EVEN HAMMING DISTANCE LABELING OF SNAKE GRAPHS

E.ESAKKIAMMAL *

Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai. India.

* Corresponding Author Email: esakkiammal2682@gmail.com

K.THIRUSANGU

Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai. India.
Email: kthirusangu@gmail.com

S.SEETHALAKSHMI

Department of Mathematics, R.V. Govt. Arts College, Chengalpattu, Chennai, India. Email: seetha0687@gmail.com

Abstract

A function $f: V \rightarrow N \cup\{0\}$ is said to be even hamming distance labeling if there exist an induced function $f^{*}: E \rightarrow\{2,4,6, \ldots n\}$ such that for every $u v \in E, f^{*}(u v)=h d\left([f(u)]_{2},[f(v)]_{2}\right)$ satisfies the following conditions: (i) For every vertex $v \in V$, the set of all edges incident with v receive distinct even numbers as labels. (ii) For every edge $e=u v$, the adjacent vertices u and v receive distinct labels. The even hamming distance number of a graph G is defined as the least positive integer n such that $2^{n}-1 \geq k$, where $k=\max \{f(v) / v \in V\}$ and is denoted by $\eta_{h d}^{\prime \prime}(\mathrm{G})$. In this paper we obtain the even hamming distance number of Triangular Snake graph, Alternate Triangular Snake, Quadrilateral Snake and Alternate Quadrilateral Snake.

Keywords: Even Hamming Distance Labeling, Even Hamming Distance Number, Triangular Snake Graph, Alternate Triangular Snake, Quadrilateral Snake and Alternate Quadrilateral Snake.

1. INTRODUCTION

A vertex labeling of a graph G is an assignment f of labels to the vertices of G that induces a label for every edge $u v$ depending on the vertex labels $f(u)$ and $f(v)$ [1]. we introduced the concept of hamming distance labeling, odd hamming distance labeling and even hamming distance labeling. It has been proved that some Path related graphs admit hamming distance [2] and odd hamming distance labeling [3] and some cycle related graphs admit even hamming distance labeling [4]. In this paper, we show that some Snake related graphs admit even hamming distance labeling and their even hamming distance number were obtained. Here the Triangular Snake T_{m} is obtained from the Path P_{m} by replacing each edge of a Path by a Triangle $C_{3}[6]$. An Alternate Triangular Snake $\mathrm{A}\left(T_{m}\right)$ is obtained from a Path P_{m} in which every alternate edge is replaced by C_{3}. A Quadrilateral Snake Q_{m} is obtained from a Path P_{m} by replacing each edge of P_{m} by a Cycle C_{4} and Alternate Quadrilateral Snake $\mathrm{A}\left(Q_{m}\right)$ is obtained from a Path P_{m}, in which each alternate edge of P_{m} is replaced by a Cycle [5].

