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Abstract 

Performance of databse management systems relates to low response time with maximum throughput. 
Therefore, it is necessary to adopt such scheme which can execute the workload with fewer time. Such 
scheme wich can also helpful in parallel query processing or can process batch queries simultenously, 
which can be used in developing the query mixes. Therefore, this research proposes a novel scheduler 
named as ‘Ascheduler’. This proposed scheduler assigns the priority using modified MQI (Multiple Query 
Interaction) to each query on the basis of its resource usage for the completion of its execution which is 
coming for the developing the query mixes. The developed the query mixes by the proposed scheduler is 
categorized into best, good, moderate and bad quer mixes. This categorization of the query mixes is on the 
basis of resource utilization and their response time. It also keeps avoidance of developing bad query mixes 
by using previously developed query mixes response time and resource utilization by keeping record of 
priority of each query used in query mix as well as an individual query. The novel proposed scheduler 
named ‘Ascheduler’ also reduces the overall execution time of workload and perforem better in the other 
performace metrices like response time, categorization accuracy and interaction improvement score from 
the existing schedulers like Forst Come First Serve (FCFS) and Shortest Job First (SJF).  

Keywords: Multi-Tasking, Query Mix, Query Set, MPL3, Concurrent Queries, Database, Batch Queries, 
Parallel Processing, Response Time, Query Scheduler. 

 
1. INTRODUCTION 

The basic feature of the computer science field is parallel processing. It allows a computer 
machine to do several jobs simultaneously, and this feature is called multi-tasking.  This 
opens a new area of research in database management systems. Usually, a single query 
executes its time slot and fetches data. It is quite demanding to develop such solutions 
that can enhance the performance of a system with huge database size and meet the 
high demand for data. It’s good to run more than one query simultaneously to avail multi-
tasking feature of the computer system.  

The sequence of arriving of any query for both concurrent executing along with other 
batch queries and its execution affects its response time [1] [2]. Response time of a query 
is the usage of resources for that particular query at a specific time. The same scenario 
applies to the query mix but at a high level because more than two queries run 
concurrently at the same time in the query mix. Therefore, those concurrent queries need 
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more resources than a single query [3] [4]. We operate within the realm of a database 
system handling a diverse workload of queries.  

These queries are categorized as 𝑄1, 𝑄2, … , 𝑄𝑇, each uniquely characterized by its 
attributes. These query types possess the flexibility to be instantiated with a range of 
parameter values, generating numerous distinct query instances. Importantly, each of 
these query templates is treated as an individual query type. 

Parameters: Our optimization problem involves the following parameters: 

 T: The set of query types, denoted as Q1, Q2 ,…, QT 

 N: The total number of unique query instances resulting from instantiating query 
templates with different parameter values. 

 P: is indeed used in the optimization problem to model the flexibility and 
customization of query templates, and its plays a vital role in determining the comp 
ability of query instance with specific time slots.  

Variables: We introduce binary decision variables 𝑋𝑖𝑗𝑡. Representing whether query 
instance i of query type j is scheduled for execution at time slot 𝑡. These binary variables 
are integral to modeling the scheduling process. 

Objectives: The primary objective is to optimize query scheduling in order to minimize the 
overall execution time. This can be mathematically expressed as: 

Minimize: = 𝐸 = ∑𝑖, 𝑗, 𝑡𝐶(𝑖) ⋅ 𝑋𝑖𝑗𝑡 

Here, E represents the overall execution time, and 𝐶(𝑖) is the execution time of query 
instance i. 

Constraints: To ensure a feasible solution, we have several constraints: 

 Unique Assignment Constraint: Each query instance is assigned to exactly one time 
slot: 

∑1∑𝑡𝑋𝑖𝑗𝑡 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗. 

 Compatibility Constraint: Each query instance should be compatible with the 
parameter values configured for the specific time slot: 

𝑋𝑖𝑗𝑡 = 0 If the parameters of query instance i are not compatible with the configuration at 

time slot 𝑡. 

Our optimization problem seeks to devise an optimal query execution schedule within a 
database system, catering to report generation needs. By minimizing the overall 
execution time while adhering to a set of constraints, we aim to enhance the operational 

efficiency of the system. The binary decision variables 𝑋𝑖𝑗 play a key role in determining 
the scheduling of query instances, thus achieving the desired optimization objectives. 
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For measuring the performance of any database system, it is needed to deal with 
workload management because there are several requests for execution of the database 
or several queries, from which different queries are executed at different times. Many 
other factors like resource allocation, resource availability, and data stored on different 
geographical locations on a disk.  

