E-Publication: Online Open Access

Vol: 57 Issue: 01:2024

DOI: 10.5281/zenodo.10559880

EVEN HAMMING DISTANCE LABELING OF SNAKE GRAPHS

E.ESAKKIAMMAL *

Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai. India. * Corresponding Author Email: esakkiammal2682@gmail.com

K.THIRUSANGU

Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai. India. Email: kthirusangu@gmail.com

S.SEETHALAKSHMI

Department of Mathematics, R.V. Govt. Arts College, Chengalpattu, Chennai, India. Email: seetha0687@gmail.com

Abstract

A function $f\colon V\to N\cup\{0\}$ is said to be even hamming distance labeling if there exist an induced function $f^*\colon E\to\{2,4,6,\dots n\}$ such that for every $uv\in E, f^*(uv)=hd([f(u)]_2,[f(v)]_2)$ satisfies the following conditions: (i) For every vertex $v\in V$, the set of all edges incident with v receive distinct even numbers as labels. (ii) For every edge e=uv, the adjacent vertices u and v receive distinct labels. The even hamming distance number of a graph G is defined as the least positive integer n such that $2^n-1\geq k$, where $k=\max\{f(v)/v\in V\}$ and is denoted by $\eta''_{hd}(G)$. In this paper we obtain the even hamming distance number of Triangular Snake graph, Alternate Triangular Snake, Quadrilateral Snake and Alternate Quadrilateral Snake.

Keywords: Even Hamming Distance Labeling, Even Hamming Distance Number, Triangular Snake Graph, Alternate Triangular Snake, Quadrilateral Snake and Alternate Quadrilateral Snake.

1. INTRODUCTION

A vertex labeling of a graph G is an assignment f of labels to the vertices of G that induces a label for every edge uv depending on the vertex labels f(u) and f(v)[1]. we introduced the concept of hamming distance labeling, odd hamming distance labeling and even hamming distance labeling. It has been proved that some Path related graphs admit hamming distance [2] and odd hamming distance labeling [3] and some cycle related graphs admit even hamming distance labeling [4]. In this paper, we show that some Snake related graphs admit even hamming distance labeling and their even hamming distance number were obtained. Here the Triangular Snake T_m is obtained from the Path T_m by replacing each edge of a Path by a Triangle T_m in which every alternate edge is replaced by T_m by a Quadrilateral Snake T_m is obtained from a Path T_m by replacing each edge of T_m by a Cycle T_m of T_m is obtained from a Path T_m by replacing each edge of T_m by a Cycle T_m and Alternate Quadrilateral Snake T_m is obtained from a Path T_m in which each alternate edge of T_m is replaced by a Cycle [5].

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 57 Issue: 01:2024

DOI: 10.5281/zenodo.10559880

2. EVEN HAMMING DISTANCE LABELLING OF SOME SNAKE GRAPHS

Theorem 2.1.The Triangular Snake graph T_{m_i} m ≥ 2 , is an even hamming distance labeled graph and the even hamming distance number is $\eta''_{hd}(T_m) = 8$.

Proof: Let us consider the Triangular Snake graph T_m with vertex set $V = \{v_i / 0 \le i \le 2m\}$ and edge set $E = \{\{v_i v_{i+1} / 0 \le i \le 2m - 1\} \cup \{v_0 v_2\} \cup \{v_{2i} v_{2i+2} / 1 \le i \le m - 1\}\}$. Define a function $f: V \to N \cup \{0\}$ to label the vertices of T_m in such a way that $f(u) \ne f(v)$ for any two adjacent vertices and the procedure for vertex labeling are explained in the following algorithm.

Procedure: Vertex labeling of Triangular Snake graph T_m .