2. EVEN HAMMING DISTANCE LABELLING OF SOME SNAKE GRAPHS

Theorem 2.1.The Triangular Snake graph $T_{m}, \mathrm{~m} \geq 2$, is an even hamming distance labeled graph and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(T_{m}\right)=8$.
Proof: Let us consider the Triangular Snake graph T_{m} with vertex set $V=$ $\left\{v_{i} / 0 \leq i \leq 2 m\right\}$ and edge set $E=\left\{\left\{v_{i} v_{i+1} / 0 \leq i \leq 2 m-1\right\} \cup\left\{v_{0} v_{2}\right\} \cup\right.$ $\left.\left\{v_{2 i} v_{2 i+2} / 1 \leq i \leq m-1\right\}\right\}$. Define a function $f: V \rightarrow N \cup\{0\}$ to label the vertices of T_{m} in such a way that $f(u) \neq f(v)$ for any two adjacent vertices and the procedure for vertex labeling are explained in the following algorithm.
Procedure: Vertex labeling of Triangular Snake graph T_{m}.
Input: Triangular Snake graph.
$V \leftarrow\left\{v_{i} / 0 \leq i \leq 2 m\right\}$
$v_{0} \leftarrow 1 ; v_{1} \leftarrow 62 ;$
for $i=1$ to m do
$v_{2 i} \leftarrow \begin{cases}13 & \text { if } i \equiv 1(\bmod 4) \\ 242 & \text { if } i \equiv 2(\bmod 4) \\ 2 & \text { if } i \equiv 3(\bmod 4) \\ 253 & \text { if } i \equiv 0(\bmod 4)\end{cases}$
end for
for $i=1$ to $m-1$ do
$v_{2 i+1} \leftarrow\left\{\begin{aligned} 50 & \text { if } i \equiv 1(\bmod 4) \\ 1 & \\ 61 & \text { if } i \equiv 2,0(\bmod 4)\end{aligned}\right.$
end for
end procedure
Output: The labeled vertices of T_{m} graph.
The induced function $f^{*}: E \rightarrow\{2,4,6, \ldots n\}$ for the given function f is defined by $f^{*}(u v)=h d\left([f(u)]_{2},[f(v)]_{2}\right)$, whereuv $\in E$. Now the induced edge labels are as follows:
$f^{*}\left(v_{0} v_{2}\right)=h d\left(\left[f\left(v_{0}\right)\right]_{2},\left[f\left(v_{2}\right)\right]_{2}\right)=2 ; f^{*}\left(v_{0} v_{1}\right)=h d\left(\left[f\left(v_{0}\right)\right]_{2},\left[f\left(v_{1}\right)\right]_{2}\right)=6$.
$f^{*}\left(v_{1} v_{2}\right)=\operatorname{hd}\left(\left[f\left(v_{1}\right)\right]_{2},\left[f\left(v_{2}\right)\right]_{2}\right)=4$.
For $2 \leq i \leq 2 m-1$
Case (i): If $i \equiv 0(\bmod 2) ; f^{*}\left(v_{i} v_{i+1}\right)=h d\left(\left[f\left(v_{i}\right)\right]_{2},\left[f\left(v_{i+1}\right)\right]_{2}\right)=6$.
Case (ii): If $i \equiv 1(\bmod 2) ; f^{*}\left(v_{i} v_{i+1}\right)=h d\left(\left[f\left(v_{i}\right)\right]_{2},\left[f\left(v_{i+1}\right)\right]_{2}\right)=2$.

For $1 \leq i \leq m-1$
Case (i): Ifi $\equiv 1(\bmod 2) ; f^{*}\left(v_{2 i} v_{2(i)+2}\right)=h d\left(\left[f\left(v_{i}\right)\right]_{2},\left[f\left(v_{2(i)+2}\right)\right]_{2}\right)=8$.
Case (ii): Ifi $\equiv 0(\bmod 2) ; f^{*}\left(v_{2 i} v_{2(i)+2}\right)=h d\left(\left[f\left(v_{i}\right)\right]_{2},\left[f\left(v_{2(i)+2}\right)\right]_{2}\right)=4$.
From all the above cases, all the adjacent edges receive distinct even numbers as labels. Hence the Triangular Snake graph T_{m}, admits even hamming distance labeling and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(T_{m}\right)=8, m \geq 2$.

