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Abstract 

The rapid integration of artificial intelligence (AI) into automotive systems is fundamentally reshaping vehicle 
architectures, driving a transition toward software-defined, zonal, and highly centralized electronic 
platforms. While these developments enable advanced functionalities such as autonomous driving, 
predictive maintenance, and intelligent energy management, they also introduce significant challenges for 
functional safety assurance under established standards such as ISO 26262. In particular, the non-
deterministic behavior of machine learning (ML) models, coupled with increasing system complexity and 
tight hardware–software interdependencies, limits the effectiveness of traditional rule-based and reactive 
diagnostic mechanisms. This article examines the role of emerging semiconductor architectures in enabling 
predictive safety diagnostics for AI-driven automotive systems through the systematic integration of 
machine learning. It synthesizes recent advances in system-on-chip (SoC) design, heterogeneous 
computing, safety islands, silicon lifecycle management, and secure-by-design hardware to illustrate how 
safety-relevant intelligence can be embedded directly at the semiconductor level. The study further 
analyzes ML-based diagnostic techniques—including anomaly detection, probabilistic modeling, and deep 
learning–based health monitoring—and evaluates their alignment with ISO 26262 safety lifecycle 
requirements, verification and validation practices, and assurance arguments. By bridging functional safety 
engineering, automotive semiconductor design, and AI-based diagnostics, the article highlights emerging 
design patterns and validation strategies that support proactive fault detection, early degradation 
awareness, and improved safety integrity. The findings underscore the necessity of cross-layer co-design 
approaches that integrate hardware capabilities, ML models, and safety processes to achieve robust, 
certifiable predictive safety in next-generation automotive systems. 

Keywords: Artificial Intelligence in Automotive Systems; ISO 26262 Functional Safety; Predictive Safety 
Diagnostics; Automotive Semiconductor Architecture; Machine Learning–Based Reliability; Software-
Defined Vehicles. 

 
1. INTRODUCTION 

The automotive industry is undergoing a profound technological transformation driven by 
the convergence of artificial intelligence (AI), advanced semiconductor architectures, and 
software-defined vehicle (SDV) paradigms. Modern vehicles increasingly rely on AI-
driven perception, decision-making, and control functions to enable advanced driver 
assistance systems (ADAS), autonomous driving capabilities, and intelligent powertrain 
and chassis management. While these innovations promise significant improvements in 
safety, efficiency, and user experience, they also introduce unprecedented levels of 
system complexity, non-determinism, and interdependence across hardware and 
software layers (Arthur et al., 2022; Kabir et al., 2024). 

At the core of this transformation lies the evolution of automotive semiconductor 
architectures. Traditional distributed electronic control unit (ECU) designs are being 
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replaced by centralized, zonal, and system-on-chip (SoC)-based architectures that 
integrate heterogeneous computing elements such as CPUs, GPUs, NPUs, and 
dedicated safety islands. These architectures are specifically designed to support high-
throughput AI and machine learning (ML) workloads while meeting stringent constraints 
on real-time performance, power efficiency, reliability, and cybersecurity (Cirstea et al., 
2024; Chakravarthi & Koteshwar, 2025). As vehicles become increasingly software-
defined and data-driven, the semiconductor platform itself is no longer a passive 
execution substrate but an active enabler of safety, diagnostics, and lifecycle 
management (Fish & Athavale, 2024). 

Functional safety, governed primarily by the ISO 26262 standard, remains a foundational 
requirement for automotive electronic and electrical systems. ISO 26262 provides a 
structured lifecycle for hazard analysis, risk assessment, safety goal definition, and 
verification to ensure that safety-related systems achieve acceptable levels of residual 
risk. However, the standard was originally conceived for deterministic, rule-based 
systems and faces significant challenges when applied to AI-enabled functions 
characterized by learning-based behavior, probabilistic outputs, and adaptive 
performance over time (Iyenghar et al., 2024; Ullrich et al., 2024). These challenges have 
prompted growing research interest in extending or complementing ISO 26262 with AI-
aware safety assurance methodologies (Acharya, 2025; Perez-Cerrolaza et al., 2024). 

Within this context, predictive safety diagnostics have emerged as a critical capability for 
next-generation automotive systems. Unlike traditional reactive diagnostic mechanisms 
such as threshold-based fault detection or on-board diagnostics (OBD-II) predictive 
diagnostics leverage machine learning techniques to anticipate failures, degradations, or 
unsafe states before they violate safety goals or lead to hazardous events (Michailidis et 
al., 2025; Nuruzzaman, 2025). By enabling early fault prognosis, uncertainty estimation, 
and adaptive risk mitigation, predictive diagnostics align closely with the increasing 
complexity and operational demands of AI-driven vehicles. 

Machine learning techniques, including deep learning, anomaly detection, and 
probabilistic graphical models, have demonstrated strong potential for vehicle health 
monitoring, reliability assessment, and failure prediction across sensors, power 
electronics, communication networks, and computing platforms (Adewale; Ezukwoke, 
2023; Hegde et al., 2025). However, deploying these techniques in safety-critical 
automotive environments raises fundamental concerns related to explainability, 
robustness, data drift, and verification. Addressing these concerns requires a tightly 
coupled approach in which ML-based diagnostics are co-designed with semiconductor-
level safety mechanisms, such as hardware monitors, lockstep execution, embedded self-
test, and safety-aware inference accelerators (Pandey, 2025; Razdan, 2025). 

Recent advances in semiconductor design further reinforce this co-design paradigm. 
Intelligent silicon platforms now integrate functional safety, cybersecurity, and reliability 
features directly at the hardware level, enabling continuous monitoring, secure data 
handling, and in-field adaptability for AI-driven automotive systems (Chandrashekaraiah, 
2025a; Chandrashekaraiah, 2025b; Shrivastwa, 2023). These developments position 
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semiconductor architectures as a pivotal layer for implementing ISO 26262-aligned 
predictive safety diagnostics, bridging the gap between abstract safety requirements and 
operational AI behaviors. Against this backdrop, this article examines the role of emerging 
semiconductor architectures in enabling predictive safety diagnostics for AI-driven 
automotive systems using machine learning. By synthesizing perspectives from 
functional safety standards, AI reliability research, and semiconductor system design, the 
article aims to clarify how predictive diagnostics can be systematically integrated into ISO 
26262-compliant automotive platforms. In doing so, it contributes to ongoing discussions 
on the future of automotive safety assurance in an era defined by AI-centric vehicle 
intelligence and increasingly complex semiconductor ecosystems. 
 
2. EVOLUTION OF AUTOMOTIVE SEMICONDUCTOR ARCHITECTURES 

The rapid transformation of the automotive industry toward electrification, autonomy, and 
connectivity has fundamentally reshaped the role of semiconductor architectures within 
vehicles. Traditional automotive electronics, once dominated by discrete control units 
performing isolated functions, are now evolving into highly integrated, software-defined 
platforms capable of supporting artificial intelligence (AI), machine learning (ML), and 
predictive safety diagnostics. This evolution is driven by increasing system complexity, 
stringent functional safety requirements under ISO 26262, and the need for real-time 
reliability and cybersecurity assurance in safety-critical environments (Arthur et al., 2022; 
Kabir et al., 2024). Consequently, automotive semiconductor architectures have 
transitioned through multiple stages, culminating in heterogeneous, AI-enabled systems-
on-chip (SoCs) designed to support predictive diagnostics and continuous safety 
monitoring (Cirstea et al., 2024; Chakravarthi & Koteshwar, 2025). 