Input: Triangular Snake graph.

$$V \leftarrow \{v_i / 0 \le i \le 2m\}$$
$$v_0 \leftarrow 1; v_1 \leftarrow 62;$$

for i = 1 to m do

$$v_{2i} \leftarrow \begin{cases} 13 & if \ i \equiv 1 (mod \ 4) \\ 242 & if \ i \equiv 2 (mod \ 4) \\ 2 & if \ i \equiv 3 (mod \ 4) \\ 253 & if \ i \equiv 0 (mod \ 4) \end{cases}$$

end for

for i = 1 to m - 1 do

$$v_{2i+1} \leftarrow \begin{cases} 50 & if \ i \equiv 1 \pmod{4} \\ 1 & if \ i \equiv 2,0 \pmod{4} \\ 61 & if \ i \equiv 3 \pmod{4} \end{cases}$$

end for

end procedure

Output: The labeled vertices of T_m graph.

The induced function $f^*: E \to \{2,4,6,...n\}$ for the given function f is defined by $f^*(uv) = hd([f(u)]_2, [f(v)]_2)$, where $uv \in E$. Now the induced edge labels are as follows:

$$f^*(v_0v_2) = hd([f(v_0)]_2, [f(v_2)]_2) = 2; f^*(v_0v_1) = hd([f(v_0)]_2, [f(v_1)]_2) = 6.$$

$$f^*(v_1v_2) = hd([f(v_1)]_2, [f(v_2)]_2) = 4.$$

For
$$2 \le i \le 2m - 1$$

Case (i): If $i \equiv 0 \pmod{2}$; $f^*(v_i v_{i+1}) = hd([f(v_i)]_2, [f(v_{i+1})]_2) = 6$.

Case (ii): If
$$i \equiv 1 \pmod{2}$$
; $f^*(v_i v_{i+1}) = hd([f(v_i)]_2, [f(v_{i+1})]_2) = 2$.

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 57 Issue: 01:2024

DOI: 10.5281/zenodo.10559880

For
$$1 \le i \le m-1$$

Case (i): If
$$i \equiv 1 \pmod{2}$$
; $f^*(v_{2i}v_{2(i)+2}) = hd([f(v_i)]_2, [f(v_{2(i)+2})]_2) = 8$.

Case (ii): If
$$i \equiv 0 \pmod{2}$$
; $f^*(v_{2i}v_{2(i)+2}) = hd([f(v_i)]_2, [f(v_{2(i)+2})]_2) = 4$.

From all the above cases, all the adjacent edges receive distinct even numbers as labels. Hence the Triangular Snake graph T_m , admits even hamming distance labeling and the even hamming distance number is $\eta''_{nd}(T_m) = 8$, $m \ge 2$.

Figure 1: Even Hamming Distance Labeled T_5 graph

Theorem 2.2.The Alternate Triangular Snake graph $A(T_m)$, $m \ge 2$, is an even hamming distance labeled graph and the even hamming distance number is $\eta''_{hd}(A(T_m)) = 8$, where m is a positive odd integer and the triangle starts from the first vertex.

Proof: Let us consider the Alternate Triangular Snake graph $A(T_m)$ with vertex set $V = \left\{\{u_i \ / 0 \le i \le m\} \cup \left\{v_i \ / 0 \le i \le \lfloor \frac{m}{2} \rfloor\right\}\right\}$ and edge set $E = \left\{\{u_i \ u_{i+1} \ / 0 \le i \le m-1\} \cup \left\{u_{2i} v_{\frac{2i}{2}} / 0 \le i \le \lfloor \frac{m}{2} \rfloor\right\}\right\} \cup \left\{v_i \ u_{2i+1} \ / 0 \le i \le \lfloor \frac{m}{2} \rfloor\right\}\right\}$. Define a function $f: V \to N \cup \{0\}$ to label the vertices of $A(T_m)$ in such a way that $f(u) \ne f(v)$ for any two adjacent vertices and the procedure for vertex labeling are explained in the following algorithm.

Procedure: Vertex labeling of Alternate Triangular Snake graph $A(T_m)$.

