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Abstract  

A wireless communication system employs a variety of data compression, encoding, and modulation 
techniques to efficiently transmit messages via communication channels, aiming to reproduce the 
information at the receiver with the fewest possible errors. To counteract the impact of noise and 
interference encountered by the signal during its journey through the communication channel, the channel 
encoder introduces redundancy to the binary information sequence. The channel decoder at the receiver 
utilizes this redundancy to combat errors. To enhance data redundancy, the channel encoder utilizes error-
correcting codes, including block codes, convolutional codes, Low-Density Parity Check (LDPC) codes, 
and turbo codes. These coding methods play a crucial role in error detection and correction. However, the 
configuration of a wireless communication system can now be simplified by leveraging Deep Neural 
Networks (DNNs). This streamlined communication system can be conceptualized as a specific type of 
autoencoder in the realm of Deep Learning (DL). The primary goal of this research is to develop an 
autoencoder model for Additive White Gaussian Noise (AWGN) and fading channels with a low error 
probability, ensuring reliable communication. 

Keywords: Compression, Interference, Low-Density Parity Check (LDPC), Deep Neural Networks (DNNs), 
Additive White Gaussian Noise (AWGN). 
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I. INTRODUCTION  

Error-correcting block codes divide data into discrete blocks. Each block of n bits (where 
n > k) is mapped to a corresponding block of k message bits. The transmitter adds n-k 
redundant bits to facilitate error detection and correction. The coding rate is specified as 
the k/n ratio, and the code is denoted as an (n, k) block code. In a linear block code, the 
resulting codeword is a linear combination of any two code words. Parity bits and 
message bits in linear block codes are subjected to a linear combination. 

Let A be the input channel. White additive Gaussian noise, called N, was used. 
Subsequently, the channel output is. 

Y = A + N       -- (1) 

Fading in wireless communication refers to fluctuations in signal attenuation under 
various circumstances. These fluctuations can be caused by factors such as time, shifts 
in geographic location, and changes in radio frequency. We are modelling the fading 
channel for this project as 

Y = A * H + N     -- (2) 

Where Y is the channel output, A is its input and H and N are random numbers. 

H is a number with a mean of 0 and standard deviation of 1 from the complex random 
Gaussian distribution. 

There are two forms of detection, both based on Channel State Information (CSI): 

CSI can be determined if the H value is known. The phase of the received symbols is 
rectified using H, and the sent bits are then retrieved using a maximum-likelihood 
decoder. Anticipating that the network will learn phase correction during decoder training, 
we pass not only the received bits but also the CSI to the decoder network. This type of 
detection is employed when the CSI is unknown or does not match the precise channel-
gain value. To train the decoder, we send the received bits, channel gain, and a random 
number (introducing an error) to the decoder network. When compared to traditional 
optimal statistical inference techniques, a trained DNN requires significantly less 
computational complexity for executing inference tasks. Additionally, while the majority of 
current ECCs are linear, DNNs are nonlinear. Therefore, utilizing DNNs can result in 
nonlinear codes that may be more effective than linear codes. 
 
II. RELATED WORKS 

An unsupervised artificial neural network, called an autoencoder, learns to efficiently 
compress and encode data before learning to reconstruct the data from the compressed, 
encoded representation to a form that is as similar to the original input as possible. The 
autoencoder can nonlinearly compress and reconstruct the input in this manner. In our 
case, the autoencoder serves a different purpose. To retrieve the transmitted message 
with a low likelihood of error, it aims to develop representations of messages that are 
resilient to channel impairments, mapping x to y. In contrast to other autoencoders, which 
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typically add redundancy to input data to increase compression, this autoencoder 
frequently subtracts redundancy to develop an intermediate representation that is 
resistant to channel perturbations 

In the context of communication systems, the auto-encoder model appears as follows: 

 

