execution time by a remarkable 5940 seconds (or approximately 99
minutes).

Now, looking at these time measurements from a broader perspective:

 "Ascheduler" took 843 minutes, equivalent to approximately 14.05 hours, to
complete its tasks.

 In contrast, FCFS required 913 minutes (around 115.22 hours), and SJF demanded
942 minutes (approximately 15.7 hours).

 The efficiency of "Ascheduler" becomes evident when we note that it saved 70
minutes compared to FCFS and an impressive 99 minutes in comparison to SJF.

 In terms of hours, "Ascheduler" outperformed FCFS by 1.17 hours and surpassed
SJF by a substantial 1.65 hours.

Scheduler: This column lists the names of the scheduling algorithms that were evaluated
in that experiment. The scheduler include “Ascheduler,” “FCFS” (First Come First Serve),
and “SJF” (Shortest Job First).

Response Time (ms): This is column displays the average response time in milliseconds
(ms) for each scheduler. The response time is the time taken for query mix to complete
execution. For instance, the “Ascheduler” had an average response time of 25 ms,
“FCFS” had 40 ms, and “SJF” had 38 ms,

Categorization Accuracy (%): This column presents the percentage of accuracy achieved
by each scheduler in categorizing query mixes. It indicates how accurately the scheduler
categorized the query mixes into the predefined categories(“best” “good” “moderate, “ or
“bad”) The “Ascheduler ” achieved an accuracy of 90 %, “FCFS” had 80% and “SJF” had
70%.

Interaction Score Improvements (%): This column represents the improvement in
interaction score accuracy achieved by integrating interaction scores into the
categorization process. Interaction scores quantify the level of interaction between
queries within a mix The “Proposed Scheduler” showed an improvement of 15%, “FCFS”
had no improvement (0%), and “SJF” had an improvement of 10%

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 212

These results provide insights into performance and accuracy of different scheduling
algorithms based on response time, categoirzation accuracy, and the impact of
considering interaction scores. The values in the table allow you to compare the
performance of the scheduler and draw conclusion about here effectiveness in improving
response time and accuracy in categorizing query mixes.

Table 3: Effectiveness of Ascheduler algorithm with FCFS and SJF

Scheduler
Response Time

(ms)
Categorization
Accuracy (%)

Interaction
Improvement Sore (%)

SJF 35 70 10

FCFS 30 80 0

Ascheduler 25 90 15

A comparative assessment of three scheduling algorithms: SJF (Shortest Job First),
FCFS (First-Come, First-Served), and "Ascheduler." It evaluates these algorithms across
three key performance metrics: Response Time (measured in milliseconds),
Categorization Accuracy (expressed in percentages), and Interaction Score Improvement
(also in percentage terms). Notably, "Ascheduler" exhibits the shortest response time at
25 ms, indicating its efficiency in promptly addressing tasks.

Ascheduler also leads in categorization accuracy with 90%, showcasing its precision in
prioritizing tasks. In terms of enhancing the overall user interaction experience,
Ascheduler also excels with a 15% improvement.

These metrics provide insights for selecting the most suitable scheduling algorithm, with
"Ascheduler" excelling in response time, categorization accuracy, and leading in
interaction score improvement. This shows that Ascheduler perform well in improvement
of response time of query mixes by using priority ranking on the upcoming queries for the
development of query mixes. It also gives the strategy for avoiding the bad query mixes
and attain the good, best and moderate query mixes.

5. CONCLUSION

This paper shows the overall efficiency of the newly proposed query scheduler named
‘Ascheduler’. This scheduler also categorized the query mixes into best, good, moderate
and bad query mixes. It kept giving the avoidance from the developing the bad query
mixes with the pessage of time by using previously assigning the priority to the queries.
It also executed the workload in fewer time from the already exist scheduler like FCFS
and SJF. It showed good results from other schedulers in other performance metices like
response time, categorization accuracy and interaction improvement score.

Conflict of Interest

Authors declare no confflict of interest.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 213

References

1) Mateen, B. Raza, M. Sher, M. M. Awais and N. Mustapha, "Workload management: a technology
perspective with respect to self-* characteristics," Artificial Intelligence Review, vol. 41, pp. 463-489,
2014.

2) Raza, A. Mateen, A. M. M. and M. Sher, "Survey on autonomic workload management: algorithms,
techniques and models," J. Compute, vol. 3, no. 7, pp. 29-38, 2011.

3) F. Lan, J. Zhang and B. Niu, "Predicting Response Time of Concurrent Queries with Similarity Models,"
Big Data Research, vol. 25, pp. 1-13, 2021.

4) J. Zhang and B. Niu, "A clustering-based sampling method for building query response time models,"
Computer Systems Science & Engineering, vol. 32, no. 4, pp. 319-331, 2017.

5) M. Amjad and J. Zhang, "Gscheduler: A Query Scheduler Based on Query Interactions," in In Web
Information Systems and Applications (WISA): 15th International Conference, WISA 2018, Taiyuan,
China, September 14–15, 2018, 2018.

6) S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, A. Labrindis and K. Pruhs, "Adaptive Scheduling of Web
Transactions," in In 2009 IEEE 25th International Conference on Data Engineering, 2009.

A. C. Konig, B. Ding, S. Chaudhuri and V. Narasayya, "A Statistical Approach towards Robust Progress
Estimation," in arXiv preprint arXiv: 1201.0234, 2011.

