
Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 267

IMPLEMENTATION OF PARALLELISM OF BACK PROPAGATION

NEURAL NETWORK ALGORITHM ON A DISTRIBUTED COMPUTING

SYSTEM

SHAHAZAD NIWAZI QURASHI *

Department of Health Informatics, College of Public Health and Tropical Medicine, Jazan University, Jazan,
Jizan, Kingdom of Saudi Arabia. *Corresponding Author Email: squrashi@jazanu.edu.sa

MOHD SHAHNAWAZ ANSARI
Department of Computer Science and Engineering, School of Engineering, Eklavya University, Damoh,
(M.P), India. Email: shahnawaznbd@gmail.com,

FARRUKH SOBIA
Department of Health Education & Promotion, College of Public Health and Tropical Medicine, Jazan
University, Jazan, Jizan, Kingdom of Saudi Arabia. Email: fsobia@jazanu.edu.sa

RABINDRA K. BARIK
School of Computer Applications, Kalinga Institute of Industrial Technology, Bhubaneswar, India.
Email:rabindra.mnnit@gmail.com

Abstract

Neural networks are composed of many small processors that work simultaneously on the same task. They
can learn from training data and use their knowledge to compare patterns in a dataset. Combining the
strengths of parallel processing and distributed computing, the neural network can enhance the processing
times for both the learning and execution stages to efficiently calculate the most probable output with a
remarkable degree of accuracy. The aim of this research was to design, implement, and demonstrate the
enhanced computational speed of a generalized large-scale neural network with broad-based applications
using parallel computing. As a result, we evaluated distributed computing systems and compared the
performance of different neural network training functions to determine which one worked best for good
system performance. The results indicate that the proposed method outperforms other methods in terms of
accuracy and convergence time. The study suggests that parallelism of the backpropagation neural network
model can lead to faster training convergence time and higher accuracy of the results. The system takes
input data and runs on different systems in parallel.

Keywords: ANN, Backpropagation, Parallel Processing, Distributed system, MATLAB.

1. INTRODUCTION

In some practical applications of neural networks, fast responses to external events within
an extremely short time are highly demanded and expected. However, the extensively
used gradient descent-based learning algorithms obviously cannot satisfy real-time
learning needs in many applications, especially large-scale applications, and when higher
learning accuracy and generalization performance are required. This developed neural
network has a parallel-distributed information processing structure that consists of a
collection of simple processing elements, which are interlinked by means of signal
channels or connections. The most useful property of neural network design is that it has
the ability to recognize input it did not see before while maintaining the basic demands of

mailto:squrashi@jazanu.edu.sa
mailto:shahnawaznbd@gmail.com
mailto:fsobia@jazanu.edu.sa
mailto:rabindra.mnnit@gmail.com

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 268

its specific applications. A MATLAB-based face recognition using PCA with a back
propagation neural network was proposed [Dhoke et al. 2014]. The characteristics that
determine the efficiency of this program are Speed, Accuracy, and real-time capability
(time). It is possible also to compare the performance of two parallelization strategies for
a backpropagation neural network on a cluster computer: exemplar parallel and node
parallel strategies [Pethick et al.2003]. With the integration of parallel computing, the
computational speed of the neural network can be further increased and as the computing
power of personal computers increases with the times, the reality of achieving real-time
computations of extremely large problems becomes almost a possibility. Moreover, the
benefits of training several ANNs in parallel compared to other forecasting

methods used in the competition. Indeed, training several ANNs in parallel yields a better
fitting of the weights of the network and allows for training in a short time many ANNs for
different time series [Cruz-López et al. 2017]. Backpropagation is a widely used method
for calculating derivatives inside deep feedforward neural networks. It is short for
backward propagation of errors. The algorithm is used to train the neural network by
calculating the gradient of the loss function with respect to each of the weights of the
network. This enables every weight to be updated individually to gradually reduce the loss
function over many training iterations. Backpropagation involves the calculation of the
gradient proceeding backward through the feedforward network from the last layer
through to the first. The practical implementations of such a powerful tool span across
various zones are the most interests in engineering applications. From basic image
recognition problems to time-critical military installments in the form of target tracking and
identification to more complex uses in strand recognition, there is a huge commercial
potential for developing a system.

Section 2 outlines about the artificial neural networks and the literature based on
implementing distributed environments, Section 3 describes neural network applications
in parallel computing, and Section 4 discusses the approach to solving the present
problem and the importance of neural networks to solve the problem, Section 5 Provides
the details of the training algorithm that has been used, and the architecture of the parallel
neural network, and implementation of distributed environment system. Section 6 shows
the results of training and testing in the case of single processing and parallel processing
of the data, and finally, Section 7 Concludes the study and future prospects.