Fig 1: Autoencoder Model 

According to a proposal made by Morocho-Cayamcela et al., the established 
communication system should have a transmitter, receiver, and channel that transfer 
information between them. By training them as DNNs, deep learning (DL) can jointly 
optimize numerous communication blocks at the transmitter and receiver, as compared 
to the separate block optimization of conventional communication systems. The output 
constellation diagrams in an AE system are learned based on the intended performance 
measure to be minimized at the receiver, rather than being predefined [1]. In the AE 
structure, a single DNN, referred to as the encoder, replaces the entire transmitter, with 
the input being the original bit information and the output being the broadcast signal. 
Another DNN, referred to as the decoder, takes the received signal as input and produces 
the reconstructed bits, thereby replacing the receiver. The encoder and decoder networks 
were concurrently trained by reducing the difference in loss between the original and 
reconstructed information. The issue of gradient backpropagation in practical wireless 
channels can also be addressed using GANs and retraining techniques [2]. 

Gradient descent and its variations can be used to train the TurboAE from start to finish. 
A block length of 100 was used for training and testing the CNN-AE and TurboAE. While 
TurboAE and Turbo codes show decreasing error rates as the block length increases, 
CNN-AE exhibits a saturating block length gain as the block length increases. CNNs or 
other general-purpose neural networks cannot perform well on extended block lengths 
when naively applied to a channel coding task [3]. A deep autoencoder framework can 
be considered an end-to-end communication paradigm. Even if the channels are 
unknown, gradients can be back propagated to the transmitter using conditional GAN. 
The Channel GAN Training Algorithm serves as the foundation for the channel GAN 
training process. The generator and discriminator are iteratively trained during each cycle, 
with the parameters of one model fixed while training the other. Using the learned 
transmitter, the encoded signal from the transmitter traveling via the actual channel can 
be used to retrieve the true data, whereas the encoded signal traveling through the 
channel generator is used to obtain the false data. The loss function in the equations is 
employed to update the parameters of the generator and discriminator [4].  
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In the proposed configuration, the first neural network represents or encodes an input 
signal with high-dimensional output, after which channel distortions are added. The 
second neural network then maps this high-dimensional signal to the input signal space. 
The k-length message serves as the input for the autoencoder, producing vectors with a 
length of 2k that are identical to the input vectors. Both the encoder and decoder networks 
consist of several fully connected layers. It is evident that the suggested DNN-trained 
codes function nearly as well as the theoretically ideal block codes with MDD in an AWGN 
channel [5]. To train an end-to-end transceiver in situations with time-varying channels, 
Ge et al. presented an MPA-AE structure and its accompanying algorithms. When the 
channel changes from the one that the transceiver is trained with, the MPA layer placed 
between the encoder and decoder of the classic AE can be fine-tuned. Simulations 
demonstrated the performance of the proposed method [6].  

In a variety of use cases, such as single-user and multiuser scenarios, the MPA layer can 
be adaptably merged with the AE-based transceiver. Source coding schemes, high-order 
modulation schemes, huge MIMO schemes, and pre-distortion schemes, which can adapt 
well to time-varying channel circumstances, can all be designed using the MPA layer in 
single-user scenarios. According to theory, a transmitter's DNN and MPA layers should 
skew the input distribution to match the existing channel-distortion distribution. In terms 
of Bit Error Rate (BER), the proposed End-to-End (E2E) wireless communication system 
based on the DNN channel module performed comparably to the conventional 
communication system and the E2E communication system using Conditional Generative 
Adversarial Network (CGAN) as the unknown channel, with only a slight performance 
advantage. Our approach performs marginally worse than the conventional 
communication system in terms of Block Error Rate (BLER) but marginally better than the 
E2E communication system using CGAN as an unidentified channel [7]. Sandesh et al. 
proposed an architecture that utilizes an FCDNN in conjunction with a pre-processing 
layer that applies Channel State Information (CSI) knowledge to perform operations on 
the received data. The real and imaginary components of the pre-processed data were 
combined and supplied to the network as inputs. The output of the decoder network is a 
one-hot vector [8].  