2.1 Legacy Distributed ECU-Based Architectures 

Early automotive electronic architectures were based on distributed Electronic Control 
Units (ECUs), each dedicated to a specific function such as engine control, braking, or 
body electronics. These systems relied on microcontrollers optimized for deterministic 
control and were interconnected through fieldbus technologies such as CAN, LIN, and 
FlexRay. While effective for conventional vehicles, this architecture suffered from 
scalability limitations, wiring complexity, and limited computational headroom for 
advanced analytics or AI-based diagnostics (Arthur et al., 2022). From a safety 
perspective, fault detection mechanisms in legacy ECUs were predominantly rule-based, 
reactive, and threshold-driven. Diagnostics were largely confined to fault code reporting 
via OBD-II interfaces, offering limited prognostic capability and minimal support for 
predictive safety analysis (Michailidis et al., 2025). As vehicle functionality expanded, the 
distributed ECU paradigm increasingly constrained system-level safety assurance and 
cross-domain optimization (Gumiel, 2024). 

2.2 Transition Toward Domain-Centric and Zonal Architectures 

To address the inefficiencies of distributed ECUs, the industry adopted domain-centric 
architectures, consolidating multiple ECUs into centralized domain controllers for 
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powertrain, chassis, infotainment, and advanced driver-assistance systems (ADAS). This 
consolidation reduced hardware redundancy and enabled more coordinated safety 
strategies across functional domains (Kabir et al., 2024). 

The latest evolution extends this approach into zonal architectures, where compute 
resources are geographically organized around vehicle zones and connected via high-
speed automotive Ethernet. Zonal architectures significantly reduce wiring harness 
complexity while enabling centralized processing of sensor data and AI workloads 
(Chandrashekaraiah, 2025a). Importantly, this architectural shift facilitates the integration 
of ML-driven diagnostics at higher abstraction levels, enabling early detection of system-
wide anomalies and latent faults (Nuruzzaman, 2025). 

Table 1: Evolution of Automotive Semiconductor Architectures and Safety 
Capabilities 

Architectural 
Stage 

Semiconductor 
Characteristics 

Diagnostic 
Capability 

Safety & 
Reliability 

Implications 
Key References 

Distributed 
ECU-Based 

Single-core MCUs, 
limited memory 

Reactive fault 
codes (OBD-
II) 

Limited predictive 
safety, high 
integration 
overhead 

Arthur et al. (2022); 
Michailidis et al. (2025) 

Domain-Centric 
Multi-core SoCs, 
domain controllers 

Enhanced 
fault 
correlation 

Improved ASIL 
decomposition 
and fault 
containment 

Kabir et al. (2024); 
Gumiel (2024) 

Zonal 
Architecture 

High-performance 
SoCs, Ethernet 
backbone 

Cross-
domain 
diagnostics 

Supports 
centralized safety 
monitoring 

Chandrashekaraiah 
(2025a); Nuruzzaman 
(2025) 

AI-Enabled SoC 
CPU–GPU–NPU 
heterogeneity 

ML-based 
anomaly 
detection 

Enables predictive 
safety diagnostics 

Chakravarthi & 
Koteshwar (2025); 
Hegde et al. (2025) 

Secure-by-
Design 
Platforms 

Safety islands, 
secure enclaves 

Continuous 
in-field 
monitoring 

Integrated safety–
security co-
assurance 

Pandey (2025); Fish & 
Athavale (2024) 

2.3 Emergence of Heterogeneous AI-Centric SoCs 

Modern automotive semiconductor architectures increasingly rely on heterogeneous 
SoCs integrating CPUs, GPUs, NPUs, and dedicated accelerators for AI workloads. 
These platforms are specifically designed to support perception, decision-making, and 
diagnostics in real time while maintaining compliance with ISO 26262 safety constraints 
(Cirstea et al., 2024). 

Heterogeneous architectures enable parallel execution of safety-critical and non-safety-
critical tasks through hardware partitioning and safety islands. This separation is essential 
for maintaining freedom from interference, particularly when deploying adaptive ML 
models for predictive diagnostics (Iyenghar et al., 2024; Acharya, 2025). Furthermore, 
on-chip accelerators significantly reduce latency and energy consumption, making 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 58 Issue: 12:2025 
DOI: 10.5281/zenodo.17996221 

Dec 2025 | 299 

continuous health monitoring feasible within automotive power and thermal constraints 
(Chakravarthi & Koteshwar, 2025). 

2.4 Semiconductor Support for Reliability, Safety, and Security Co-Design 

As AI-driven diagnostics become integral to safety assurance, semiconductor 
architectures are increasingly designed with co-optimized reliability, functional safety, and 
cybersecurity mechanisms. Techniques such as lockstep execution, error-correcting 
codes, embedded self-test, and intelligent system telemetry are now standard features in 
automotive-grade SoCs (Pandey, 2025; Fish & Athavale, 2024). 

Additionally, secure-by-design silicon platforms integrate hardware roots of trust and 
encrypted communication paths to protect ML models and diagnostic data from 
tampering. This integration is particularly critical as vehicles become connected to cloud-
based AI services and vehicle-to-vehicle communication networks (Chandrashekaraiah, 
2025b; Shrivastwa, 2023). Such capabilities enable continuous safety validation 
throughout the vehicle lifecycle, aligning with emerging regulatory expectations for AI-
enabled automotive systems (Ullrich et al., 2024). 

2.5 Implications for Predictive Safety Diagnostics 

The architectural evolution of automotive semiconductors directly underpins the feasibility 
of predictive safety diagnostics. Advanced SoCs provide the computational capacity, data 
access, and hardware isolation necessary to deploy ML models that detect early signs of 
degradation, performance drift, and safety-critical anomalies (Hegde et al., 2025; 
Adewale).  

Moreover, silicon lifecycle management and in-field monitoring enable feedback loops 
between operational data and safety models, supporting continuous improvement of 
diagnostic accuracy and robustness (Fish & Athavale, 2024). These capabilities mark a 
shift from static safety certification toward dynamic, evidence-driven safety assurance, 
particularly relevant for AI-based automotive systems (Razdan, 2025; Perez-Cerrolaza et 
al., 2024).  

In summary, the evolution of automotive semiconductor architectures from distributed 
ECUs to AI-centric, heterogeneous SoCs represents a foundational enabler for predictive 
safety diagnostics in modern vehicles. By integrating advanced computation, safety 
mechanisms, and security features at the silicon level, emerging architectures address 
the limitations of legacy systems and support ISO 26262–aligned safety assurance in AI-
driven automotive environments. This architectural progression establishes the 
technological basis upon which machine learning–based predictive diagnostics can be 
reliably and safely deployed in next-generation automotive systems. 
 
3. ISO 26262 FUNCTIONAL SAFETY IN AI-DRIVEN AUTOMOTIVE SYSTEMS 

The increasing adoption of artificial intelligence (AI) and machine learning (ML) within 
automotive systems has significantly altered the traditional assumptions underlying 
functional safety engineering. ISO 26262, the internationally accepted standard for 
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automotive functional safety, was originally conceived for deterministic, rule-based 
electronic and electrical (E/E) systems. However, AI-driven perception, decision-making, 
and predictive diagnostic functions introduce non-deterministic behaviors, probabilistic 
reasoning, and data-dependent performance variations that challenge classical safety 
assurance practices.  

As vehicles evolve toward software-defined, zonal, and AI-centric architectures, there is 
an urgent need to reinterpret and extend ISO 26262 concepts to ensure safety integrity 
across the full lifecycle of intelligent automotive systems (Kabir et al., 2024; Ullrich et al., 
2024).  

This section critically examines how ISO 26262 applies to AI-driven automotive systems, 
highlighting methodological gaps, emerging adaptations, and the role of semiconductor-
level support for predictive safety diagnostics. 