As with the passing of each day, the data volume of databases increases at a very high 
rate. It becomes a primary reason for decreasing the performance of the database. For 
any human, it is impossible to manage such large and diverse data. As mentioned earlier, 
it created the need to build such databases that can handle the issue, as mentioned 
earlier [1] [2].  

Prediction of database queries response time plays a crucial role while managing massive 
database systems, especially in the workload, which is the result of running various 
queries at the same time on the request of users because it may enable Database 
Administer (DBA) to know system behaviour, which helps him in coordination with system 
and provides some assessment about its performance [3].  

Waiting of resources for execution of concurrent queries is based on resource contention, 
which depends on queuing theory. Any computational graph containing computing units 
on its edges and numerical information transmitted from its directed edges after 
calculation in a sequence node to node [4].       

In the workload of any database, it is reported that a phenomenon of interaction exists 
among the queries. It means that a query can be executed in isolation and the 
combination of more than one. As far as query interaction permits for query execution in 
conjunction, it also showed that their implementation might positively or negatively affect 
the execution of the individual query. If execution effect positively, one query utilizes the 
data in buffer pool directly without waiting, which is called by another query for execution 
and time for computation on that data is saved. But if the execution effect is negative, 
then one query interferes with another query execution, and both require different 
resources, which may cause locking.  

Literature reports an important phenomenon named interaction among the database 
queries while running on the system. Therefore, it may enable the query to execute in 
isolation or in combination with other queries. The query interaction becomes the cause 
of positive or negative effects on those queries that are running simultaneously. The 
interaction of query may direct towards the interaction of query mixes. It may be possible 
that the interaction of query mixes provides interesting results. 
        
2. RELATED WORK 

The purpose of each scheduler is to automatically choose the preferences of queries in 
any database system [5]. If it is needed to measure the performance of the database 
system, then managing the workload of that specific database becomes essential.  The 
database's workload develops with the combination of several queries randomly running 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 56 Issue: 11:2023 
DOI: 10.5281/zenodo.10223943 

Nov 2023 | 200 

and several times with each other.  Other parameters like availability of resources, 
resource allocation, and geographical storage location of data on disk.   

The volume of data in databases has increased rapidly with each passing day.  Therefore, 
databases perform poorly.  The fact that human beings cannot handle such vast and 
diverse data creates the need to build database-based applications that address these 
issues [6] [7] [8] [9] [10].  If resources are already in use, the system must wait for those 
resources to avoid locking conditions.  The system also must wait for the required 
resources to execute the query.  In order to execute the desired operation, the CPU, RAM, 
cache, and I/O devices may become the subject of competition [11] [12] [13].  

Query response time may also affect due to these reasons, which are query progress 
imaging, query arranging, and capacity management [14].  

Database query response time plays a crucial role while managing massive database 
systems, especially in the workload, which may show the result of running the bulk of 
queries at the same time on the request of users because it may help the database 
administer (DBA) to the whole work efficiently because of coordination within the system 
and increase overall performance [15] [16]. A queuing theory determines how long it takes 
to execute queries based on the necessary resources [17].   

A scale information system, just like a search engine, is mainly concerned with the amount 
of data which they can show the less amount of time (effectiveness).  Still, they don't 
focus on the relevant results, which users want to get (efficiency).  Users mostly analyze 
the speed of data (time for showing results of any search which any user uses) received, 
not the repetition (number of repetitions for acquiring desired results) in which data is 
received [18].  

Data is retrieved from the database system by executing query execution plans which 
specify how data is accessed from the database system's source tables.  The selection 
of any query execution plan among several other possible plans is query optimization [19] 
[20] [21].  

Prediction of response time is crucial issue in several database management jobs like 
scheduling of query [22] [23] [24] visualization of query progress, balancing of load [25] 
[26] [27]. Formerly cardinality of query execution plans are not accurate [28] [29].       
  