Figure 1: Even Hamming Distance Labeled T_{5} graph
Theorem 2.2.The Alternate Triangular Snake graph $A\left(T_{m}\right), \mathrm{m} \geq 2$, is an even hamming distance labeled graph and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(A\left(T_{m}\right)\right)=8$, where m is a positive odd integer and the triangle starts from the first vertex.
Proof: Let us consider the Alternate Triangular Snake graph $A\left(T_{m}\right)$ with vertex set $V=\left\{\left\{u_{i} / 0 \leq i \leq m\right\} \cup\left\{v_{i} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor\right\}\right\}$ and edge set $E=\left\{\left\{u_{i} u_{i+1} / 0 \leq i \leq m-1\right\} \cup\right.$ $\left.\left\{u_{2 i} v_{\frac{2 i}{2}} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor\right\} \cup\left\{v_{i} u_{2 i+1} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor\right\}\right\}$. Define a function $f: V \rightarrow N \cup\{0\}$ to label the vertices of $A\left(T_{m}\right)$ in such a way that $f(u) \neq f(v)$ for any two adjacent vertices and the procedure for vertex labeling are explained in the following algorithm.
Procedure: Vertex labeling of Alternate Triangular Snake graph $A\left(T_{m}\right)$.
Input: Alternate Triangular Snake graph.
$V \leftarrow\left\{\left\{u_{i} / 0 \leq i \leq m\right\} \cup\left\{v_{i} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor\right\}\right\}$
$u_{0} \leftarrow 1 ; v_{0} \leftarrow 62 ;$
for $i=1$ to m do
$u_{i} \leftarrow \begin{cases}13 & \text { if } i \equiv 1(\bmod 4) \\ 242 & \text { if } i \equiv 2(\bmod 4) \\ 2 & \text { if } i \equiv 3(\bmod 4) \\ 253 & \text { if } i \equiv 0(\bmod 4)\end{cases}$
end for
for $i=1$ to $\left\lfloor\frac{m}{2}\right\rfloor$ do
$v_{i} \leftarrow 1$
end for
end procedure
Output: The labeled vertices of $A\left(T_{m}\right)$ graph.
Now the induced edge labels are as follows:
$f^{*}\left(u_{0} u_{1}\right)=h d\left(\left[f\left(u_{0}\right)\right]_{2},\left[f\left(u_{1}\right)\right]_{2}\right)=2 ; f^{*}\left(v_{0} u_{1}\right)=h d\left(\left[f\left(v_{0}\right)\right]_{2},\left[f\left(u_{1}\right)\right]_{2}\right)=4$.
For $\mathrm{i}=0$ to $\left\lfloor\frac{m}{2}\right\rfloor ; f^{*}\left(u_{2 i} v_{\frac{2 i}{2}}\right)=h d\left(\left[f\left(u_{2 i}\right)\right]_{2},\left[f\left(v_{\frac{2 i}{2}}\right)\right]_{2}\right)=6$.
For $\mathrm{i}=1$ to $\left[\frac{m}{2}\right\rfloor \mathrm{do} ; f^{*}\left(v_{i} u_{2 i+1}\right)=h d\left(\left[f\left(v_{i}\right)\right]_{2},\left[f\left(u_{2 i+1}\right)\right]_{2}\right)=2$.
For $\mathrm{i}=1$ to $\mathrm{m}-1$
Case (i): If $i \equiv 1(\bmod 2) ; f^{*}\left(u_{i} u_{i+1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(u_{i+1}\right)\right]_{2}\right)=8$.
Case (ii): If $i \equiv 0(\bmod 2) ; f^{*}\left(u_{i} u_{i+1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(u_{i+1}\right)\right]_{2}\right)=4$.
From all the above cases, all the adjacent edges receive distinct even numbers as labels. Hence the Alternate Triangular Snake graph $A\left(T_{m}\right)$, admits even hamming distance labeling and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(A\left(T_{m}\right)\right)=8, m \geq 2$.

Figure 2: Even Hamming Distance Labeled $\boldsymbol{A}\left(\boldsymbol{T}_{5}\right)$ graph
Theorem 2.3. The Alternate Triangular Snake graph $A\left(T_{m}\right), \mathrm{m} \geq 2$, is an even hamming distance labeled graph and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(A\left(T_{m}\right)\right)=8$, where m is a positive even integer and the Triangle starts from the first vertex.

Proof: Let us consider the Alternate Triangular Snake graph $A\left(T_{m}\right)$ with vertex set $V=$ $\left\{\left\{u_{i} / 0 \leq i \leq m\right\} \cup\left\{v_{i} / 0 \leq i \leq \frac{m}{2}-1\right\}\right\} \quad$ and edge set $E=\left\{\left\{u_{i} u_{i+1} / 0 \leq i \leq m-1\right\} \cup\right.$ $\left.\left\{u_{2 i} \frac{v_{2 i}^{2}}{} / 0 \leq i \leq \frac{m}{2}-1\right\} \cup\left\{v_{i} u_{2 i+1} / 0 \leq i \leq \frac{m}{2}-1\right\}\right\}$. Define a function $f: V \rightarrow N \cup\{0\}$ to label the vertices of $A\left(T_{m}\right)$ in such a way that $f(u) \neq f(v)$ for any two adjacent vertices and the procedure for labeling the vertices are explained in the following algorithm.
Procedure: Vertex labeling of Alternate Triangular Snake graph $A\left(T_{m}\right)$.
Input: Alternate Triangular Snake graph.
$V \leftarrow\left\{\left\{u_{i} / 0 \leq i \leq m\right\} \cup\left\{v_{i} / 0 \leq i \leq \frac{m}{2}-1\right\}\right\}$
$u_{0} \leftarrow 1 ; v_{0} \leftarrow 62$;
for $i=1$ to m do