3.1 Foundations of ISO 26262 Functional Safety 

ISO 26262 establishes a structured safety lifecycle aimed at preventing unreasonable risk 
due to malfunctions of E/E systems in road vehicles. Core elements include hazard 
analysis and risk assessment (HARA), Automotive Safety Integrity Level (ASIL) 
determination, safety goal formulation, and systematic verification and validation activities 
across concept, system, hardware, and software phases (Arthur et al., 2022; Kabir et al., 
2024). The standard assumes that system behavior can be exhaustively specified, traced, 
and verified against well-defined requirements. 

In conventional automotive systems, fault detection relies on deterministic mechanisms 
such as redundancy, watchdog timers, and threshold-based diagnostics. These 
mechanisms are well supported by ISO 26262’s emphasis on traceability, failure mode 
analysis, and freedom from interference.  

However, the introduction of ML-based functions complicates these assumptions, as 
model behavior emerges from training data rather than explicit specifications (Perez-
Cerrolaza et al., 2024). 

3.2 Safety Challenges Introduced by AI and Machine Learning 

AI-driven automotive functions such as perception, predictive maintenance, and adaptive 
control exhibit characteristics that are fundamentally misaligned with traditional functional 
safety paradigms. Machine learning models often lack interpretability, exhibit sensitivity 
to data distribution shifts, and may degrade over time due to environmental variability 
(Hegde et al., 2025; Rech, 2024). These properties complicate the demonstration of 
completeness, correctness, and robustness required by ISO 26262. 

Furthermore, ML systems blur the boundary between systematic and random faults. 
Model bias, overfitting, and data insufficiency can act as latent systematic faults that 
manifest unpredictably during operation (Acharya, 2025). This raises significant 
challenges for ASIL allocation, safety goal verification, and confidence argumentation 
within safety cases, particularly for higher ASIL levels (Iyenghar et al., 2024). 
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Table 2: Mapping ISO 26262 Safety Lifecycle Phases to AI/ML-Specific Challenges 
and Mitigation Strategies 

ISO 26262 
Lifecycle 

Phase 

AI/ML-Specific 
Challenges 

Safety Risks 
Introduced 

Semiconductor- and 
System-Level Mitigation 

Strategies 

Supporti
ng 

Referenc
es 

Concept 
Phase 

Non-deterministic 
ML behavior Training 
data bias and 
incompleteness 
Unclear operational 
design domain 
(ODD) boundaries 

Incorrect hazard 
identification 
Underestimated 
risk severity and 
exposure 
Misaligned safety 
goals 

Explicit ODD definition and 
constraints Scenario-based 
hazard analysis including 
ML failure modes 
Conservative safety goal 
allocation with ML 
uncertainty margins 

Iyenghar 
et al., 
2024; 
Perez-
Cerrolaza 
et al., 
2024 

System-Level 
Design 

Integration of ML 
components with 
deterministic control 
logic Lack of 
explainability at 
system boundaries 

Unsafe system-
level decisions 
due to opaque 
ML outputs Fault 
propagation 
across 
subsystems 

Redundant and diverse 
sensing architectures 
Confidence estimation and 
plausibility checks at 
interfaces Safety monitors 
supervising ML outputs 

Ullrich et 
al., 2024; 
Iyenghar 
et al., 
2024 

Hardware 
Development 

Accelerator-specific 
fault modes 
(GPU/NPU soft 
errors) Timing 
variability and 
resource contention 

Latent hardware 
faults leading to 
unsafe ML 
inference Missed 
real-time 
deadlines 

Lockstep and dual-core 
architectures ECC-
protected memories and 
registers Hardware 
watchdogs and fault-
detection circuits 

Ullrich et 
al., 2024 

Software 
Development 

Training deployment 
mismatch Model 
overfitting and 
brittleness Limited 
explainability and 
traceability 

Incorrect or 
unstable 
predictions in 
safety-critical 
scenarios 
Difficulty in safety 
validation and 
verification 

Dataset versioning and 
traceability mechanisms 
Model robustness testing 
and stress testing 
Explainable AI (XAI) 
techniques for safety 
argumentation 

Iyenghar 
et al., 
2024; 
Perez-
Cerrolaza 
et al., 
2024 

Integration 
and Testing 

Incomplete coverage 
of rare or corner-
case scenarios 
Distribution shift 
between test and 
real-world data 

Undetected 
hazardous 
behavior during 
operation False 
confidence in ML 
performance 

Scenario-based simulation 
and fault injection 
Coverage metrics adapted 
for ML behavior Cross-
validation using 
independent datasets 

Iyenghar 
et al., 
2024 

Operation 
and 
Maintenance 

Data drift and 
concept drift over 
time• Model 
degradation due to 
changing 
environments 

Gradual loss of 
safety margins 
Increased false 
negatives or false 
positives 

Runtime supervision and 
anomaly detection Periodic 
model revalidation and 
retrainin Safe fallback 
strategies and degraded 
operation modes 

Ullrich et 
al., 2024; 
Perez-
Cerrolaza 
et al., 
2024 

Decommissio
ning 

Residual data and 
model reuse without 
context Loss of 
safety assumptions 
over system lifetime 

Unsafe reuse of 
models in 
unintended 
contexts 

Controlled model 
retirement and 
documentation 
Preservation of safety 
cases and assumptions 

Perez-
Cerrolaza 
et al., 
2024 
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3.3 Extending ISO 26262 for AI-Specific Safety Assurance 

Recent research proposes structured extensions to ISO 26262 to accommodate AI-
enabled systems. These include AI-specific lifecycle phases addressing data 
management, model training, validation, and deployment monitoring (Iyenghar et al., 
2024). Emphasis is increasingly placed on uncertainty quantification, confidence 
estimation, and runtime performance monitoring to compensate for the absence of full 
determinism. 

Probabilistic safety arguments, scenario-based testing, and hybrid verification strategies 
combining formal methods with empirical validation have been proposed to strengthen 
assurance claims (Ullrich et al., 2024; Perez-Cerrolaza et al., 2024). These approaches 
aim to preserve ISO 26262’s safety objectives while acknowledging the epistemic 
uncertainty inherent in AI systems. 

 
Figure 1: Comparative Safety Assurance Coverage: Traditional ISO 26262 vs. AI-

Extended Functional Safety Framework. 

3.4 Role of Semiconductor Architecture in Supporting ISO 26262 Compliance 

Emerging semiconductor architectures play a critical role in operationalizing AI-
compatible functional safety. Safety islands, lockstep processing, hardware-based 
monitors, and embedded AI accelerators enable continuous fault detection and runtime 
supervision of ML workloads (Chakravarthi & Koteshwar, 2025; Pandey, 2025). These 
architectural features provide the observability and isolation necessary to uphold ISO 
26262 safety goals in AI-intensive environments. 
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Additionally, silicon lifecycle management (SLM) and in-field telemetry enable predictive 
safety diagnostics by detecting degradation trends before safety limits are exceeded (Fish 
& Athavale, 2024). Such hardware-assisted mechanisms form a crucial bridge between 
abstract safety requirements and real-time AI behavior. 

3.5 Implications for Safety Certification and Regulatory Practice 

The integration of AI into safety-critical automotive systems necessitates a shift from static 
certification toward continuous safety assurance. Regulators and standardization bodies 
increasingly recognize the need for adaptive safety cases that evolve with software 
updates and model retraining (Kabir et al., 2024; Razdan et al., 2025). This has 
implications for certification processes, supplier responsibility, and post-deployment 
monitoring obligations. 