The binary cross-entropy loss for various insights into the flat fading complex channel at 
decreasing Signal-to-Noise Ratio (SNR) was minimized to train this network. A unique 
RNN-based neural network architecture that meets the low-latency criteria was proposed 
by Yihan et al. for LEARN. The causal neural encoder consists of a Fully Connected 
Neural Network (FCNN) with two layers of GRU added to a causal RNN. The neural 
structure guarantees the ability to learn and extend the best temporal storage to a 
nonlinear regime embedded in the neural structure [9]. Hinton et al. proposed an 
autoencoder, typically used to obtain a lower-dimensional representation of the input 
data. Autoencoders are composed of two neural networks connected to the back. In 
traditional autoencoders, the input data are represented or encoded by the first neural 
network into a smaller dimensional output, and the original data are recovered by the 
second neural network decoding the compressed data [10]. According to the setup 
proposed by David et al., the input signal is encoded or represented with high-dimensional 
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output by the first neural network. Channel distortions were then applied, and the second 
neural network mapped this high-dimensional signal to the input signal space. The k-
length message was the input of the autoencoder, which produces one-hot vectors of 
length 2k as the output [11], matching the input vectors. The networks for the encoder 
and decoder were a series of fully connected layers. 
 
III. PROPOSED METHODOLOGY AND RESULTS 

3. Deep Learning based Block codes 

The effectiveness of several types of autoencoders has been thoroughly assessed across 
various channels. Block codes are represented by the pair (n, k), where k represents the 
message length, and n is the code word length. 

The autoencoder was trained as described below, and the encoder neural network 
receives 2k potential messages in a random order. The ReLU and tanh activation 
functions were used to construct the encoder neural network layers. The wireless channel 
receives the output of the encoder neural network. The decoder neural network receives 
the input from the output of the wireless channel. This training is performed with 
decreasing levels of signal-to-noise ratio for several instances of CN (0, 1) random 
variables. The autoencoder was trained through two steps of weight optimization. The 
first-stage optimization of the autoencoder is solely used to update the weights of the 
encoder network to maximize the distance separation of the code words. 

The loss function can be written as 

Le(ϴe) = - λ * dmin(ϴe)   -- (3) 

ϴe stands for the encoder network outputs, and θ is the regularization parameter used for 
optimizing the codewords. The minimization of this loss results in the maximization of dmin, 
as the negative sign of the loss function ensures this. The root mean squared error was 
used as the loss function in the second-stage optimization, which updated the weights of 
the decoder network. 

3.1. (7, 4) Auto-encoder 

To increase the distance between the code words, the encoder network is trained using 
32 message bits that may be employed. Then, an autoencoder model is trained with the 
introduction of various channel types, utilizing the weights of the encoder. The channel 
receives the encoder's outputs or 7-bit code words, and the decoder network receives 
code words from the channel. The decoder network is trained to recover the 4-bit 
message from the code words. 

3.1.1.   Architecture of Auto-Encoder 

Fully-connected neural networks (FCNN), also known as dense layers, serve as the 
building blocks of encoder networks. These layers are then activated through functions 
such as ReLU and tanh. In the encoder, the last layer is activated by the tanh function to 
mimic QAM modulation, while all other layers are activated by the ReLU function. 
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The decoder network is similar, consisting of dense layers and being fully activated by 
ReLU/Leaky ReLU activations. The input dimensions of the decoder network vary 
depending on the channel. 

Table 1: consists of the encoder architecture and Table 3.2 has the required 
hyperparameters to train the network 

Component Layer Activation Function Layer Dimensions 

Encoder 

Dense ReLU 4, 32 

Batch Normalisation  32 

Dense ReLU 32, 16 

Batch Normalisation  16 

Dense tanh 16,7 

Layer Normalisation  7 

Table 2: Encoder Architecture for (7,4) Auto-encoder 

Loss Function: - λ * dmin(ϴe) 

Optimizer: Adam 

Batch Size: 16 

Epochs: 30000 

λ: 1 

The highest squared Euclidean distance between the codewords for a (7,4) encoder 
obtained after training for 30,000 epochs is 10.05, whereas the theoretical squared 
Euclidean distance is 12. We now train the decoder in several channels using these 
encoder weights, and we assess the Bit Error Rate (BER) vs Signal-to-Noise Ratio (SNR) 
curves. 