3. METHODOLOGY 

This section explains the methodology of the Ascheduler. First of all chooses the queries 
from which the developing of the work loadis needed, select the a database for conducting 
experiment. After that different number of repetition is assigned to each query randomly 
for the development of the workload, then apply the algorithm of Ascheduler with modified 
MQI (Mutiple Query Interaction) for developing query mixes, the process of query mixes 
will remains going on and avoidence from the bad query mixes will be managed and 
improved gradually. The process of the methodology pictorially represented below.   
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Figure 1: Working Process 

3.1 Experimental Evaluation 

The details of the hardware and software used in this experiment are given below. 
Processor: A Dual Intel Xeon Gold 6240 CPUs, each with 20 cores and 40 threads and 
clocked at 2.60 GHz is used. The primary memory is 128 GB of DDR4 RAM for operating 
at 2933 MHz.  A 1TB NVMe SSD is used for data storage and retrieval. A 10 Gbps 
Ethernet connections is used for seamless data transfer. Modelling performance has a 
variety of scenarios and features used to predict database performance. The objectives 
of performance optimization are parameters tuning query scheduling, and configuration 
of the system. Seeing response time as a crucial point for focusing provides efficiency in 
database queries operations. 

3.2 Database Workload 

This research took scale factor 10 for execution of workload. It used 10 queries of TPC-
H benchmark for developing workload, for developing query mixes and for determination 
of Ascheduler’s efficiency. There 125 queries are used as workload by randomly 
assigning different repetition to each selected query. The DBMS is POSTGRESQL. The 
POSTGRESQL configuration advisor is manipulated; the parameters of configuration are 
well tuned.  

3.3 Ascheduler 

In the dynamic landscape of database management and query optimization, the concept 
of an “Ascheduler” emerges as a potential game-changer. This scheduler holds the 
promise of harnessing the power of MQI (Multiple Queue interface) to revolutionize the 
way queries are sequenced and executed within a complex database infrastructure. In 
the world of database management and query optimization, scheduler is introduced as a 
potential game-changing concept. It aims to use MQI to improve how queries are ordered 
and executed in a complex database system. 
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3.3.1. Role of a Scheduler 

A scheduler's primary role is to decide the order and priority of tasks (in this case of 
queries) for processing. "Ascheduler" aims to be fair and optimize resource allocation 
while ensuring that query execution remains balanced. This is different from traditional 
scheduling methods that might prioritize tasks based on factors like size or urgency. 

3.3.2. Role of MQI 

 Multiple Queue Interface (MQI), is modified as a dynamic element in this scheduling 
approach. We modify it by allowing for the management of multiple queues, each with its 
own attributes and priorities. Queries can be categorized based on factors like their 
complexity, importance, or resource requirements. The scheduler can then adaptively 
adjust the sequence in which queries are selected based on this information. This 
adaptability enables the system to respond in real-time to changing workloads and 
priorities. 

3.3.3. Ascheduler’s Workflow Process 

The queries can be selected and load to MPL once it would complete the 3 process the 
again start reverse way.  

 

Figure 2: Simplified view of Ascheduler’s Mechanism 

3.4. Algorithm Process 

The process implements a scheduling algorithm, represented by the ‘Ascheduler’ 
function. This function takes three input parameters: ‘W’, a list of query-weight pairs; ‘M’, 
which signifies the multiprogramming level; and ‘MQI’, the threshold for Multiple Query 
Interaction. The algorithm aims to intelligently scheduler queries to maintain a desired 
multiprogramming level while adhering to the MQI constraint:  

The algorithm begins by initializing an empty list called ‘RunningMix’, which is used to 
keep the track of the queries currently running in the query mix. It then evaluates wheatear 
the number of queries in ‘W’ is less than multiprogramming level ‘M’. If this condition 
holds, it concludes that no scheduling is necessary, and the function returns ‘None’. 

In case where the number of queries exceeds or matches the multiprogramming level, 
the algorithm proceeds by sorting the list ‘W’ based on the weight (wi) of each query in 
descending order. This sorting prioritizes heavies’ queries. 
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The algorithm iterates through the sorted queries in ‘W’. For each query, it checks weather 
the query can be schedules without violating the MQl constrains using the 
‘can_scheduler_query’ helper function. If the query can be scheduled, it returns the name 
of the query, signifying that this query should be executed next. 

If no queries can be scheduled based on the current query mix and the MQI constraint, 
the algorithm calls the ‘identifyGoodMixes’ function to in deify potential good query mixes. 
These query mixes are collection of queries that can be executed while satisfying the MQI 
constraint. Subsequently, it iterates through the sorted queries again, attempting to find 
a query that can be schedules within the indentified good mixes.  

The ‘can_scheduler_query’ function checks whether a query can be inserted into a query 
mix without violating the MQI constraint. It verifies that the query is not already present in 
the query mix and that adding the query would maintain an acceptable MQI level. 