The alignment of ISO 26262 with emerging AI governance frameworks underscores the 
importance of cross-layer collaboration between semiconductor designers, software 
engineers, and safety assessors to ensure end-to-end safety integrity (Ullrich et al., 
2024). 

Overall, ISO 26262 remains a foundational framework for automotive functional safety, 
yet its traditional assumptions are increasingly strained by AI-driven system behaviors.  

The non-deterministic and data-dependent nature of machine learning necessitates 
methodological extensions encompassing AI-specific lifecycle phases, probabilistic 
assurance techniques, and runtime monitoring mechanisms.  

Emerging semiconductor architectures provide essential hardware support for predictive 
safety diagnostics, enabling ISO 26262 principles to be upheld in intelligent automotive 
systems.  

Ultimately, the effective integration of AI within functional safety frameworks will depend 
on co-evolving standards, semiconductor innovation, and rigorous safety engineering 
practices. 
 
4. PREDICTIVE SAFETY DIAGNOSTICS: CONCEPT AND REQUIREMENTS 

Predictive safety diagnostics represents a transformative approach in automotive 
systems, particularly in AI-driven architectures, by enabling proactive detection and 
mitigation of potential faults before they escalate into critical failures (Michailidis et al., 
2025; Gumiel, 2024).  

Unlike traditional reactive safety mechanisms, predictive diagnostics integrates machine 
learning (ML), sensor fusion, and system-level monitoring to forecast failures, optimize 
maintenance schedules, and enhance vehicle reliability (Ezukwoke, 2023; Acharya, 
2025).  

This approach is particularly critical for software-defined and zonal vehicle architectures, 
where the interdependencies between ECUs, AI subsystems, and safety-critical 
components demand continuous assessment and adaptive safety strategies 
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(Chandrashekaraiah, 2025a; Razdan et al., 2025).The purpose of this section is to 
explore the conceptual framework, system requirements, enabling technologies, and 
operational considerations for predictive safety diagnostics in AI-enabled automotive 
systems, ensuring alignment with ISO 26262 functional safety standards (Iyenghar et al., 
2024; Ullrich et al., 2024). 

4.1 Conceptual Framework of Predictive Safety Diagnostics 

Predictive safety diagnostics can be conceptualized as a multi-layered system integrating 
sensor networks, data acquisition, ML algorithms, and safety monitors to provide real-
time risk assessment and fault prognosis (Adewale, 2025; Hegde et al., 2025). The 
framework typically involves: 

● Data Acquisition Layer: Real-time telemetry from ECUs, sensors, and vehicle-to-
cloud communication channels (Chandrashekaraiah, 2025b; Fish & Athavale, 
2024). 

● Processing Layer: On-chip or edge AI modules executing ML-based anomaly 
detection, predictive maintenance, and degradation modeling (Dini et al., 2024; 
Chakraborty et al., 2024). 

● Decision Layer: Safety controllers integrating predictive insights with ISO 26262 
safety goals to generate corrective actions (Kabir et al., 2024; Razdan, 2025). 

● Feedback Layer: Continuous learning loops that refine diagnostic models and 
improve prediction accuracy over the vehicle lifecycle (Perez-Cerrolaza et al., 2024; 
Ezukwoke, 2023). 

Table 3: Conceptual Blocks and Functional Overview of Predictive Safety 
Diagnostics 

Functional 
Block 

Data Source ML Techniques 
Safety 

Outcome 
ISO 26262 
Alignment 

Sensor & 
Telemetry 
Acquisition 

ECUs, CAN/LIN 
buses, V2V, 
V2X 

Signal filtering, 
anomaly pre-
processing 

Fault detection, 
data integrity 

Part 6 – 
Hardware Safety 

Edge/On-chip 
Processing 

GPU/NPU 
cores, AI 
accelerators 

Deep learning, 
probabilistic models, 
hybrid physics-ML 

Fault prognosis, 
degradation 
modeling 

Part 8 – ASIL-
based safety 
analysis 

Safety Decision 
Engine 

Safety 
controllers, 
ECUs 

Rule-based + 
predictive ML 
ensemble 

Real-time 
corrective 
actions 

Part 9 – Safety 
validation & 
verification 

Feedback & 
Model 
Adaptation 

Cloud telemetry, 
fleet data 

Online learning, 
reinforcement 
learning 

Improved 
predictive 
accuracy 

Part 4 – 
Functional safety 
concept 

4.2 System Requirements for Predictive Safety Diagnostics 

Implementation of predictive diagnostics in automotive systems requires stringent 
technical, functional, and regulatory requirements to ensure safety, reliability, and 
compliance (Nuruzzaman, 2025; Pandey, 2025).  



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 58 Issue: 12:2025 
DOI: 10.5281/zenodo.17996221 

Dec 2025 | 305 

Key requirements include: 

1. Real-time Performance: Diagnostics must operate within millisecond-scale latency 
to prevent safety-critical failures in braking, steering, or powertrain systems (Arthur 
et al., 2022). 

2. Explainability and Transparency: ML-based predictions must provide interpretable 
outputs for validation and certification processes (Iyenghar et al., 2024; Ullrich et al., 
2024). 

3. Scalability and Adaptability: Systems should handle varying vehicle configurations, 
software updates, and sensor modalities (Chakravarthi & Koteshwar, 2025). 

4. Data Integrity and Security: Secure telemetry and encrypted communication 
channels are required to prevent false triggers or malicious interference 
(Shrivastwa, 2023; Chandrashekaraiah, 2025b). 

5. Safety Lifecycle Integration: Predictive diagnostics must seamlessly integrate with 
ISO 26262 safety lifecycle phases, from concept through production and 
decommissioning (Kabir et al., 2024; Razdan et al., 2025). 

Table 4: Requirements Matrix for Predictive Safety Diagnostics 

Requirement Performance Metric ML/Hardware Solution ISO 26262 Clause 

Real-time 
Performance 

Latency < 10 ms 
Edge AI accelerators, 
TPU/NPU cores 

Part 6 – HW Safety 

Explainability 
Model interpretability 
score > 0.8 

SHAP, LIME, decision 
trees 

Part 8 – Safety 
Analysis 

Scalability Support 50+ ECU types Modular ML pipelines 
Part 4 – Functional 
Safety Concept 

Data Security 
End-to-end encryption, 
access control 

Secure V2X protocols, 
hardware root of trust 

Part 5 – Software 
Safety 

Safety Lifecycle 
Integration 

Continuous monitoring & 
ASIL validation 

ML-based predictive 
maintenance dashboards 

Part 9 – Verification 
& Validation 

4.3 Enabling Machine Learning Techniques 

ML is the core enabler of predictive safety diagnostics.  

Techniques are selected based on fault type, predictability horizon, and safety criticality: 

● Probabilistic Graphical Models (PGM): Efficient for fault causality and multivariate 
dependencies (Ezukwoke, 2023). 

● Deep Neural Networks (DNNs): Suitable for pattern recognition in sensor-rich 
environments; risk of non-deterministic behavior must be mitigated (Adewale, 2025). 

● Hybrid Physics–ML Models: Combine system physics with ML for improved 
reliability predictions and interpretability (Chakraborty et al., 2024). 

● Online & Reinforcement Learning: Enable adaptive diagnostics for software-defined 
vehicles and evolving operational conditions (Dini et al., 2024). 
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Figure 2: ML-Based Fault Probability Over Time: Predictive vs Reactive 
Diagnostics with Lead-Time Risk Reduction. 

4.4 Integration with ISO 26262 Functional Safety 

Predictive safety diagnostics must be harmonized with ISO 26262 to ensure compliance 
and ASIL-conforming safety levels: 

● Hazard Analysis and Risk Assessment (HARA): ML-based diagnostics feed real-
time risk scores into ASIL determination (Iyenghar et al., 2024). 