end for
for $i=1$ to $\frac{m}{2}-1$ do
$v_{i} \leftarrow 1$
end for
end procedure
output: The labeled vertices of $A\left(T_{m}\right)$ graph.
Now the induced edge labels are as follows:
$f^{*}\left(u_{0} u_{1}\right)=h d\left(\left[f\left(u_{0}\right)\right]_{2},\left[f\left(u_{1}\right)\right]_{2}\right)=2 ; f^{*}\left(v_{0} u_{1}\right)=h d\left(\left[f\left(v_{0}\right)\right]_{2},\left[f\left(u_{1}\right)\right]_{2}\right)=4$.
For $\mathrm{i}=1$ to $\frac{m}{2}-1 ; f^{*}\left(v_{i} u_{2 i+1}\right)=h d\left(\left[f\left(v_{i}\right)\right]_{2},\left[f\left(u_{2 i+1}\right)\right]_{2}\right)=2$.
For $\mathrm{i}=0$ to $\frac{m}{2}-1 ; f^{*}\left(u_{2 i} v_{\frac{2 i}{2}}\right)=h d\left(\left[f\left(u_{2 i}\right)\right]_{2},\left[f\left(v_{\frac{2 i}{2}}\right)\right]_{2}\right)=6$.
For $\mathrm{i}=1$ to $\mathrm{m}-1$
Case (i): If $i \equiv 1(\bmod 2) ; f^{*}\left(u_{i} u_{i+1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(u_{i+1}\right)\right]_{2}\right)=8$.
Case (ii): If $i \equiv 0(\bmod 2) ; f^{*}\left(u_{i} u_{i+1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(u_{i+1}\right)\right]_{2}\right)=4$.

From all the above cases, all the adjacent edges receive distinct even numbers as labels. Hence the Alternate Triangular Snake graph $A\left(T_{m}\right)$, admits even hamming distance labeling and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(A\left(T_{m}\right)\right)=8, m \geq 2$.

Figure 3: Even Hamming Distance Labeled $A\left(T_{6}\right)$ graph
Theorem 2.4.The Alternate Triangular Snake graph $A\left(T_{m}\right), \mathrm{m} \geq 2$, is an even hamming distance labeled graph and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(A\left(T_{m}\right)\right)=8$,where m is a positive integer and the triangle starts from the second vertex.
Proof: Let us consider the Alternate Triangular Snake graph $A\left(T_{m}\right)$ with vertex set $V=\left\{\left\{u_{i} / 0 \leq i \leq m\right\} \cup\left\{v_{i} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor-1\right\}\right\}$ and edgeset $\mathrm{E}=\left\{\left\{u_{i} u_{i+1} / 0 \leq i \leq m-\right.\right.$ $\left.1\} \cup\left\{u_{2 i+1} v_{\left\lfloor\frac{2(i)+1}{2}\right\rfloor} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor-1\right\} \cup\left\{v_{i} u_{2 i+2} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor-1\right\}\right\}$. Define a function $f: V \rightarrow N \cup\{0\}$ to label the vertices of $A\left(T_{m}\right)$ in such a way that $f(u) \neq f(v)$ for any two adjacent vertices and the procedure for vertex labeling are explained in the following algorithm.