 

Figure 3: Algorithm of Ascheduler 

The ‘calculate_MQI’ function, which calculates the Multiple Query Interaction, is currently 
a placeholder. It needs to be tailored to our specific context and should compute the MQI 
based on a list of queries.  

Similarly, the ‘identifyGoodMixes’ function is a placeholder indented to identify potential 
query mixes of queries that can be executed tighter while adhering to the MQI constraint. 

Finally, the code includes sample data for queries, the multiprogramming level (‘M’), and 
the MQI threshold (‘MQI’). The ‘Ascheduler’ algorithm is invoked using this queries 
workload to determine the query that should be scheduled next. If a query needs to be 
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schedules, its name is printed. If no query requires scheduling, a message indicating so 
printed.  

 

Figure 4: MQI for Good query Identification 
 
4. RESULTS 

This section describes the effectiveness of the Ascheduler. We present the comparison 
of other scheduler like First Come First Serve (FCFS) and Shortest Job First (SJF) with 
the Ascheduler. The Ascheduler is implemented on the POSTGRESQL and TPC-H 
benchmark standard queries are used for analyzing. The following section is divided into 
two parts one is experimental setup and other is Effectiveness of Ascheduler. 

The evolution of the “Ascheduler” scheduling algorithms involves a comprehensive 
assess meant of its performance within a computer system’s task management context. 
The primary focus is on gauging its efficiency and effectiveness. This evaluation entails 
establishing specific criteria for assessment, which often include response time, 
turnaround time, waiting time, fairness, and resource utilization. By employing key 
performance metrics such as average turnaround time, average waiting time, CPU 
utilization, and throughput, the algorithms’ operational prowess can be accurately 
measured. To provide a robust evaluation, comparison with established algorithms like 
First-Come First-Served (FCFS), Shortest Job First (SJF) and Round Robin are essential 
across different workloads. Simulated scenarios or real-world implementation are utilized 
to observes the algorithm’s behavior under diverse condition, aiding in the collection of 
relevant performance data.  
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Additionally, factors like sensitivity to parameters changes, resource allocation efficiency, 
adaptability to dynamic workloads, and scalability are scrutinized to ensure a 
comprehensive evaluation of “Ascheduler’s” capabilities. The overarching goal is to 
ascertain how effectively “Ascheduler” manages processes, allocates resource, and 
adapts to varying scenarios ultimately defining its values within practical computing 
environments. Changes, resource allocation efficiency, adaptability to dynamic 
workloads, and scalability are scrutinized. 

4.1. Categorization of Query Mixes 

In our system, query mixes are meticulously categories primarily based on their instances, 
a pivotal challenge dealt with by way of the scheduler to streamline efficient execution. 
This categorization system is designer evaluate query mix effectiveness in phrases of 
execution efficiency, main to the advent of 4 well-described classification of query mixes.  

4.1.1. Best Query Mixes (30.0%) 

Occupying the priority, these query mix 30.0% of our allocated resource. They have 
earned this coveted repute by way of continually demonstrating super performance 
characterized by using fast response time. Best Query Mixes represent the gold popular, 
putting the bar for excellence in execution performance notably: 

4.1.2. Good Query Mixes (forty 40%) 

Directly underneath the “Best Query Mixes” in terms of response time, forty 40% of our 
assists are channeled into good query mixes. While now not achieving the zenith of the 
“Best” class, they boast commendable response times that make them necessary in our 
good query mixes. A couple of example from this category includes:  

4.1.3. Moderate Query Mixes (20.0%) 

 Comprising 20.0% of our allotted assets, the “Moderate Query Mixes” exhibits moderate 
response time of execution. They play a pivotal function in handling ordinary duties at a 
widespread priority degree. An instance from this category:  

4.1.4. Bad Query Mixes (10.0%) 

Lastly, we carefully allocate 10.05 of our resources to the “Bad Query Mixes” These query 
mixes contains such query mixes that showed poor performance by representing high 
response time. To protect against performance degradation, they are recognized and 
punctiliously avoided inside the execution queue: 
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Figure 5: Query Mix with Proportions 

4.2. Avoidance of Bad Query Mixes 

To mitigate database systems inefficiencies, the scheduler is made to actively recognize 
and steer clear of “bad” query mixes. Poor query mixes frequently include queries that 
impede the workload’s overall execution. The scheduler’s avoidance strategy could 
consist of: 

Dynamic Search prioritization: Giving queries in a poor query mix a lower priority or fewer 
resources. 