● ASIL Decomposition & Safety Goals: Predictive alerts can trigger mitigations aligned 
with vehicle-level safety objectives (Kabir et al., 2024). 

● Verification & Validation (V&V): Requires combined simulation, X-in-the-loop 
testing, and in-field telemetry validation (Hegde et al., 2025; Ullrich et al., 2024). 

4.5 Operational Considerations and Challenges 

Successful deployment of predictive diagnostics involves overcoming several operational 
challenges: 

● Data Quality and Sensor Redundancy: Ensuring accurate, continuous data streams 
and mitigating sensor failures (Michailidis et al., 2025). 

● Computational Constraints: Balancing model complexity with on-chip latency, 
power, and thermal constraints (Chakravarthi & Koteshwar, 2025). 

● Model Generalization and Adaptation: Handling diverse vehicle variants, software 
updates, and environmental conditions (Razdan et al., 2025). 

● Regulatory Acceptance: Certification of ML-driven predictive diagnostics remains a 
critical hurdle (Ullrich et al., 2024; Perez-Cerrolaza et al., 2024). 
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In summary, Predictive safety diagnostics represents a critical paradigm shift in 
automotive functional safety, offering proactive fault detection and mitigation in AI-driven 
systems. The integration of ML techniques, advanced semiconductor architectures, and 
ISO 26262-aligned processes enables enhanced vehicle reliability, safety, and 
operational efficiency. The combination of sensor fusion, predictive algorithms, and safety 
decision engines provides measurable improvements over traditional reactive 
mechanisms, paving the way for next-generation software-defined, zonal vehicle 
architectures (Chandrashekaraiah, 2025a; Razdan, 2025; Gumiel, 2024). 
 
5. MACHINE LEARNING TECHNIQUES FOR SAFETY-ORIENTED DIAGNOSTICS 

The increasing complexity of AI-driven automotive systems has heightened the demand 
for predictive safety diagnostics that can detect faults proactively and ensure compliance 
with ISO 26262 functional safety standards. Traditional diagnostic mechanisms, including 
threshold-based monitoring and on-board diagnostics (OBD-II), often fall short in 
anticipating latent faults, particularly in software-defined and zonal vehicle architectures 
(Michailidis et al., 2025; Gumiel, 2024). Machine learning (ML) techniques provide an 
opportunity to enhance fault detection, prediction, and prognosis by leveraging large 
volumes of real-time vehicle data to identify anomalies, predict failures, and improve 
system reliability (Ezukwoke, 2023; Adewale). This section explores the state-of-the-art 
ML methods for safety-oriented diagnostics, detailing their mechanisms, advantages, and 
limitations in the context of automotive functional safety. 

5.1 Anomaly Detection-Based Diagnostics 

Anomaly detection involves identifying deviations from normal operational behavior, 
which may indicate potential safety hazards. In AI-driven vehicles, this technique 
leverages sensor fusion data, telematics, and historical operational logs to detect unusual 
patterns (Hegde et al., 2025).  

Methods such as autoencoders, one-class SVMs, and isolation forests have shown 
effectiveness in detecting rare or unforeseen faults without requiring extensive fault-
labeled datasets (Iyenghar et al., 2024).  

These techniques are particularly useful in monitoring powertrain systems, braking 
subsystems, and vehicle-to-vehicle communication networks, where traditional 
deterministic safety checks are insufficient (Chakraborty et al., 2024; Acharya, 2025). 

Advantages: 

● Capable of detecting previously unseen fault modes. 

● Adaptable to diverse subsystems without redesigning diagnostic logic. 

Limitations: 

● High sensitivity to noise may generate false positives. 

● Requires careful calibration to meet ASIL requirements (Kabir et al., 2024). 
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5.2 Predictive Maintenance and Prognostics 

Predictive maintenance relies on forecasting component failures before they occur, 
allowing proactive interventions (Razdan et al., 2025). Techniques include time-series 
analysis, recurrent neural networks (RNNs), long short-term memory networks (LSTMs), 
and probabilistic graphical models (Ezukwoke, 2023; Shrivastwa, 2023). By modeling the 
degradation trends of sensors, actuators, and electronic control units (ECUs), ML 
algorithms can provide a quantitative estimate of remaining useful life (RUL), which is 
critical for maintaining vehicle safety and compliance (Adewale). 

Applications in Automotive Systems: 

● Battery management in electric vehicles (EVs) 

● Power electronics converters in hybrid powertrains (Chakraborty et al., 2024) 

● Early detection of actuator drift in autonomous driving modules 

5.3 Hybrid Physics–ML Models 

Hybrid approaches combine physical models of vehicle subsystems with machine 
learning predictions, integrating domain knowledge with data-driven insights (Dini et al., 
2024). This strategy improves explainability, a key requirement for ISO 26262 compliance 
by ensuring that predictions align with known physical laws (Perez-Cerrolaza et al., 2024).  

For example, combining vehicle dynamics equations with neural network predictions 
enhances fault localization in steering and suspension subsystems, while maintaining 
interpretability for safety certification (Ullrich et al., 2024). 

Benefits: 

● Reduces black-box uncertainty. 

● Facilitates regulatory and safety audits. 

Challenges: 

● Requires accurate physical modeling and sufficient training data. 

● Increased computational complexity may affect real-time performance. 

5.4 Uncertainty Quantification and Safety Assurance 

Machine learning models can produce uncertain or probabilistic outputs. For safety-
critical automotive diagnostics, uncertainty quantification (UQ) is essential to avoid 
misclassification of faults that could compromise safety (Hegde et al., 2025).  

Methods such as Bayesian neural networks, Monte Carlo dropout, and ensemble learning 
allow systems to quantify confidence in predictions (Ezukwoke, 2023; Rech, 2024).  

By integrating UQ, automotive ML systems can trigger fail-safe mechanisms or 
redundancy protocols when confidence is low, thereby enhancing compliance with ISO 
26262 safety goals (Kabir et al., 2024; Pandey, 2025). 
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5.5 Real-Time Embedded Diagnostics 

Deploying ML algorithms on embedded AI accelerators within semiconductor chips 
enables real-time safety monitoring across vehicle subsystems (Chandrashekaraiah, 
2025a; Chakravarthi & Koteshwar, 2025).  

Techniques such as quantized neural networks, federated learning, and incremental 
learning allow continuous adaptation without violating safety integrity levels (Adewale; 
Dini et al., 2024).  

Real-time ML-based diagnostics are particularly effective in vehicle-to-vehicle (V2V) and 
vehicle-to-cloud communication frameworks, where latency-sensitive predictions are 
required for collision avoidance and system health monitoring (Chandrashekaraiah, 
2025b; Razdan, 2025). 

5.6 Explainable AI for Functional Safety 

Explainability ensures that ML predictions can be interpreted by engineers and auditors, 
a critical requirement for ISO 26262 compliance (Iyenghar et al., 2024; Ullrich et al., 
2024).  

Techniques such as SHAP values, LIME, and attention mechanisms are integrated into 
diagnostic pipelines to provide transparency regarding fault detection, anomaly sources, 
and decision-making rationale (Perez-Cerrolaza et al., 2024; Acharya, 2025).  

Explainable ML models also enable cross-layer safety verification, ensuring that 
predictions at the sensor, control, and system levels are coherent. 

In summary, Machine learning techniques for safety-oriented diagnostics offer 
transformative potential for AI-driven automotive systems by enabling proactive, 
accurate, and explainable fault detection.  