3.1.2   AWGN channel 

We can directly feed the received bits to the decoder network and train it to learn how to 
recover the message bits since the Additive White Gaussian Noise (AWGN) channel only 
introduces additive noise, and that noise affects only the real portion of the signal. Batch 
normalization is not applied to the (16,8) layer because it is only applied to layers with 
larger dimensions. 

Table 3: Decoder Architecture (7,4) Auto-encoder in AWGN channel 

Component Layer Activation Function Layer Dimensions 

Channel AWGN  7 

Decoder 

Dense ReLU 4, 32 

Batch Normalisation  32 

Dense ReLU 32, 16 

Batch Normalisation  16 

Dense ReLU 16,8 

Dense ReLU 8, 4 
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We can assess the entire autoencoder model after training the decoder. The Bit Error 
Rate (BER) vs. Signal-to-Noise Ratio (SNR) curves for the (7,4) Autoencoder model are 
shown in Fig. 4.7. It is evident that the (7,4) Hamming code and the (7,4) Autoencoder 
differ by 2 dB. This issue has arisen since the encoder model could only attain a distance 
of 10.05 between codewords. This issue might be resolved if we attempt to achieve a 
theoretically attainable distance. 

Table 4: Hyper Parameters for (7,4) decoder 

Loss Function: MMSE 

Optimizer: Adam 

Batch Size: 1024 

Epochs: 10000 

  

  

Fig 2: (7,4) Auto-encoder in AWGN channel 

3.1.3 Fading channel with exact CSI 

The output of the encoder experiences multiplicative and additive noise due to the fading 
channel. Although the encoder outputs are real numbers, when they are sent across the 
fading channel, the decoder receives both real and imaginary components. The exact h 
value, along with the real and imaginary components, is concatenated and provided as 
input to the decoder network.  
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Table 3.5: consists of the decoder architecture, and the hyperparameters needed 
for training are the same as in Table 3.4 

Component Layer Activation Function Layer Dimensions 

Channel 
Fading (h)  1 

Additive noise (n)  7 

Decoder 

Dense ReLU 4, 32 

Batch 
Normalisation 

 32 

Dense ReLU 32, 16 

Batch 
Normalisation 

 16 

Dense ReLU 16,8 

Dense ReLU 8, 4 

Following Fig. 3 are the BER vs SNR curves for the (7,4) Autoencoder model. We can 
see that there is a 2-5 dB gap between the (7,4) hamming code and (7,4) Autoencoder. 

 

Fig 3: are the BER vs SNR curves for the (7,4) Autoencoder model 

3.2 (15,11) Auto-encoder 

To increase the distance between code words, the encoder network was trained with 512 
potential message bits. Then, an autoencoder model is trained with the introduction of 
various channel types, utilizing the weights of the encoder. The channel receives the 
encoder's outputs, or 15-bit code words, and the decoder network receives code words 
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from the channel. The decoder network was trained to extract the 11-bit message from 
the code words. 

3.2.1 Architecture of Auto-Encoder 

Fully-connected neural networks (FCNN), also known as dense layers, serve as the 
building blocks of encoder networks. These layers are then activated by means of 
activation functions such as ReLU and tanh. In the encoder, the last layer is activated by 
the tanh function to mimic BPSK modulation, whereas all other layers are activated by 
the ReLU function. The decoder network is similar, consisting of dense layers, and 
ReLU/Leaky ReLU activations fully activate it. The input dimensions of the decoder 
network vary depending on the channel. Therefore, only the encoder architecture is 
described in this section, and the decoder architecture is presented in depth in the 
channel sections where it belongs. Table 6 consists of the encoder architecture and Table 
7 has the required hyperparameters to train the network. 