Input: Alternate Triangular Snake graph.

$$\begin{aligned} V &\leftarrow \left\{ \left\{ u_i / 0 \le i \le m \right\} \cup \left\{ v_i / 0 \le i \le \left\lfloor \frac{m}{2} \right\rfloor \right\} \right\} \\ u_0 &\leftarrow 1; v_0 \leftarrow 62; \end{aligned}$$

for i = 1 to m do

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 57 Issue: 01:2024

DOI: 10.5281/zenodo.10559880

$$u_i \leftarrow \begin{cases} 13 & if \ i \equiv 1 (mod4) \\ 242 & if \ i \equiv 2 (mod4) \\ 2 & if \ i \equiv 3 (mod4) \\ 253 & if \ i \equiv 0 (mod4) \end{cases}$$

end for

for
$$i = 1 to \lfloor \frac{m}{2} \rfloor$$
 do

$$v_i \leftarrow 1$$

end for

end procedure

Output: The labeled vertices of $A(T_m)$ graph.

Now the induced edge labels are as follows:

$$f^*(u_0u_1) = hd([f(u_0)]_2, [f(u_1)]_2) = 2; f^*(v_0u_1) = hd([f(v_0)]_2, [f(u_1)]_2) = 4.$$

For i = 0 to
$$\left[\frac{m}{2}\right]$$
; $f^*(u_{2i}v_{\frac{2i}{2}}) = hd([f(u_{2i})]_2, \left[f\left(v_{\frac{2i}{2}}\right)\right]_2) = 6$.

For i = 1 to
$$\lfloor \frac{m}{2} \rfloor$$
 do; $f^*(v_i u_{2i+1}) = hd([f(v_i)]_2, [f(u_{2i+1})]_2) = 2$.

For i = 1 to m-1

Case (i): If $i \equiv 1 \pmod{2}$; $f^*(u_i u_{i+1}) = hd([f(u_i)]_2, [f(u_{i+1})]_2) = 8$.

Case (ii): If
$$i \equiv 0 \pmod{2}$$
; $f^*(u_i u_{i+1}) = hd([f(u_i)]_2, [f(u_{i+1})]_2) = 4$.

From all the above cases, all the adjacent edges receive distinct even numbers as labels. Hence the Alternate Triangular Snake graph $A(T_m)$, admits even hamming distance labeling and the even hamming distance number is $\eta_{hd}^{"}(A(T_m)) = 8, m \ge 2$.

Figure 2: Even Hamming Distance Labeled $A(T_5)$ graph

Theorem 2.3. The Alternate Triangular Snake graph $A(T_m)$, $m \ge 2$, is an even hamming distance labeled graph and the even hamming distance number is $\eta''_{hd}(A(T_m)) = 8$, where m is a positive even integer and the Triangle starts from the first vertex.

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 57 Issue: 01:2024

DOI: 10.5281/zenodo.10559880

Proof: Let us consider the Alternate Triangular Snake graph $A(T_m)$ with vertex set $V = \left\{\{u_i \ / 0 \le i \le m\} \cup \left\{v_i \ / 0 \le i \le \frac{m}{2} - 1\right\}\right\}$ and edge set $E = \left\{\{u_i \ u_{i+1} \ / 0 \le i \le m - 1\} \cup \left\{u_{2i} v_{\frac{2i}{2}} / 0 \le i \le \frac{m}{2} - 1\right\} \cup \left\{v_i \ u_{2i+1} \ / 0 \le i \le \frac{m}{2} - 1\right\}\right\}$. Define a function $f: V \to N \cup \{0\}$ to label the vertices of $A(T_m)$ in such a way that $f(u) \ne f(v)$ for any two adjacent vertices and the procedure for labeling the vertices are explained in the following algorithm.

Procedure: Vertex labeling of Alternate Triangular Snake graph $A(T_m)$.