Approaches ranging from anomaly detection to hybrid physics–ML models, uncertainty 
quantification, real-time embedded analytics, and explainable AI collectively strengthen 
the predictive safety capabilities of vehicles while supporting ISO 26262 compliance.  

Despite challenges related to computational constraints, data quality, and model 
interpretability, ML-based diagnostic systems represent a key enabler for next-generation 
automotive safety, laying the foundation for autonomous and highly connected vehicles 
(Hegde et al., 2025; Chandrashekaraiah, 2025b; Razdan et al., 2025). 
 
6. SEMICONDUCTOR-LEVEL ENABLEMENT OF PREDICTIVE SAFETY 

The evolution of AI-driven automotive systems has necessitated a paradigm shift in 
semiconductor design, particularly for predictive safety applications aligned with ISO 
26262 standards (Kabir et al., 2024; Arthur et al., 2022).  

Traditional safety mechanisms—such as passive fault detection, threshold monitoring, or 
watchdog timers—are insufficient for complex, software-defined vehicular architectures 
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where multiple AI and ML modules operate concurrently (Chakravarthi & Koteshwar, 
2025; Chandrashekaraiah, 2025a).  

Semiconductor-level enablement involves embedding predictive diagnostic capabilities 
directly into the hardware substrate, enabling real-time fault detection, self-monitoring, 
and reliability assurance. This section explores hardware-assisted safety mechanisms, 
secure-by-design architectures, lifecycle management, and emerging semiconductor 
enablers critical to predictive safety in AI-driven vehicles. 

6.1 Hardware-Assisted Safety Mechanisms 

Modern automotive semiconductors integrate dedicated safety cores, lockstep 
processors, and redundant execution units to enhance fault tolerance 
(Chandrashekaraiah, 2025b; Fish & Athavale, 2024). These features provide continuous 
monitoring of control logic, sensor data processing, and AI inference operations, allowing 
early detection of deviations from expected safety behavior.  

Examples include: 

● Lockstep cores: Dual or triple cores executing identical instructions simultaneously 
to detect computational errors (Gumiel, 2024). 

● Embedded safety islands: Isolated regions in SoCs dedicated to monitoring critical 
safety functions and generating alerts upon anomaly detection (Chakravarthi & 
Koteshwar, 2025). 

● Hardware-based runtime monitors: These monitor memory access patterns, signal 
integrity, and timing violations in real-time, reducing reaction time compared to 
software-only monitoring (Hegde et al., 2025). 

The integration of these mechanisms with ML-driven predictive models enables proactive 
identification of potential safety violations before they manifest as critical failures, 
enhancing compliance with ISO 26262 safety lifecycle requirements (Iyenghar et al., 
2024). 

6.2 Silicon Lifecycle Management for Predictive Safety 

Silicon Lifecycle Management (SLM) encompasses design, deployment, and in-field 
monitoring to maintain reliability throughout the operational life of the semiconductor (Fish 
& Athavale, 2024; Dini et al., 2024).  

Key components include: 

● Telemetry-enabled chips: Collect real-time performance and health data, feeding 
ML models for predictive diagnostics (Chandrashekaraiah, 2025a). 

● Firmware-level safety updates: Allow dynamic recalibration of safety thresholds 
based on observed environmental and operational conditions (Pandey, 2025). 

● End-of-life prediction: ML-based analytics can forecast chip degradation or failure 
probability, supporting preventive maintenance strategies (Ezukwoke, 2023). 
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Figure 3: Chip Health Index Over Time: Reactive vs ML Based Predictive 
Monitoring. 

6.3 Secure-by-Design Semiconductor Architectures 

Ensuring functional safety at the silicon level is closely tied to cybersecurity measures, as 
AI/ML modules are susceptible to adversarial inputs or malicious interference 
(Shrivastwa, 2023; Chandrashekaraiah, 2025b). Secure-by-design strategies include: 

● Role-based access control and secure boot sequences to prevent unauthorized 
firmware changes (Pandey, 2025). 

● Cryptographic modules embedded within the chip to verify integrity of data 
exchanged between sensors, controllers, and AI inference units (Chakraborty et al., 
2024). 

● Isolation of safety-critical paths to prevent cross-domain interference between AI-
driven and conventional control functions (Kabir et al., 2024). 

These approaches enhance trustworthiness of ML-based predictive diagnostics while 
aligning with safety certification requirements. 

6.4 Embedded AI Accelerators for Predictive Safety 

Integration of AI accelerators (NPUs, TPUs, or GPU clusters) directly into automotive 
SoCs allows real-time execution of ML safety models with minimal latency 
(Chandrashekaraiah, 2025a; Dini et al., 2024). Critical capabilities include: 

● Low-latency inferencing: Ensures rapid identification of hazardous states. 

● Energy-efficient ML computation: Reduces thermal stress on safety-critical 
components. 

● Edge-based diagnostics: Enables in-vehicle ML analytics without dependence on 
cloud connectivity, supporting resilience and autonomy (Adewale, 2025; 
Michailidis et al., 2025). 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 58 Issue: 12:2025 
DOI: 10.5281/zenodo.17996221 

Dec 2025 | 312 

 

Figure 4: Latency and Energy Consumption Across AI Acceleration for Predictive 
Diagnostics 

6.5 Integration of Predictive Models with Safety Mechanisms 

The full potential of semiconductor-level predictive safety is realized when hardware-
assisted mechanisms, AI accelerators, and lifecycle telemetry are co-designed with ML-
based predictive models (Hegde et al., 2025; Acharya, 2025). Examples include: 

● Anomaly detection algorithms operating directly on sensor data streams at chip 
level. 

● Probabilistic failure prediction models embedded in silicon to trigger preemptive 
safety measures (Ezukwoke, 2023). 

● Cross-layer monitoring frameworks combining chip-level indicators with system-
level safety verification (Razdan et al., 2025). 

Table 5: Semiconductor Safety Features and Their Role in ML-Enabled Predictive 
Functional Safety under ISO 26262 

Semiconductor 
Feature 

Function 
Predictive Safety 

Role 
ISO 26262 
Alignment 

ML Integration 

Lockstep cores 
Dual/triple 
execution 

Detect computational 
faults 

ASIL D 
compliance 

Runs ML 
anomaly 
detection in 
parallel 

Safety islands 
Isolated 
monitoring 

Prevents interference 
Safety goals 
verification 

Continuous 
predictive 
monitoring 
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AI accelerators 
(NPU/GPU) 

Low-latency 
ML inferencing 

Real-time fault 
prediction 

Supports 
lifecycle hazard 
analysis 

On-chip 
predictive failure 
models 

Telemetry-enabled 
chips 

Data collection 
Health monitoring & 
trend analysis 

Safety lifecycle 
monitoring 

Feeds ML 
predictive models 

Secure boot & 
cryptography 

Firmware 
integrity 

Cybersecurity for ML 
systems 

Freedom from 
interference 

Ensures 
trustworthy ML 
execution 

Firmware updates 
Dynamic 
calibration 

Adjust thresholds 
based on observed 
conditions 

Functional safety 
maintenance 

Updates ML 
models for 
adaptive safety 

In sum, Semiconductor-level enablement of predictive safety integrates hardware-
assisted safety cores, lifecycle telemetry, secure architectures, AI accelerators, and ML-
driven models to enhance proactive fault detection in AI-driven automotive systems. This 
co-design approach addresses the challenges of real-time monitoring, ISO 26262 
compliance, and lifecycle reliability, enabling vehicles to operate safely in increasingly 
complex operational environments (Chandrashekaraiah, 2025a; Hegde et al., 2025; 
Pandey, 2025). Future research must focus on optimizing cross-layer co-design 
strategies, latency reduction, and standardized safety metrics for AI-driven chips. 
 