Table 6: Encoder Architecture for (15,11) Auto-encoder 

Component Layer 
Activation 
Function 

Layer 
Dimensions 

Encoder 

Dense ReLU 11, 64 

Batch Normalisation  64 

Dense ReLU 64, 32 

Batch Normalisation  32 

Dense tanh 32, 15 

Layer Normalisation  15 

Table 7: Hyper Parameters for (15,11) encoder 

Loss Function: - λ * dmin(ϴe) 

Optimizer: Adam 

Batch Size: 2048 

Epochs: 40000 

λ: 1 

The highest squared Euclidean distance between the codewords for a (15,11) encoder 
obtained after training for 40,000 epochs was 9.46, whereas the theoretical squared 
Euclidean distance was 12. We now train the decoder in several channels using these 
encoder weights and assess the Bit Error Rate (BER) vs. Signal-to-Noise Ratio (SNR) 
curves. 

3.2.2 AWGN channel 

We can directly feed the received bits to the decoder network and train it to extract the 
message bits because the Additive White Gaussian Noise (AWGN) channel only 
introduces additive noise, which affects only the real portion of the signal. Table 8 consists 
of the decoder architecture and Table 9 has the required hyperparameters to train the 
network. 
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Table 8: Decoder Architecture for (15,11) Auto-encoder in AWGN channel 

Component Layer Activation Function Layer Dimensions 

   Channel AWGN  15 

  Decoder 

Dense ReLU 15, 64 

Batch Normalisation  64 

Dense ReLU 64, 32 

Batch Normalisation  32 

Dense ReLU 32 

Dense ReLU 32, 11 

We can assess the entire autoencoder model after training the decoder. The Bit Error 
Rate (BER) vs. Signal-to-Noise Ratio (SNR) curves for the (15,11) Autoencoder model 
are shown in Fig. 3.3. It is evident that the (15,11) Hamming code and the (15,11) 
Autoencoder differ by 3–5 db. 

Table 9: Hyper Parameters for (15,11) decoder 

Loss Function: MSE 

Optimizer: Adam 

Batch Size: 2048 

Epochs: 5000 

 

 

Fig 4: (15,11) Auto-encoder in AWGN channel 
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3.2.3 Fading channel with exact CSI 

The output of the encoder experiences both multiplicative and additive noises owing to 
the fading channel. Although the encoder outputs are real numbers, the decoder receives 
both real and imaginary components when they are sent across the fading channel. The 
exact h value, along with the real and imaginary components, is combined and provided 
as input to the decoder network. 

Table 10: consists of the decoder architecture and the hyperparameters needed 
for training are the same as in Table 9 

Component Layer Activation Function Layer Dimensions 

Channel 
Fading (h)  1 

Additive noise (n)  15 

Decoder 

Dense ReLU 31, 128 

Batch Normalisation  128 

Dense ReLU 128, 64 

Batch Normalisation  64 

Dense ReLU 64, 32 

Batch Normalisation  32 

Dense ReLU 32, 11 

Table 10 presents the Decoder Architecture for the (15,11) Autoencoder in a fading 
channel with exact Channel State Information (CSI). Following Fig. 3.4 are the Bit Error 
Rate (BER) vs. Signal-to-Noise Ratio (SNR) curves for the (15,11) Autoencoder model. It 
is evident that there is a 2-5 dB gap between the (15,11) Hamming code and the (15,11) 
Autoencoder. 

 

Fig 5: (15,11) Auto-encoder in Fading channel with exact CSI 
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IV. CONCLUSION 

For wireless channels, such as AWGN and fading channels, we trained neural networks 
to learn nonlinear error control codes, and we obtained respectable error probabilities. 
Using deep-learning techniques, we created block codes for several wireless channels, 
such as the AWGN channel. We modelled a loss function that maximizes the distance 
between code words while implementing block codes to train the encoder. Hamming 
distance has been utilized extensively in research to train encoders, but we tested the 
effectiveness of the squared Euclidean distance loss instead. 
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