7) J. Duggan, U. Cetintemel, O. Papaemmanouil and E. Upfal, "Performance prediction for concurrent
database workloads," in In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, 2011.

8) M. B. Sheikh, U. F. Minhas, O. Z. Khan, A. P. P. Aboulnaga and D. J. Taylor, "A bayesian approach to
online performance modeling for database appliances using gaussian models," in In Proceedings of
the 8th ACM international conference on Autonomic computing, 2011.

9) M. Ahmad, D. Songyun, A. Aboulnaga and S. Babu, "Predictiong completion times of batch query
workloads using interaction aware models and simulation," in In Proceedings of the 14th International
conference on Extending Database Tchnology, 2011.

10) M. Ahmad, A. Aboulnaga, S. Babu and K. Munagala, "Modeling and exploiting query interactions in
database systems," in In Proceedings of the 17th ACM conference on Information and knowledge
management, 2008.

11) M. A. Q. Bilal, B. Niu, M.-u.-. Rehman, N. Ahmed, A. Hussain, B. Ahmed, M. Amjad and S. Kanwal,
"Creation and Comparison of Query Mix," International Journal of Computer Applications, vol. 177, pp.
33-36, 2019.

12) A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan and D. Patterson, "Predicting Multiple
Metrics for Queries: Better Decisions Enabled by Machine Learning," in In 2009 IEEE 25th
International Conference on Data Engineering, 2009.

13) M. Akdere, U. Cetintemel, M. Riondato, E. Upfal and S. B. Zdonik, "Learning-based Query
Performance Modeling and Prediction," in In 2012 IEEE 28th International Conference on Data
Engineering, 2012.

14) S. Tozer, A. Aboulnaga and T. Brecht, "Q-Cop: Avoiding bad query mixes to minimize client timeouts
under heavy loads," in In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010),
2010.

15) J. Duggan, O. Papaemmanouil, U. Cetintemel and E. U. Upfal, "Contender: A Resource Modeling
Approach for," EDBT, pp. 109-120, 2014.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223943

Nov 2023 | 214

16) Macdonald, N. Tonellotto and I. Ounis, "Learning to predict response times for online query
scheduling," in In Proceedings of the 35th international ACM SIGIR conference on Research and
development in information retrieva, 2012.

17) S. M. Mahajan and V. P. Jadhav, "An analysis of execution plans in query optimization," in In 2012
International Conference on Communication, Information & Computing Technology (ICCICT), 2012.

18) M. Joshi and P. R. Srivastava, "Query Optimization: An Intelligent Hybrid Approach using Cuckoo and
Tabu Search," International Journal of Intelligent Information Technologies (IJIIT), vol. 9, no. 1, pp. 40-
55, 2013.

19) S. Chaudhuri, V. Narasayya and R. Ramamurthy, "Estimating progress of execution for SQL queries,"
in In Proceedings of the 2004 ACM SIGMOD international conference on Management of data, 2004.

20) G. Luo, J. F. Naughton, C. J. Ellmann and M. Watz, "Toward a progress indicator for database queries,"
in In Proceedings of the 2004 ACM SIGMOD international conference on Management of data, 2004.

21) J. Li, R. V. Nehme and J. Naughton, "GSLPI: A Cost-Based Query Progress Indicator," in In 2012
IEEE 28th International Conference on Data Engineering, 2012.

22) T. J. Wasserman, P. S. D. B. Martin and H. Rizvi, "Developing a characterization of business
intelligence workloads for sizing new database systems," in In Proceedings of the 7th ACM
International Workshop on Data Warehousing and OLAP, 2004.

23) J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H. Plattner and A. Zeir, "Predicting in-memory
database performance for automating cluster management tasks," in In 2011 IEEE 27th International
Conference on Data Engineering, 2011.

24) G. Luo, J. F. Naughton and P. S. Yu, "Multi-query SQL Progress Indicators," in In Advances in
Database Technology-EDBT 2006: 10 International Conference on Extending Database Technologyy,
2006.

25) W. Wu, X. Wu, H. Hacigumus and J. F. Naughton, "Uncertainty Aware Query Execution Time
Prediction," arXiv preprint arXiv:1408.6589, pp. 1857-1868, 2014.

26) W. Wu, Y. Chi, H. Hacigumus and J. F. Naughton, "Towards predicting query execution time for
concurrent and dynamic database workloads," in Proceedings of the VLDB Endowment, 2013.

27) R. Marcus and O. Papaemmanouil, "WiSeDB: A Learning-based Workload Management Advisor for
Cloud Databases," arXiv preprint arXiv: 1601.08221, vol. 9, pp. 780-791, 2016.

28) B. P. Kang and M. Zaharia, "BlazeIt: Optimizing Declarative Aggregation and Limit Queries for Neural
Network-Based Video Analytics," in arXiv preprint arXiv: 1805.01046, 2018.

29) Al-Masri and Q. H. Mahmoud, "Discovering the best web service: A neural network-based solution," in
In 2009 IEEE International Conference on Systems, Man and Cybernetics, 2009.

30) D. Ram, L. Miculicich and B. Merve, "Neural Network Based End-to-End Query by Example Spoken
Term Detection," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020.

31) A. Aslam and E. Curry, "Towards a Generalized Approach for Deep Neural Network Based Event
Processing for the Internet of Multimedia Things," IEEE Access, vol. 6, pp. 25573-25587, 2018.