7. VALIDATION, VERIFICATION, AND ASSURANCE CHALLENGES 

Ensuring functional safety in AI-driven automotive systems necessitates rigorous 
validation, verification (V&V), and assurance processes. Traditional ISO 26262-compliant 
verification methodologies are designed for deterministic electronic control units (ECUs) 
and software components.  

However, machine learning (ML) models introduce non-determinism, adaptive behavior, 
and data-dependent performance, creating challenges for conventional V&V techniques 
(Iyenghar et al., 2024; Ullrich et al., 2024). In AI-augmented semiconductor architectures, 
safety assurance requires cross-layer strategies, integrating hardware, firmware, and 
software validation, along with continuous monitoring and in-field diagnostics 
(Chandrashekaraiah, 2025b; Hegde et al., 2025). This section examines the primary 
challenges, emerging methodologies, and best practices for V&V of ML-enabled 
predictive safety systems. 

7.1. Complexity of AI-Driven Systems 

AI-enabled automotive systems involve multi-domain integration, including perception, 
decision-making, and actuation. These systems rely on heterogeneous hardware-
software architectures, including GPUs, NPUs, and software-defined zones (Chakravarthi 
& Koteshwar, 2025; Cirstea et al., 2024). The non-deterministic outputs of ML models 
create difficulties in verifying behavior under all operational conditions (Acharya, 2025). 
Safety-critical decisions, such as emergency braking or lane-keeping, cannot tolerate 
model unpredictability, highlighting the need for explainable ML and formal verification 
techniques (Rech, 2024; Perez-Cerrolaza et al., 2024). 
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7.2. Limitations in Traditional Verification Approaches 

ISO 26262 standard emphasizes structured V&V activities, including unit testing, 
integration testing, and system-level verification (Kabir et al., 2024). However, these 
approaches face limitations with ML-driven systems: 

● Scenario Coverage: Testing all operational and edge cases is computationally 
infeasible for ML models (Michailidis et al., 2025). 

● Dynamic Behavior: ML models can evolve due to online learning or retraining, 
invalidating static test suites (Ezukwoke, 2023; Shrivastwa, 2023). 

● Traceability and Certification: Mapping ML model decisions to safety goals is 
challenging due to opaque internal representations (Iyenghar et al., 2024; Ullrich et 
al., 2024). 

7.3. Hardware-Software Co-Verification Challenges 

The integration of semiconductor-level monitoring with AI models introduces further 
complexity. SoC-level verification must account for: 

● Fault propagation from hardware defects to software decisions (Chakraborty et al., 
2024). 

● Real-time constraints limiting exhaustive testing of ML inference pipelines (Pandey, 
2025). 

● Ensuring secure, safety-aware IST (In-System Test) architectures are compatible 
with predictive ML diagnostics (Chandrashekaraiah, 2025b). 

Table 7: Key AI/ML Safety Assurance Challenges, Impacts, and Emerging 
Mitigation Approaches in ISO 26262–Aligned Systems 

Challenge 
Category 

Specific 
Challenge 

Impact on 
Safety 

Assurance 
Emerging Solutions References 

ML Non-
Determinism 

Model outputs 
vary with small 
input 
perturbations 

Reduced 
predictability, 
potential ASIL 
violations 

Formal verification, 
uncertainty 
estimation, 
explainable AI 

Iyenghar et al., 
2024; Rech, 
2024 

Scenario 
Coverage 

Infinite possible 
driving 
scenarios 

Incomplete 
testing, hidden 
failure modes 

Simulation-based 
validation, synthetic 
datasets, edge-case 
scenario generation 

Michailidis et 
al., 2025; 
Adewale 

Hardware-
Software 
Integration 

Faults 
propagate from 
chip to AI 
inference 

System-level 
safety risks 

Hardware-in-the-loop 
(HIL), X-in-the-loop 
testing, silicon 
lifecycle monitoring 

Chakraborty et 
al., 2024; Fish 
& Athavale, 
2024 

Lifecycle 
Updates 

Continuous 
model retraining 

Invalidates pre-
deployment V&V 

Online monitoring, 
incremental 
validation, rollback 
mechanisms 

Ezukwoke, 
2023; 
Shrivastwa, 
2023 
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Explainability & 
Traceability 

Opaque ML 
decision-making 

Difficult to certify, 
weak regulatory 
compliance 

Model interpretability 
frameworks, logging, 
audit trails 

Ullrich et al., 
2024; Perez-
Cerrolaza et 
al., 2024 

Standardization 
Gaps 

Lack of AI-
specific ISO 
26262 
extensions 

Uncertainty in 
compliance and 
certification 

Collaborative 
standardization, AI-
specific V&V 
guidelines 

Kabir et al., 
2024; Acharya, 
2025 

7.4. Emerging V&V Methodologies 

To address these challenges, several methodologies are being explored: 

1. X-in-the-loop Testing: Combines software-in-the-loop, hardware-in-the-loop, and 
model-in-the-loop validation to capture multi-layer interactions (Hegde et al., 2025; 
Jenihhin et al., 2025). 

2. Formal Verification for ML Models: Uses mathematical proofs to ensure safety-
critical properties are met under bounded inputs (Rech, 2024; Chandrashekaraiah, 
2025a). 

3. Probabilistic and Statistical Testing: Evaluates system behavior under distributions 
of operational conditions rather than deterministic test vectors (Ezukwoke, 2023; 
Michailidis et al., 2025). 

4. Continuous Assurance Frameworks: Leverage telemetry and in-field diagnostics to 
verify and validate systems post-deployment, ensuring evolving ML models maintain 
compliance (Chandrashekaraiah, 2025b; Fish & Athavale, 2024). 

7.5. Regulatory and Standardization Considerations 

The integration of predictive ML diagnostics in safety-critical automotive systems exposes 
gaps in current standards: 

● ISO 26262 provides foundational guidelines, but lacks specific requirements for non-
deterministic ML behavior (Kabir et al., 2024; Ullrich et al., 2024). 

● Standards organizations and consortia are beginning to propose AI-specific 
extensions, including safety lifecycle phases tailored for machine learning models 
(Acharya, 2025; Perez-Cerrolaza et al., 2024). 

● Effective certification requires cross-disciplinary collaboration among 
semiconductor designers, AI engineers, and functional safety assessors 
(Chandrashekaraiah, 2025a; Chakravarthi & Koteshwar, 2025). 

In summary, Validation, verification, and assurance of AI-driven automotive systems 
present multi-layered challenges arising from non-deterministic behavior, complex 
hardware-software interactions, and evolving ML models. Addressing these challenges 
requires integrated approaches, combining formal methods, X-in-the-loop testing, 
probabilistic validation, and continuous assurance strategies. While ISO 26262 remains 
foundational, emerging AI-specific safety and assurance frameworks are essential to 
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maintain reliability, compliance, and operational safety in next-generation vehicles 
(Iyenghar et al., 2024; Hegde et al., 2025; Chandrashekaraiah, 2025b). 
 
8. INDUSTRY IMPLICATIONS AND EMERGING RESEARCH DIRECTIONS 

The integration of machine learning (ML)–enabled predictive safety diagnostics within 
emerging semiconductor architectures presents transformative opportunities and 
challenges for the automotive industry. As AI-driven vehicle systems become increasingly 
complex and software-defined, stakeholders including OEMs, Tier-1 suppliers, 
semiconductor vendors, and regulatory bodies must adapt to maintain compliance with 
functional safety standards (ISO 26262) while ensuring operational reliability and security 
(Arthur et al., 2022; Kabir et al., 2024). This section explores the industry-wide 
implications of these technological advancements and identifies key emerging research 
directions necessary to support safe, reliable, and scalable deployment of AI-driven 
automotive systems. 