Procedure: Vertex labeling of Alternate Triangular Snake graph $A\left(T_{m}\right)$.
Input: Alternate Triangular Snake graph.
$V \leftarrow\left\{\left\{u_{i} / 0 \leq i \leq m\right\} \cup\left\{v_{i} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor-1\right\}\right\}$
$u_{0} \leftarrow 1$;
for $i=1$ to m do
$u_{i} \leftarrow \begin{cases}13 & \text { if } i \equiv 1(\bmod 4) \\ 242 & \text { if } i \equiv 2(\bmod 4) \\ 2 & \text { if } i \equiv 3(\bmod 4) \\ 253 & \text { if } i \equiv 0(\bmod 4)\end{cases}$
end for
for $\mathrm{i}=0$ to $\left\lfloor\frac{m}{2}\right\rfloor-1$
$v_{i} \leftarrow \begin{cases}50 & \text { if } i \equiv 0(\bmod 2) \\ 61 & \text { if } i \equiv 1(\bmod 2)\end{cases}$
end for
end procedure
Output: The labeled vertices of $A\left(T_{m}\right)$ graph.
Now the induced edge labels are as follows:
$f^{*}\left(u_{0} u_{1}\right)=h d\left(\left[f\left(u_{0}\right)\right]_{2},\left[f\left(u_{1}\right)\right]_{2}\right)=2$.
For $\mathrm{i}=0$ to $\left\lfloor\frac{m}{2}\right\rfloor-1 ; f^{*}\left(u_{2(i)+1} v_{\left[\frac{2(i)+1}{2}\right\rfloor}\right)=h d\left(\left[f\left(u_{2(i)+1}\right)\right]_{2^{\prime}}\left[f\left(v_{\left.\frac{2^{2(i)+1}}{2}\right\rfloor}\right)\right]_{2}\right)=6$.
$f^{*}\left(v_{i} u_{2 i+2}\right)=\operatorname{hd}\left(\left[f\left(v_{i}\right)\right]_{2},\left[f\left(u_{2 i+2}\right)\right]_{2}\right)=2$.
For $\mathrm{i}=1$ to $\mathrm{m}-1$
Case (i): If $i \equiv 1(\bmod 2) ; f^{*}\left(u_{i} u_{i+1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(u_{i+1}\right)\right]_{2}\right)=8$.
Case (ii): If $i \equiv 0(\bmod 2) ; f^{*}\left(u_{i} u_{i+1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(u_{i+1}\right)\right]_{2}\right)=4$.
From all the above cases, all the adjacent edges receive distinct even numbers as labels. Hence the Alternate Triangular Snake graph $A\left(T_{m}\right)$, admits even hamming distance labeling and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(A\left(T_{m}\right)\right)=8, m \geq 2$.