Input: Alternate Triangular Snake graph.

$$V \leftarrow \left\{ \left\{ u_i / 0 \le i \le m \right\} \cup \left\{ v_i / 0 \le i \le \frac{m}{2} - 1 \right\} \right\}$$

$$u_0 \leftarrow 1; v_0 \leftarrow 62;$$

for i = 1 to m do

$$u_i \leftarrow \begin{cases} 13 & if \ i \equiv 1 (mod4) \\ 242 & if \ i \equiv 2 (mod4) \\ 2 & if \ i \equiv 3 (mod4) \\ 253 & if \ i \equiv 0 (mod4) \end{cases}$$

end for

for
$$i = 1$$
 to $\frac{m}{2} - 1$ do

$$v_i \leftarrow 1$$

end for

end procedure

output: The labeled vertices of $A(T_m)$ graph.

Now the induced edge labels are as follows:

$$f^*(u_0u_1) = hd([f(u_0)]_2, [f(u_1)]_2) = 2; f^*(v_0u_1) = hd([f(v_0)]_2, [f(u_1)]_2) = 4.$$

For
$$i = 1$$
 to $\frac{m}{2} - 1$; $f^*(v_i u_{2i+1}) = hd([f(v_i)]_2, [f(u_{2i+1})]_2) = 2$.

For i = 0 to
$$\frac{m}{2} - 1$$
; $f^*(u_{2i}v_{\frac{2i}{2}}) = hd([f(u_{2i})]_2, [f(v_{\frac{2i}{2}})]_2) = 6$.

For i = 1 to m-1

Case (i): If
$$i \equiv 1 \pmod{2}$$
; $f^*(u_i u_{i+1}) = hd([f(u_i)]_2, [f(u_{i+1})]_2) = 8$.

Case (ii): If
$$i \equiv 0 \pmod{2}$$
; $f^*(u_i u_{i+1}) = hd([f(u_i)]_2, [f(u_{i+1})]_2) = 4$.

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 57 Issue: 01:2024

DOI: 10.5281/zenodo.10559880

From all the above cases, all the adjacent edges receive distinct even numbers as labels. Hence the Alternate Triangular Snake graph $A(T_m)$, admits even hamming distance labeling and the even hamming distance number is $\eta_{hd}''(A(T_m)) = 8$, $m \ge 2$.

Figure 3: Even Hamming Distance Labeled $A(T_6)$ graph

Theorem 2.4.The Alternate Triangular Snake graph $A(T_m)$, $m \ge 2$, is an even hamming distance labeled graph and the even hamming distance number is $\eta_{hd}''(A(T_m)) = 8$,where m is a positive integer and the triangle starts from the second vertex.

Proof: Let us consider the Alternate Triangular Snake graph $A(T_m)$ with vertex set $V = \left\{\{u_i \ / 0 \le i \le m\} \cup \left\{v_i \ / 0 \le i \le \lfloor \frac{m}{2} \rfloor - 1\right\}\right\}$ and edgeset $\mathsf{E} = \left\{\{u_i \ u_{i+1} \ / 0 \le i \le m - 1\} \cup \left\{u_{2i+1} v_{\lfloor \frac{2(i)+1}{2} \rfloor} \ / 0 \le i \le \lfloor \frac{m}{2} \rfloor - 1\right\} \cup \left\{v_i \ u_{2i+2} \ / 0 \le i \le \lfloor \frac{m}{2} \rfloor - 1\right\}\right\}$. Define a function $f\colon V \to N \cup \{0\}$ to label the vertices of $A(T_m)$ in such a way that $f(u) \ne f(v)$ for any two adjacent vertices and the procedure for vertex labeling are explained in the following algorithm.

Procedure: Vertex labeling of Alternate Triangular Snake graph $A(T_m)$.