Isolation: Running problematic queries separately from other queries to reduce 
undesirable consequence.  

Resource Reallocation: Giving a terrible query mix of queries more resources to use in 
order to speed up their response time. Limiting the execution of such queries from a 
problematic query mix to avoid system’s overload. 

Table 1: Query Mix with Time 

Query Mix Category Proportion (%)  Average Response Time 

Best 30 2.5 

Good 40 4,0 

Moderate  20 6.8 

Bad 10 10.2 

The scheduler support a timely and effective workload management system by actively 
avoiding undesirable query mixes and ensuring the availability of best, decent, and 
moderate query mixes. By reducing delays and bottlenecks brought on by ineffective 
query mixes, this method optimizes resource allocation and improves user’s experience.  
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4.2.1. Query Interaction: 

Query interaction exists while queries are executing in parallel. This phenomenon occurs 
due to resource sharing among the queries executing simultaneously. The interaction of 
queries represents influences due to existence of bonding in the parallelism. Query 
interaction primarily affects on the response time of queries. Query interaction is 
dedicated to elucidating intricacies of the methodology used for calculating query 
interaction scores, offering a profound understanding enriched with meticulous 
description. The importance of quantifying interaction between queries within query mixes 
is underscored, as these interactions play a pivotal role in appropriately categorizing into 
bad, good and moderate query mixes. This section outlines the quantification process, 
which meticulously evaluates how individual queries interact with one another this 
analysis encompasses aspects such as concurrency assessment, resource dependency 
analysis and data depends evaluation. The outcome of this quantification process is the 
assignment of query interaction scores, which quantatively represent the degrees of 
interaction of queries within a query mix. For instance, query mix1 is assigned an 
interaction score of 0.75, indicating a robust level of interaction among its queries. Query 
mix2 receives a score of 0.5, denoting a moderate degree of interaction, while query 
mix3's score of 0.3 suggests a relatively lower level of interaction among its queries. 
These interaction scores are invaluable in guiding the scheduler's decisions regarding 
resource allocation, execution order, and overall workload management strategies. By 
providing a thorough understanding of the methodology behind calculating query 
interaction scores and offering specific score examples equips readers with the 
knowledge needed to navigate the complexities of query mix’s categorization and 
optimize database system’s performance. 

4.2.2. Query Interaction Quantification 

The scheduler has tools for methodically evaluating how each query mix’s interaction with 
other inquires. This entails assessing how queries interact in terms of execution duration, 
resource usage, and performance. During query execution, the scheduler gathers 
pertinent data and examines patterns of cooperation or conflict. 

4.2.3. Impact on Categorization 

A crucial input for the classification of query mixes is the quantification of query 
interaction. The scheduler bases its evaluation of query mix’s overall effectiveness and 
prospective placement within the established categories on the results from interaction 
assessments. 

4.2.4. Synergy and Contention Identification 

The scheduler determines instances of synergy, where particular queries improve one 
another's performance, and contention, where queries obstruct one another's execution, 
by interaction quantification. Due to their synergistic effects, synergistic query mixes may 
contribute to the "best" or "good" query mix categories. On the other hand, a query mix's 
placement in the "moderate" or "bad" categories may be influenced by query pairs that 
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are producing de-acceleration in the execution and become cause of increase in 
response time. 

4.2.5. Enhanced Categorization Accuracy 

The scheduler classifies query mixes with a higher degree of accuracy by taking query 
interactions into account. With this method, judgments are made more thoroughly and 
intelligently since it considers not just the performance of each individual query but also 
the performance of that query in the query mix in conjunction of other queries. 

4.2.6. Dynamic Adjustment of Categories 

The scheduler can dynamically change query mix categorizations thanks to the quantified 
interactions. The scheduler may hone its classification over time to more closely represent 
the observed performance patterns if a query mix's interactions consistently display 
synergy or contention. In conclusion, a key step in the categorization of query mixes is 
the measurement of query interactions. The scheduler can effectively classify query 
mixes into the "best," "good," "moderate “or” bad" categories by having a thorough grasp 
of how queries interact with one another in any query mix. This improves the workload 
management system's effectiveness and efficiency. 