Figure 4: Even Hamming Distance Labeled $A\left(T_{6}\right)$ graph
Theorem 2.5. The Quadrilateral Snake graph $Q_{m}, m \geq 2$ is an even hamming distance labeled graph and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(Q_{m}\right)=8$.
Proof: Let us consider the Quadrilateral Snake graph Q_{m} with vertex set
$V=\left\{\left\{u_{i} / 0 \leq i \leq m\right\} \cup\left\{v_{i}, w_{i} / 0 \leq i \leq m-1\right\}\right\} \quad$ and edge set
$E=\left\{\left\{u_{i} u_{i+1} / 0 \leq i \leq m-1\right\} \cup\left\{u_{i} v_{i} / 0 \leq i \leq m-1\right\} \cup\left\{u_{i} w_{i-1} / 1 \leq i \leq m\right\} \cup\left\{v_{i} w_{i} /\right.\right.$ $0 \leq i \leq m-1\}\}$. Define a function $f: V \rightarrow N \cup\{0\}$ to label the vertices of Q_{m} in such a way that $f(u) \neq f(v)$ for any two adjacent vertices and the procedure for labeling the vertices are explained in the following algorithm.
Procedure: Vertex labeling of Quadrilateral Snake graph Q_{m}.
Input: Quadrilateral Snake graph.
$V \leftarrow\left\{\left\{u_{i} / 0 \leq i \leq m\right\} \cup\left\{v_{i}, w_{i} / 0 \leq i \leq m-1\right\}\right\}$
$u_{0} \leftarrow 0 ; v_{0} \leftarrow 15 ; w_{0} \leftarrow 48 ;$
for $i=1$ to m do
$u_{i} \leftarrow\left\{\begin{array}{cc}3 & \text { if } i \equiv 1(\bmod 4) \\ 60 & \text { if } i \equiv 2(\bmod 4) \\ 12 & \text { if } i \equiv 3(\bmod 4) \\ 51 & \text { if } i \equiv 0(\bmod 4)\end{array}\right.$
end for
for $i=1$ to $m-1$ do
$v_{i} \leftarrow\left\{\begin{array}{rl}252 & \text { if } i \equiv 1(\bmod 4) \\ 0 & \text { if } i \equiv 0,2(\bmod 4) \\ 243 & \text { if } i \equiv 3(\bmod 4)\end{array} \quad ; w_{i} \leftarrow \leftarrow\left\{\begin{array}{cl}195 & \text { if } i \equiv 1(\bmod 4) \\ 63 & \text { if } i \equiv 0,2(\bmod 4) \\ 204 & \text { if } i \equiv 3(\bmod 4)\end{array}\right.\right.$
end for
end procedure
Output: The labeled vertices of Q_{m} graph.
Now the induced edge labels are as follows:
For $0 \leq i \leq m-1, f^{*}\left(v_{i} w_{i}\right)=h d\left(\left[f\left(v_{i}\right)\right]_{2},\left[f\left(w_{i}\right)\right]_{2}\right)=6$.
Case (i): If $i \equiv 0(\bmod 2)$
$f^{*}\left(u_{i} u_{i+1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(u_{i+1}\right)\right]_{2}\right)=2 ; f^{*}\left(u_{i} v_{i}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(v_{i}\right)\right]_{2}\right)=4$
Case (ii): If $i \equiv 1(\bmod 2)$
$f^{*}\left(u_{i} u_{i+1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(u_{i+1}\right)\right]_{2}\right)=6 ; f^{*}\left(u_{i} v_{i}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(v_{i}\right)\right]_{2}\right)=8$
For $1 \leq i \leq m$
Case (i): If $i \equiv 1(\bmod 2) ; f^{*}\left(u_{i} w_{i-1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(w_{i-1}\right)\right]_{2}\right)=4$
Case (ii): If $i \equiv 0(\bmod 2) ; f^{*}\left(u_{i} w_{i-1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(w_{i-1}\right)\right]_{2}\right)=8$
From all the above cases, all the adjacent edges receive distinct even numbers as labels. Hence the Quadrilateral Snake graph Q_{m}, admits even hamming distance labeling and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(Q_{m}\right)=8, m \geq 2$.

Figure 5: Even Hamming Distance Labeled $A\left(\boldsymbol{T}_{6}\right)$ graph

Theorem 2.6.The Alternate Quadrilateral Snake graph $A\left(Q_{m}\right), m \geq 2$, is an even hamming distance labeled graph and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(A\left(Q_{m}\right)\right)=6$, where Q_{m} starts from the first vertex.
Proof: Let us consider the Alternate Quadrilateral Snake graph $A\left(Q_{m}\right)$ with vertex set $V=\left\{\left\{u_{i} / 0 \leq i \leq m\right\} \cup\left\{v_{i} / 0 \leq i \leq\left\lfloor\frac{m-1}{2}\right\rfloor\right\} \cup\left\{w_{i} / 0 \leq i \leq\left\lfloor\frac{m-1}{2}\right\rfloor\right\rfloor\right\} \quad$ and edge set $E=$ $\left\{\left\{u_{i} u_{i+1} / 0 \leq i \leq m-1\right\} \cup\left\{u_{2 i} \frac{v_{2(i)}^{2}}{} / 0 \leq i \leq\left\lfloor\frac{m-1}{2}\right\rfloor\right\} \cup\left\{v_{i} w_{i} / 0 \leq i \leq\left\lfloor\frac{m-1}{2}\right\rfloor\right\} \cup\left\{w_{i} u_{2 i+1} /\right.\right.$ $\left.\left.0 \leq i \leq\left\lfloor\frac{m-1}{2}\right\rfloor\right\}\right\}$. Define a function $\quad f: V \rightarrow N \cup\{0\}$ to label the vertices of $A\left(Q_{m}\right)$ in such a way that $f(u) \neq f(v)$ for any two adjacent vertices and the procedure for labeling the vertices are explained in the following algorithm
Procedure: Vertex labeling of Alternate Quadrilateral Snake graph $A\left(Q_{m}\right)$.
Input: Alternate Quadrilateral Snake graph.
$V \leftarrow\left\{\left\{u_{i} / 0 \leq i \leq m\right\} \cup\left\{v_{i} / 0 \leq i \leq\left\lfloor\frac{m-1}{2}\right\rfloor\right\} \cup\left\{w_{i} / 0 \leq i \leq\left\lfloor\frac{m-1}{2}\right\rfloor\right\}\right\}$
$u_{0} \leftarrow 0 ; v_{0} \leftarrow 15 ; w_{0} \leftarrow 48$;
for $i=1$ to m do
$u_{i} \leftarrow\left\{\begin{aligned} 3 & \text { if } i \equiv 1(\bmod 4) \\ 60 & \text { if } i \equiv 2(\bmod 4) \\ 12 & \text { if } i \equiv 3(\bmod 4) \\ 51 & \text { if } i \equiv 0(\bmod 4)\end{aligned}\right.$
end for
for $i=1$ to $\left\lfloor\frac{m-1}{2}\right\rfloor \mathrm{do}$