Input: Alternate Triangular Snake graph.

$$V \leftarrow \left\{ \left\{ u_i / 0 \le i \le m \right\} \cup \left\{ v_i / 0 \le i \le \lfloor \frac{m}{2} \rfloor - 1 \right\} \right\}$$

$$u_0 \leftarrow 1$$
;

for i = 1 to m do

$$u_i \leftarrow \begin{cases} 13 & if \ i \equiv 1 (mod4) \\ 242 & if \ i \equiv 2 (mod4) \\ 2 & if \ i \equiv 3 (mod4) \\ 253 & if \ i \equiv 0 (mod4) \end{cases}$$

end for

for
$$i = 0$$
 to $\lfloor \frac{m}{2} \rfloor - 1$

$$v_i \leftarrow \begin{cases} 50 & if \ i \equiv 0 (mod 2) \\ 61 & if \ i \equiv 1 (mod 2) \end{cases}$$

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 57 Issue: 01:2024

DOI: 10.5281/zenodo.10559880

end for

end procedure

Output: The labeled vertices of $A(T_m)$ graph.

Now the induced edge labels are as follows:

$$f^*(u_0u_1) = hd([f(u_0)]_2, [f(u_1)]_2) = 2.$$

For
$$i = 0$$
 to $\lfloor \frac{m}{2} \rfloor - 1$; $f^*(u_{2(i)+1}v_{\lfloor \frac{2(i)+1}{2} \rfloor}) = hd([f(u_{2(i)+1})]_2, [f(v_{\lfloor \frac{2(i)+1}{2} \rfloor})]_2) = 6$.

$$f^*(v_i u_{2i+2}) = hd([f(v_i)]_2, [f(u_{2i+2})]_2) = 2.$$

For i = 1 to m-1

Case (i): If $i \equiv 1 \pmod{2}$; $f^*(u_i u_{i+1}) = hd([f(u_i)]_2, [f(u_{i+1})]_2) = 8$.

Case (ii): If
$$i \equiv 0 \pmod{2}$$
; $f^*(u_i u_{i+1}) = hd([f(u_i)]_2, [f(u_{i+1})]_2) = 4$.

From all the above cases, all the adjacent edges receive distinct even numbers as labels. Hence the Alternate Triangular Snake graph $A(T_m)$, admits even hamming distance labeling and the even hamming distance number is $\eta_{hd}''(A(T_m)) = 8$, $m \ge 2$.

Figure 4: Even Hamming Distance Labeled $A(T_6)$ graph

Theorem 2.5. The Quadrilateral Snake graph $Q_m, m \ge 2$ is an even hamming distance labeled graph and the even hamming distance number is $\eta''_{hd}(Q_m) = 8$.

Proof: Let us consider the Quadrilateral Snake graph Q_m with vertex set

$$V = \Big\{\{u_i \ / \ 0 \leq i \leq \ m\} \cup \big\{v_{i,}w_i \ / 0 \leq i \leq \ m-1\big\}\Big\} \qquad \text{and edge set}$$

 $E = \big\{\{u_i\,u_{i+1}\,/0 \leq i \leq m-1\} \cup \{u_iv_i\,/0 \leq i \leq m-1\} \cup \{u_i\,w_{i-1}\,/1 \leq i \leq m\} \cup \{v_i\,w_i\,/0 \leq i \leq m-1\}\big\}.$ Define a function $f\colon V\to N\cup\{0\}$ to label the vertices of $\,Q_m$ in such a way that $\,f(u)\neq f(v)\,$ for any two adjacent vertices and the procedure for labeling the vertices are explained in the following algorithm.

Procedure: Vertex labeling of Quadrilateral Snake graph Q_m .