 

Figure 6: Query Interaction Scores 

The process of quantifying query interaction and categorizing query mixes mathematically 
is systematic approach that enables the scheduler to informed decision about workload 
management this process involves server interconnected stage that contributes the 
optimization of resource allocation and performance categorization. At the core of this 
process is data collection. During the execution of query mixes, the scheduler gathers 
crucial information such as the execution times and resource usage of individual queries. 
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This raw data forms the basis for understanding how queries behave in isolation. Next, 
the scheduler engages in correlation analysis. By evaluating the correlation between the 
execution time and resource usage of different queries within a query mix, the scheduler 
gains insights into the interdependent of these variables This correction serves as a 
foundational elements for assessing the digress of interaction between queries within a 
query mix. Building upon correlations, the scheduler proceeds to calculate interaction 
scores. These scores encapsulate the essence of query interactions by considering the 
correlation coefficient, the individual execution times of queries, and their resource usage. 
The interaction score quantifies the extent to which queries collaborate or compete within 
a query mix with other concurrently running queries. Leveraging the calculated interaction 
scores, the scheduler then categorizes query mixes into different performance tires.  

Positive and high interaction scores indicate synergistic behavior among queries, 
suggesting that these query mixes could be categorized as "best" or "good." Conversely, 
negative interaction scores point towards contention, possibly resulting in categorization 
as "bad" or "moderate" query mixes. The process is iterative and dynamic. As the 
scheduler encounters and processes more query mixes, it continuously refines its 
calculations and formulas based on real-world data. This dynamic learning and adaptation 
ensure that the scheduler's decision-making evolves to accurately capture the nuances 
of query interactions. Importantly, interaction scores influence resource allocation 
strategies. Positive interaction scores guide the scheduler to allocate more resources to 
mixes with collaborative queries, harnessing their combined efficiency. Meanwhile, 
negative interaction scores trigger resource adjustments to mitigate performance issues 
stemming from contentions within query mixes.  

The scheduler's performance evaluation is an integral part of this process. By comparing 
the predicted categorizations with the actual performance outcomes, the scheduler 
identifies any discrepancies and inconsistencies. This feedback loop drives further 
enhancement of the mathematical models and methodologies used for quantifying query 
interactions and categorizing mixes. In conclusion, the mathematical approach to 
quantifying query interactions and categorizing query mixes is a data-driven and iterative 
process that underpins the scheduler's ability to optimize workload management. By 
considering correlations, calculating interaction scores, and adapting dynamically, the 
scheduler ensures optimal resource allocation and performance categorization based on 
the collaborative or competitive nature of queries within query mixes. 

4.3. Effectiveness of Ascheduler 

The Ascheduler is more efficient than FCFS and SJF. With the passage of time the FCFS 
become poor because it can’t avoide from the bad query mixes and SJF depicted worst 
scanrio overall. The figures represents the overall performance of Ascheduler, FCFS and 
SJF.  
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4.3.1. Ascheduler Vs Other Scheduling Algorithms 

We used several scheduling algorithms in our experiment like Ascheduler, First Come 
First Serve (FCFS) and Shortest Job First (SJF). The primary objective of this research 
is to test the AScheduler. Quantification of query interaction in query mixes by using labels 
provides very good results. 125 queries are selected for the workload.  

 

Figure 7: Workload Completion Time of Three Scheduler 

Table 2: Efficiency of Ascheduler algorithm with FCFS and SJF 

Completion 
Time 

Ascheduler FCFS SJF 
Ascheduler 
Saved Time 
(vs.FCFS) 

Ascheduler 
Saved Time 

(vs. SJF) 

Seconds 50580 54780 56520 4200 5940 

Minutes 843 913 942 70 99 

Hours 14.05 15.22 15.7 1.17 1.65 

4.3.2. Detailed Results of the Experiments 

Efficient of A scheduler presents a comparison of completion times for different 
scheduling algorithms used in computer systems, alongside a mysterious "Ascheduler" 
algorithm. The completion time represents the total time taken to execute a set of 
processes or jobs. In this context, "FCFS" (First-Come, First-Served) and "SJF" (Shortest 
Job First) are two well-known scheduling algorithms in operating systems. The table 
showcases how the "Ascheduler" algorithm performed in comparison to these established 
methods. The "Saved Time" columns indicate how much time "Ascheduler" saved 
compared to both FCFS and SJF.  
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Positive values in the "Saved Time" columns suggest that "Ascheduler" performed better 
in terms of reducing execution time. 