$$
v_{i} \leftarrow 0 ; w_{i} \leftarrow 63 ;
$$

end for
end procedure
output: The labeled vertices of $A\left(Q_{m}\right)$ graph.
Now the induced edge labels are as follows:
For $i=0$ to $m-1$
Case (i): If $i \equiv 0(\bmod 2) ; f^{*}\left(u_{i} u_{i+1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(u_{i+1}\right)\right]_{2}\right)=2$.
Case (ii): If $i \equiv 1(\bmod 2) ; f^{*}\left(u_{i} u_{i+1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(u_{i+1}\right)\right]_{2}\right)=6$.
For $i=0$ to $\left\lfloor\frac{m-1}{2}\right\rfloor ; f^{*}\left(u_{2 i} v_{\frac{2}{2}(i)}\right)=\operatorname{hd}\left(\left[f\left(u_{2 i}\right)\right]_{2},\left[f\left(\frac{v_{\frac{2}{2} i}^{2}}{2}\right)\right]_{2}\right)=4$
$f^{*}\left(v_{i} w_{i}\right)=h d\left(\left[f\left(v_{i}\right)\right]_{2},\left[f\left(w_{i}\right)\right]_{2}\right)=6 ; f^{*}\left(w_{i} u_{2 i+1}\right)=h d\left(\left[f\left(w_{i}\right)\right]_{2},\left[f\left(u_{2 i+1}\right)\right]_{2}\right)=4$
From all the above cases, all the adjacent edges receive distinct labels. Hence the alternate quadrilateral snake graph $A\left(Q_{m}\right)$, admits even hamming distance labeling and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(A\left(Q_{m}\right)\right)=6, m \geq 2$.