2. RELATED WORK

Many researchers have been dedicated to implementing computationally expensive ANN
algorithms on parallel or distributed computing systems. An ANN consists of an enormous
number of massively interconnected nonlinear computational elements (neurons). Each
neuron receives inputs from other neurons, performs a weighted summation, applies an
activation function to the weighted sum, and outputs its results to other neurons in the
network. To address large-scale neural network training problems, a customized parallel
computing platform called cNeural was proposed [Gu et al. 2013].

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 269

Artificial Neural Networks (ANNs) need as much as possible data to have high accuracy,
whereas parallel processing can help us to save time in ANNs training. [Sharif et al. 2018].
The simulation of an ANN comprises a simulation of the learning phase and the recall
phase. The learning and recall of neural networks can be represented mathematically as
linear algebra functions that operate on vectors and matrices [Means et al. 1994]. Thus,
standard parallelization schemes can be exploited for both. However, the focus of parallel
neural simulations has been more on the learning phase, which is the most computation-
intensive part of neuroprocessing. Parallel architectures for simulating neural networks
can be subdivided into general-purpose parallel computers and neurocomputers.

3. NEURAL NETWORK APPLICATIONS

To efficiently utilize parallel processing for speeding up neural network training, we should
be aware of which types of networks and training sets are used in today’s neural
applications. Mainly large applications, where parallel processing is of interest, will be
described. The Feed-forward neural network with a single hidden layer is assumed unless
otherwise stated.

3.1 Speech Recognition

Several research groups are working on the difficult task of continuous speech
recognition. Promising results using neural networks are described in [15] however, the
network and training set need to be large. For recognizing 300 sentences (speaker
independently), the system achieved 4 to 5 percent error, which is competitive with a
statistically based system. For a larger recognition problem, the error for the neural
network system became twice that of the best mainstream system. However, the
mainstream system is larger than the neural–network–based system. As the speech
networks get larger, they tend more toward networks that are not fully connected [16].
This is in the form of fully connected subnets.

3.2 Parallel Implementation of Back Propagation Neural Network

Feed-forward neural network with backpropagation learning is the most widely used
configuration.

Back-propagation neural network algorithm uses input training samples and their
respective desired output values to learn to recognize specific patterns, by modifying the
activation values of its nodes and weights of the links connecting its nodes [Joshi and
Cheeran, 2014].

The backpropagation learning for a bigger network with a large training set takes a long
time (in terms of days), it becomes imperative to look at parallel implementation schemes
to reduce this large training time and the implementations depend very much on the type
of parallelism used. The parallelism can be regarded as the practical solution in solving
large workloads and in achieving an optimal training time and generalization ability,
possessing the problem for generating a suitable comprehensive classifier will positively
to the time and maintain accuracy at the same time [Mohamad et al., 2012].

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 270

3.3 Parallelization of Feed-Forward Neural Network

The basic terminology used in parallel implementation of back propagation neural
networks is described in the following terms.

Training Set: It consists of several training patterns, each given by an input vector and
the corresponding output vector.

Network Size: A network of Ni inputs units, Ni hidden units, and No output units is for
short written Ni *Ni * No. Note that the word network is used for neural networks in this
study, not for processor topology networks.

Training Iteration: It denotes one presentation of the whole training set.

Weight Updating Strategies: Three different approaches are used:

- Learning by pattern (LBP) updates the weights after each training pattern has been
presented.

- Learning by block (LBB) updates the weights after a subset of the training patterns
has been presented

- Learning by epoch (LBE) updates the weights after all patterns have been
presented.

Weight Update Interval: The number of training patterns presented between weight
updates is termed µ. For LBP, µ=1, whereas for LBE µ=p, where p is the number of
training patterns in the training set. The backpropagation algorithm reveals for different
kinds of parallelism

Training Session Parallelism: It starts training sessions with different initial training
parameters on different processing elements.

Training Set Parallelism: It splits the training set across the processing elements. Each
element has a local copy of the complete weight matrix and accumulates weight change
values for the given training patterns. The weights are updated using learning by block.

Pipelining: It allows the training patterns to be “pipelined” between the layers, that is, the
hidden and output layers are computed on different processors. While the output layer
processor calculates output and error values for the present training pattern, the hidden
layer processor processes the next training pattern. The forward and backward phases
may also be parallelized in a pipeline.

Node Parallelism: It computes the neurons within a layer in parallel (neuron parallelism).
Further, the computation within each neuron may also run in parallel. (Nord Strom [2]
names this node parallelism as weight or synapse parallelism). In this method, the
weights can be updated using learning by pattern.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 271

3.4 Distributed Computing for Backpropagation Parallelism

In this section, the first training set parallelism has been described. Then the other main
parallel degree, network partitioning, is detailed by describing pipelining and node
parallelism.