 "Ascheduler" completed its tasks in 50,580 seconds, while FCFS required 54,780 
seconds, and SJF took a longer 56,520 seconds. 

 When evaluating "Ascheduler" against FCFS, it emerged as the clear winner, saving 
an impressive 4200 seconds (or approximately 70 minutes) in execution time. 

 Compared to SJF, "Ascheduler" exhibited even more substantial efficiency, 
reducing the execution time by a remarkable 5940 seconds (or approximately 99 
minutes). 

Now, looking at these time measurements from a broader perspective: 

 "Ascheduler" took 843 minutes, equivalent to approximately 14.05 hours, to 
complete its tasks. 

 In contrast, FCFS required 913 minutes (around 115.22 hours), and SJF demanded 
942 minutes (approximately 15.7 hours). 

 The efficiency of "Ascheduler" becomes evident when we note that it saved 70 
minutes compared to FCFS and an impressive 99 minutes in comparison to SJF. 

 In terms of hours, "Ascheduler" outperformed FCFS by 1.17 hours and surpassed 
SJF by a substantial 1.65 hours. 

Scheduler: This column lists the names of the scheduling algorithms that were evaluated 
in that experiment. The scheduler include “Ascheduler,” “FCFS” (First Come First Serve), 
and “SJF” (Shortest Job First). 

Response Time (ms): This is column displays the average response time in milliseconds 
(ms) for each scheduler. The response time is the time taken for query mix to complete 
execution. For instance, the “Ascheduler” had an average response time of 25 ms, 
“FCFS” had 40 ms, and “SJF” had 38 ms, 

Categorization Accuracy (%): This column presents the percentage of accuracy achieved 
by each scheduler in categorizing query mixes. It indicates how accurately the scheduler 
categorized the query mixes into the predefined categories(“best” “good” “moderate, “ or 
“bad”) The “Ascheduler ” achieved an accuracy of 90 %, “FCFS” had 80% and “SJF” had 
70%. 

Interaction Score Improvements (%): This column represents the improvement in 
interaction score accuracy achieved by integrating interaction scores into the 
categorization process. Interaction scores quantify the level of interaction between 
queries within a mix The “Proposed Scheduler” showed an improvement of 15%, “FCFS” 
had no improvement (0%), and “SJF” had an improvement of 10% 
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These results provide insights into performance and accuracy of different scheduling 
algorithms based on response time, categoirzation accuracy, and the impact of 
considering interaction scores. The values in the table allow you to compare the 
performance of the scheduler and draw conclusion about here effectiveness in improving 
response time and accuracy in categorizing query mixes.   

Table 3: Effectiveness of Ascheduler algorithm with FCFS and SJF 

Scheduler 
Response Time 

(ms) 
Categorization 
Accuracy (%) 

Interaction 
Improvement Sore (%) 

SJF 35 70 10 

FCFS 30 80 0 

Ascheduler 25 90 15 

A comparative assessment of three scheduling algorithms: SJF (Shortest Job First), 
FCFS (First-Come, First-Served), and "Ascheduler." It evaluates these algorithms across 
three key performance metrics: Response Time (measured in milliseconds), 
Categorization Accuracy (expressed in percentages), and Interaction Score Improvement 
(also in percentage terms). Notably, "Ascheduler" exhibits the shortest response time at 
25 ms, indicating its efficiency in promptly addressing tasks.  

Ascheduler also leads in categorization accuracy with 90%, showcasing its precision in 
prioritizing tasks. In terms of enhancing the overall user interaction experience, 
Ascheduler also excels with a 15% improvement.  

These metrics provide insights for selecting the most suitable scheduling algorithm, with 
"Ascheduler" excelling in response time, categorization accuracy, and leading in 
interaction score improvement. This shows that Ascheduler perform well in improvement 
of response time of query mixes by using priority ranking on the upcoming queries for the 
development of query mixes. It also gives the strategy for avoiding the bad query mixes 
and attain the good, best and moderate query mixes. 
 
5. CONCLUSION 

This paper shows the overall efficiency of the newly proposed query scheduler named 
‘Ascheduler’. This scheduler also categorized the query mixes into best, good, moderate 
and bad query mixes. It kept giving the avoidance from the developing the bad query 
mixes with the pessage of time by using previously assigning the priority to the queries. 
It also executed the workload in fewer time from the already exist scheduler like FCFS 
and SJF. It showed good results from other schedulers in other performance metices like 
response time, categorization accuracy and interaction improvement score. 
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