Input: Quadrilateral Snake graph.

$$V \leftarrow \left\{ \left\{ u_i / 0 \le i \le m \right\} \cup \left\{ v_{i,} w_i / 0 \le i \le m - 1 \right\} \right\}$$

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 57 Issue: 01:2024

DOI: 10.5281/zenodo.10559880

$$u_0 \leftarrow 0; v_0 \leftarrow 15; w_0 \leftarrow 48;$$

for i = 1 to m do

$$u_i \leftarrow \begin{cases} 3 & if \ i \equiv 1 \pmod{4} \\ 60 & if \ i \equiv 2 \pmod{4} \\ 12 & if \ i \equiv 3 \pmod{4} \\ 51 & if \ i \equiv 0 \pmod{4} \end{cases}$$

end for

for i = 1 to m - 1 do

$$v_{i} \leftarrow \begin{cases} 252 & if \ i \equiv 1 (mod \ 4) \\ 0 & if \ i \equiv 0,2 (mod \ 4) \\ 243 & if \ i \equiv 3 (mod \ 4) \end{cases} ; \ w_{i} \leftarrow \begin{cases} 195 & if \ i \equiv 1 (mod \ 4) \\ 63 & if \ i \equiv 0,2 (mod \ 4) \\ 204 & if \ i \equiv 3 (mod \ 4) \end{cases}$$

end for

end procedure

Output: The labeled vertices of Q_m graph.

Now the induced edge labels are as follows:

For
$$0 \le i \le m - 1$$
, $f^*(v_i w_i) = hd([f(v_i)]_2, [f(w_i)]_2) = 6$.

Case (i): If $i \equiv 0 \pmod{2}$

$$f^*(u_iu_{i+1}) = hd([f(u_i)]_2, [f(u_{i+1})]_2) = 2; f^*(u_iv_i) = hd([f(u_i)]_2, [f(v_i)]_2) = 4$$

Case (ii): If $i \equiv 1 \pmod{2}$

$$f^*(u_iu_{i+1}) = hd([f(u_i)]_2, [f(u_{i+1})]_2) = 6; f^*(u_iv_i) = hd([f(u_i)]_2, [f(v_i)]_2) = 8$$

For $1 \le i \le m$

Case (i): If
$$i \equiv 1 \pmod{2}$$
; $f^*(u_i w_{i-1}) = hd([f(u_i)]_2, [f(w_{i-1})]_2) = 4$

Case (ii): If
$$i \equiv 0 \pmod{2}$$
; $f^*(u_i w_{i-1}) = hd([f(u_i)]_2, [f(w_{i-1})]_2) = 8$

From all the above cases, all the adjacent edges receive distinct even numbers as labels. Hence the Quadrilateral Snake graph Q_m , admits even hamming distance labeling and the even hamming distance number is $\eta''_{hd}(Q_m) = 8$, $m \ge 2$.

Figure 5: Even Hamming Distance Labeled $A(T_6)$ graph

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 57 Issue: 01:2024

DOI: 10.5281/zenodo.10559880

Theorem 2.6. The Alternate Quadrilateral Snake graph $A(Q_m)$, $m \ge 2$, is an even hamming distance labeled graph and the even hamming distance number is $\eta''_{hd}(A(Q_m)) = 6$, where Q_m starts from the first vertex.

Proof: Let us consider the Alternate Quadrilateral Snake graph $A(Q_m)$ with vertex set $V = \left\{\{u_i \ / 0 \leq i \leq m\} \cup \left\{v_i \ / 0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor\right\} \cup \left\{w_i \ / 0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor\right\}\right\}$ and edge set $E = \left\{\{u_i \ u_{i+1} \ / 0 \leq i \leq m-1\} \cup \left\{u_{2i} \ v_{\frac{2(i)}{2}} \ / 0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor\right\} \cup \left\{v_i \ w_i \ / 0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor\right\} \cup \left\{w_i \ u_{2i+1} \ / 0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor\right\}\right\}$. Define a function $f: V \to N \cup \{0\}$ to label the vertices of $A(Q_m)$ in

such a way that $f(u) \neq f(v)$ for any two adjacent vertices and the procedure for labeling the vertices are explained in the following algorithm

Procedure: Vertex labeling of Alternate Quadrilateral Snake graph $A(Q_m)$.