8.1 Implications for Automotive OEMs and System Integrators 

OEMs and system integrators face significant shifts in design, verification, and operational 
practices due to the introduction of predictive safety diagnostics at the silicon level. 
Traditional ECU-centric designs are increasingly replaced by zonal and SoC-based 
architectures, which demand co-design approaches integrating functional safety, ML 
models, and hardware constraints (Chakravarthi & Koteshwar, 2025; Cirstea et al., 2024). 

● Impact on design cycles: Predictive diagnostics require continuous monitoring and 
adaptive model updates, affecting design timelines and system validation strategies 
(Chandrashekaraiah, 2025a). 

● Operational readiness: OEMs must develop capabilities for over-the-air (OTA) 
model updates while maintaining certification compliance, necessitating robust 
software and hardware lifecycle management (Fish & Athavale, 2024). 

8.2 Implications for Semiconductor Vendors 

Semiconductor vendors are now tasked with integrating functional safety and ML 
capabilities directly into hardware, ensuring that AI-driven diagnostics are both reliable 
and explainable (Chandrashekaraiah, 2025b; Chakraborty et al., 2024).  

Key implications include: 

● Safety-by-design features: Embedding safety monitors, redundancy, and real-time 
error detection within SoCs (Pandey, 2025). 

● Lifecycle management and telemetry: Continuous monitoring of hardware health 
and ML inference accuracy throughout the product lifecycle (Fish & Athavale, 2024). 

● Cross-domain collaboration: Increased engagement with automotive software 
developers to ensure seamless integration of AI safety functionalities (Hegde et al., 
2025). 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 58 Issue: 12:2025 
DOI: 10.5281/zenodo.17996221 

Dec 2025 | 317 

8.3 Standardization and Regulatory Considerations 

The evolution of predictive safety diagnostics challenges existing functional safety 
standards, particularly ISO 26262, which was initially designed for deterministic systems.  

Recent research emphasizes the need for AI-specific lifecycle extensions and verification 
methodologies (Iyenghar et al., 2024; Ullrich et al., 2024).  

Implications for the industry include: 

● Regulatory compliance: OEMs and suppliers must document ML model validation, 
uncertainty quantification, and failure mode analysis to satisfy ISO 26262 and 
related standards (Acharya, 2025; Perez-Cerrolaza et al., 2024). 

● Global harmonization: Emerging automotive markets require consistent guidelines 
for AI safety assurance to facilitate international deployment of AI-enabled vehicles 
(Kabir et al., 2024). 

8.4 Emerging Research Directions in AI-Driven Automotive Safety 

Despite progress, several critical research areas remain to ensure reliable and scalable 
adoption of predictive safety diagnostics: 

1. Explainable and trustworthy AI for safety-critical applications: ML models must 
provide interpretable predictions to support validation and auditing processes (Rech, 
2024; Ezukwoke, 2023). 

2. Cross-layer safety co-design: Coordinating hardware, firmware, and ML software 
layers to optimize fault detection and mitigation strategies (Chakraborty et al., 2024). 

3. Data-centric safety validation: Research into synthetic datasets, federated learning, 
and edge telemetry is crucial to reduce reliance on large-scale physical testing (Dini 
et al., 2024; Adewale). 

4. Integration of cybersecurity and functional safety: Investigating joint safety-security 
frameworks to protect AI-driven diagnostics against adversarial attacks (Shrivastwa, 
2023; Chandrashekaraiah, 2025b). 

5. Standardization of AI safety metrics: Developing quantitative metrics to evaluate 
predictive diagnostics performance under real-world operational conditions (Razdan 
et al., 2025; Ullrich et al., 2024). 

8.5 Implications for the Broader Automotive Ecosystem 

The adoption of predictive ML-enabled diagnostics has far-reaching consequences 
across the automotive ecosystem: 

● Supply chain adaptation: Suppliers must provide semiconductors, sensors, and 
software components capable of supporting continuous predictive safety monitoring 
(Glaser et al.; Chakravarthi & Koteshwar, 2025). 
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● Workforce upskilling: Engineers and technicians require expertise in ML, embedded 
systems, and safety-critical design to manage AI-enabled vehicle platforms 
(Nuruzzaman, 2025; Razdan, 2025). 

● Consumer trust and acceptance: Enhanced safety diagnostics improve vehicle 
reliability, potentially increasing consumer confidence in autonomous and semi-
autonomous vehicles (Michailidis et al., 2025; Gumiel, 2024). 

In sum, the convergence of emerging semiconductor architectures, machine learning, and 
functional safety standards presents transformative opportunities for automotive safety 
and system reliability. While the industry implications necessitate redesign of hardware, 
software, and regulatory processes, emerging research directions—including explainable 
AI, cross-layer co-design, data-centric validation, and integrated safety-security 
frameworks—will be critical in enabling safe, trustworthy, and scalable deployment of AI-
driven predictive diagnostics (Chandrashekaraiah, 2025a; Kabir et al., 2024; Rech, 2024). 
Continued collaboration across OEMs, semiconductor vendors, and standards 
organizations will determine the pace at which these innovations achieve real-world 
impact. 
 
9. CONCLUSION 

The rapid evolution of AI-driven automotive systems necessitates a fundamental 
rethinking of semiconductor architecture, functional safety, and predictive diagnostics. 
Traditional reactive fault detection and control mechanisms are increasingly inadequate 
for complex, software-defined and zonal vehicle architectures, particularly when AI and 
machine learning models introduce non-deterministic behaviors (Iyenghar et al., 2024; 
Ullrich et al., 2024). 

This article has highlighted the critical role of emerging semiconductor designs, including 
heterogeneous SoC integration, hardware-accelerated AI processing, and embedded 
safety islands, in enabling predictive safety diagnostics that align with ISO 26262 
standards (Chakravarthi & Koteshwar, 2025; Chandrashekaraiah, 2025a; Fish & 
Athavale, 2024). By embedding machine learning capabilities directly within 
semiconductor platforms, it becomes possible to anticipate system-level faults, monitor 
component health in real time, and ensure continuous compliance with safety integrity 
requirements (Hegde et al., 2025; Michailidis et al., 2025). 

The integration of ML-based diagnostic algorithms with secure, safety-aware 
semiconductor designs represents a paradigm shift in automotive reliability and safety 
assurance. Techniques such as anomaly detection, probabilistic graphical modeling, and 
deep-learning-based prognostics enable predictive maintenance and preemptive fault 
mitigation, thereby reducing the likelihood of safety-critical failures in autonomous and 
semi-autonomous vehicles (Ezukwoke, 2023; Adewale; Rech, 2024). 

Despite these advances, significant challenges remain. Verification and validation of ML-
driven safety systems, real-time performance constraints, explainability, and 
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standardization across diverse vehicle platforms require continued research and industry 
collaboration (Fritz, 2019; Kabir et al., 2024; Ullrich et al., 2024). 

In conclusion, the convergence of emerging semiconductor architectures, ISO 26262-
aligned functional safety processes, and machine learning–based predictive diagnostics 
offers a transformative approach to enhancing automotive system reliability. As AI 
adoption in vehicles grows, a co-evolutionary focus on hardware, software, and safety 
standards will be essential to achieving robust, secure, and safe mobility solutions for the 
next generation of intelligent transportation systems (Razdan, 2025; Perez-Cerrolaza et 
al., 2024; Gumiel, 2024). 
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