Figure 6: Even Hamming Distance Labeled $\boldsymbol{A}\left(\boldsymbol{T}_{5}\right)$ graph
Theorem 2.7.The Alternate Quadrilateral Snake graph $A\left(Q_{m}\right), m \geq 2$ is an even hamming distance labeled graph and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(A\left(Q_{m}\right)\right)=6$, where Q_{m} starts from the second vertex.
Proof: Let us consider the Alternate Quadrilateral Snake graph $A\left(Q_{m}\right)$ with vertex set
$V=\left\{\left\{u_{i} / 0 \leq i \leq m\right\} \cup\left\{v_{i} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor-1\right\} \cup\left\{w_{i} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor-1\right\}\right\}$ and edge set
$E=\left\{\left\{u_{i} u_{i+1} / 0 \leq i \leq m-1\right\} \cup\left\{u_{2 i+1} v_{i} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor-1\right\} \cup\left\{v_{i} w_{i} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor-1\right\} \cup\right.$
$\left.\left\{w_{i} u_{2 i+2} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor-1\right\}\right\}$. Define a function $f: V \rightarrow N \cup\{0\}$ to label the vertices of $A\left(Q_{m}\right)$ in such a way that $f(u) \neq f(v)$ for any two adjacent vertices and the procedure for labeling the vertices are explained in the following algorithm
Procedure: Vertex labeling of Alternate Quadrilateral Snake graph $A\left(Q_{m}\right)$.
Input: Alternate Quadrilateral Snake graph.
$V \leftarrow\left\{\left\{u_{i} / 0 \leq i \leq m\right\} \cup\left\{v_{i} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor-1\right\} \cup\left\{w_{i} / 0 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor-1\right\}\right\}$
$u_{0} \leftarrow 0$;
for $i=1$ to m do
$u_{i} \leftarrow\left\{\begin{array}{lrl}3 & \text { if } i \equiv 1(\bmod 4) \\ 60 & \text { if } i & \equiv 2(\bmod 4) \\ 12 & \text { if } i & \equiv 3(\bmod 4) \\ 51 & \text { if } i & \equiv 0(\bmod 4)\end{array}\right.$
end for
for $i=0$ to $\left\lfloor\frac{m}{2}\right\rfloor-1$ do
$w_{i} \leftarrow 0 ;$
$v_{i} \leftarrow\left\{\begin{array}{ll}12 & \text { if } i \equiv 0(\bmod 2) \\ 3 & \text { if } i\end{array}>1(\bmod 2)\right.$
end for
end procedure
output: The labeled vertices of $A\left(Q_{m}\right)$ graph.
Now the induced edge labels are as follows:
For $i=0$ to $m-1$
Case (i): If $i \equiv 0(\bmod 2) ; f^{*}\left(u_{i} u_{i+1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(u_{i+1}\right)\right]_{2}\right)=2$.
Case (ii): If $i \equiv 1(\bmod 2)$; $f^{*}\left(u_{i} u_{i+1}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(u_{i+1}\right)\right]_{2}\right)=6$.
For $i=0$ to $\left\lfloor\frac{m}{2}\right\rfloor-1 ; f^{*}\left(u_{2 i+1} v_{i}\right)=h d\left(\left[f\left(u_{2 i+1}\right)\right]_{2},\left[f\left(v_{i}\right)\right]_{2}\right)=4$.
$f^{*}\left(v_{i} w_{i}\right)=h d\left(\left[f\left(u_{i}\right)\right]_{2},\left[f\left(w_{i}\right)\right]_{2}\right)=2 ; f^{*}\left(w_{i} u_{2 i+2}\right)=h d\left(\left[f\left(w_{i}\right)\right]_{2},\left[f\left(u_{2 i+2}\right)\right]_{2}\right)=4$.
From all the above cases, all the adjacent edges receive distinct even numbers as labels. Hence the Alternate Quadrilateral Snake graph $A\left(Q_{m}\right)$, admits even hamming distance labeling and the even hamming distance number is $\eta_{h d}^{\prime \prime}\left(A\left(Q_{m}\right)\right)=6, m \geq 2$.

Figure 7: Even Hamming Distance Labeled $A\left(T_{6}\right)$ graph

CONCLUSION

In this paper, we proved the existence of the even hamming distance labeling of some snake related graphs and their even hamming distance number were obtained.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 57 Issue: 01:2024
DOI: 10.5281/zenodo. 10559880

References

1) Gallian,J.A., A Dynamic Survey of Graph Labeling, The Electronic Journal Of Combinatorics 2019, \#DS6.
2) Seethalakshmi.S, Thirusangu.K and Esakkiammal.E, Hamming distance labeling of certain graphs, Journal of Tianjin University Science and Technology, Volume: 54, Issue 10, 2021, pp 106-113.
3) Seethalakshmi.S, Thirusangu.K and Esakkiammal.E, Odd hamming distance labeling of some path related graphs (communicated).
4) Seethalakshmi.S, Thirusangu.K and Esakkiammal.E, Even hamming distance labeling of cycle related graphs (communicated).
5) Sumathi.P and Rathi.A, Quotient Labeling of Snake related graphs, IOSR Journal of Mathematics (IOSR-JM), Vol-14, Issue 6, Ver.II (Nov-Dec 2018), pp 26-33.
6) Sunoj B.S and Mathew Varkey T.K, Square Difference Prime Labeling for Some Snake Graphs, Global Journal of Pure and Applied Mathematics, Volume 13, Number3, (2017) pp. 1083-1089.