Input: Alternate Quadrilateral Snake graph.

$$V \leftarrow \left\{\left\{u_i / 0 \leq i \leq m\right\} \cup \left\{v_i / 0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor\right\} \cup \left\{w_i / 0 \leq i \leq \lfloor \frac{m-1}{2} \rfloor\right\}\right\}$$

$$u_0 \leftarrow 0; v_0 \leftarrow 15; w_0 \leftarrow 48;$$

for i = 1 to m do

$$u_i \leftarrow \begin{cases} 3 & if \ i \equiv 1 \pmod{4} \\ 60 & if \ i \equiv 2 \pmod{4} \\ 12 & if \ i \equiv 3 \pmod{4} \\ 51 & if \ i \equiv 0 \pmod{4} \end{cases}$$

end for

for
$$i = 1$$
 to $\left\lfloor \frac{m-1}{2} \right\rfloor$ do $v_i \leftarrow 0$; $w_i \leftarrow 63$;

end for

end procedure

output: The labeled vertices of $A(Q_m)$ graph.

Now the induced edge labels are as follows:

For
$$i = 0$$
 to $m - 1$

Case (i): If
$$i \equiv 0 \pmod{2}$$
; $f^*(u_i u_{i+1}) = hd([f(u_i)]_2, [f(u_{i+1})]_2) = 2$.

Case (ii): If
$$i \equiv 1 \pmod{2}$$
; $f^*(u_i u_{i+1}) = hd([f(u_i)]_2, [f(u_{i+1})]_2) = 6$.

For
$$i = 0$$
 to $\lfloor \frac{m-1}{2} \rfloor$; $f^*(u_{2i} v_{\underline{2(i)}}) = hd([f(u_{2i})]_2, [f(v_{\underline{2(i)}})]_2) = 4$

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 57 Issue: 01:2024

DOI: 10.5281/zenodo.10559880

$$f^*(v_i w_i) = hd([f(v_i)]_2, [f(w_i)]_2) = 6; f^*(w_i u_{2i+1}) = hd([f(w_i)]_2, [f(u_{2i+1})]_2) = 4$$

From all the above cases, all the adjacent edges receive distinct labels. Hence the alternate quadrilateral snake graph $A(Q_m)$, admits even hamming distance labeling and the even hamming distance number is $\eta''_{hd}(A(Q_m)) = 6$, $m \ge 2$.

Figure 6: Even Hamming Distance Labeled $A(T_5)$ graph

Theorem 2.7. The Alternate Quadrilateral Snake graph $A(Q_m)$, $m \ge 2$ is an even hamming distance labeled graph and the even hamming distance number is $\eta_{hd}''(A(Q_m)) = 6$, where Q_m starts from the second vertex.

Proof: Let us consider the Alternate Quadrilateral Snake graph $A(Q_m)$ with vertex set

$$V = \left\{ \{u_i \ / 0 \leq i \leq m\} \cup \left\{v_i \ / 0 \leq i \leq \lfloor \frac{m}{2} \rfloor - 1\right\} \cup \left\{w_i \ / 0 \leq i \leq \lfloor \frac{m}{2} \rfloor - 1\right\} \right\} \text{ and edge set}$$

$$E = \left\{ \{u_i \ u_{i+1} \ / 0 \leq i \leq m-1\} \cup \left\{u_{2i+1} \ v_i \ / 0 \leq i \leq \lfloor \frac{m}{2} \rfloor - 1\right\} \cup \left\{v_i \ w_i \ / 0 \leq i \leq \lfloor \frac{m}{2} \rfloor - 1\right\} \cup \left\{w_i \ u_{2i+2} \ / 0 \leq i \leq \lfloor \frac{m}{2} \rfloor - 1\right\} \right\}.$$
 Define a function $f: V \to N \cup \{0\}$ to label the vertices of $A(Q_m)$ in such a way that $f(u) \neq f(v)$ for any two adjacent vertices and the procedure for labeling the vertices are explained in the following algorithm

Procedure: Vertex labeling of Alternate Quadrilateral Snake graph $A(Q_m)$.

Input: Alternate Quadrilateral Snake graph.

$$V \leftarrow \left\{ \{ u_i / 0 \le i \le m \} \cup \left\{ v_i / 0 \le i \le \lfloor \frac{m}{2} \rfloor - 1 \right\} \cup \left\{ w_i / 0 \le i \le \lfloor \frac{m}{2} \rfloor - 1 \right\} \right\}$$

 $u_0 \leftarrow 0$;

for i = 1 to m do

$$u_i \leftarrow \begin{cases} 3 & \text{if } i \equiv 1 \pmod{4} \\ 60 & \text{if } i \equiv 2 \pmod{4} \\ 12 & \text{if } i \equiv 3 \pmod{4} \\ 51 & \text{if } i \equiv 0 \pmod{4} \end{cases}$$

end for

for
$$i = 0$$
 to $\lfloor \frac{m}{2} \rfloor - 1$ do

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 57 Issue: 01:2024

DOI: 10.5281/zenodo.10559880

$$v_i \leftarrow 0;$$

$$v_i \leftarrow \begin{cases} 12 & \text{if } i \equiv 0 \pmod{2} \\ 3 & \text{if } i \equiv 1 \pmod{2} \end{cases}$$

end for

end procedure

output: The labeled vertices of $A(Q_m)$ graph.

Now the induced edge labels are as follows:

For
$$i = 0$$
 to $m - 1$

Case (i): If
$$i \equiv 0 \pmod{2}$$
; $f^*(u_i u_{i+1}) = hd([f(u_i)]_2, [f(u_{i+1})]_2) = 2$.

Case (ii): If
$$i \equiv 1 \pmod{2}$$
; $f^*(u_i u_{i+1}) = hd([f(u_i)]_2, [f(u_{i+1})]_2) = 6$.

For
$$i = 0$$
 to $\lfloor \frac{m}{2} \rfloor - 1$; $f^*(u_{2i+1} v_i) = hd([f(u_{2i+1})]_2, [f(v_i)]_2) = 4$.

$$f^*(v_i w_i) = hd([f(u_i)]_2, [f(w_i)]_2) = 2; f^*(w_i u_{2i+2}) = hd([f(w_i)]_2, [f(u_{2i+2})]_2) = 4$$
.

From all the above cases, all the adjacent edges receive distinct even numbers as labels. Hence the Alternate Quadrilateral Snake graph $A(Q_m)$, admits even hamming distance labeling and the even hamming distance number is $\eta_{hd}^{"}(A(Q_m)) = 6$, $m \ge 2$.

Figure 7: Even Hamming Distance Labeled $A(T_6)$ graph

CONCLUSION

In this paper, we proved the existence of the even hamming distance labeling of some snake related graphs and their even hamming distance number were obtained.

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 57 Issue: 01:2024

DOI: 10.5281/zenodo.10559880

References

- 1) Gallian, J.A., A Dynamic Survey of Graph Labeling, The Electronic Journal Of Combinatorics 2019, #DS6.
- 2) Seethalakshmi.S, Thirusangu.K and Esakkiammal.E, Hamming distance labeling of certain graphs, Journal of Tianjin University Science and Technology, Volume: 54, Issue 10, 2021, pp 106-113.
- 3) Seethalakshmi.S, Thirusangu.K and Esakkiammal.E, Odd hamming distance labeling of some path related graphs (communicated).
- 4) Seethalakshmi.S, Thirusangu.K and Esakkiammal.E, Even hamming distance labeling of cycle related graphs (communicated).
- 5) Sumathi.P and Rathi.A, Quotient Labeling of Snake related graphs, IOSR Journal of Mathematics (IOSR-JM), Vol-14, Issue 6, Ver.II (Nov-Dec 2018), pp 26-33.
- 6) Sunoj B.S and Mathew Varkey T.K, Square Difference Prime Labeling for Some Snake Graphs, Global Journal of Pure and Applied Mathematics, Volume 13, Number3, (2017) pp. 1083-1089.