3.4.1 Training Set Parallelism

The great advantage of parallel implementations is the number of different ANNs that can
be trained in the same amount of time. It is a good alternative when many different time
series have to be forecasted [Cruz-López at el. 2017]. Training set parallelism is also
called data parallelism because the training set is partitioned, not the training program.
Each processing element (PE) has a local copy of the complete weight matrices and
accumulates weight change values for the given training patterns. The neural network
weights must be consistent across all the PEs, thus weights are updated in a global
operation (learning by block, epoch). The weight change values of each PE are summed
and used to update the local weight matrices.

4. METHODOLOGY

The objective was to run the system in a distributed environment to reduce time and to
improve the performance of the system. The neural network has a parallel-distributed
information processing structure that consists of a collection of simple processing
elements, which are interlinked by means of signal channels or connections. The
operation of the system was divided into five phases: Input Data, Data distribution among
different processors, Training, Testing, and output.

Figure 4.1: Block Diagram of System Overview

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 272

4.1 Input Data

In this phase, a three-layer architecture of a back propagation neural network is
considered in a distributed environment for the plate vibration problem. The input layer
consists of two inputs, (i) specified boundary condition and (ii) aspect ratio (m) of the
elliptic plate. The digitized values for the input parameters corresponding to the boundary
conditions are fed as 2 for clamped, 1 for simply supported, and 0 for free boundary
condition. The output layer of the artificial neural network architecture consists of one
output in the form of the corresponding frequency parameter (f) obtained from the RR
method using the BCOPs. However, the number of nodes in the hidden layer has been
taken as 10 and 15 for comparison of the results.

Table 4.1: Training Patterns for Artificial Neural Network

 Boundary Condition

 2 1 0

Aspect ratio
(m)

1.00 1.00 1.00

0.90 0.90 0.90

0.80 0.80 0.80

0.70 0.70 0.70

0.60 0.60 0.60

0.50 0.50 0.50

0.40 0.40 0.40

0.30 0.30 0.30

0.20 0.20 0.20

0.10 0.10 0.10

Frequency
parameter (f)

10.216 4.9351 5.3583

11.442 5.5282 5.8381

13.229 6.3935 6.1861

15.928 7.7007 6.4185

20.195 9.7620 6.5712

27.377 13.213 6.6705

40.646 19.514 6.7321

69.147 32.813 6.7654

149.66 69.684 6.7778

579.36 262.98 6.7781

4.2 Parallel Computing

Parallel computing is the simultaneous use of multiple computing resources to solve a
computational problem. There are several different forms of parallel computing bit level,
instruction level, and task parallelism. The test on larger distributed systems would help
to accurately measure the systems’ performance in more diverse environments Mohamad
et al., (2012). A distributed Computing environment enables us to coordinate and execute
independent operations simultaneously on a cluster of computers, speeding up the
execution of jobs that contain large amounts of data. A job is some large operation that
needs be to performed in a distributed environment. A job is broken down into segments
called tasks. The job is divided into identical tasks, but tasks do not have to be identical,
in a distributed environment the job and its tasks are defined in the client processor or
user processor. The client uses a Distributed environment to perform the definition of jobs

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 273

and tasks. The job manager is the part of the environment that coordinates the execution
of jobs and the evaluation of their tasks. The job manager distributes the tasks for
evaluation to the different systems called workers as shown in figure 4.2.

Figure 4.2: Basic Parallel Computing Configuration

4.3 Training

The propagation neural network is used for behavior classification. The neural network
was constructed for this research. It has two units in the input layer and one unit in the
output layer. The network consisted of only one hidden layer and selected the number of
hidden nodes in the hidden layer. In this phase, the network has been trained and tested
by the trainlm training function of neural network tool in MATLAB environment.

4.4 Testing

In the training phase, the input pattern and output pattern were given to the network. But
in this phase, only the input pattern is given. After the initialization of the weights, the input
units of the input layer are activated with the input patterns that have been taken from the
input file. The outputs of the input layer are propagated toward the output layer similarly
to training. The calculated output from the output unit of the output layer was considered
as the desired output pattern.

4.5 Parameters for the Neural Network

A back propagation artificial neural network was used in this research work. The
parameter setting for the training of the neural network is of most important. Number of
inputs i.e. how many units are there in the input vector. Number of outputs i.e. how many
units are there in the output vector. RMS error is a value that can be adjusted, for the
accuracy of the output

Table 4.5: Parameters for the neural network

Parameters Values

Number of Input 2

Number of Output 1

Number of hidden layers 15

RMS-Error 0.000001

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 274

5. IMPLEMENTATION

5.1 Multi-Layer Feed-Forward Networks with Bp Learning

A three-layer feed-forward network is shown in Figure 5.1(a); the network is called fully
connected. Because there are all-to-all connections between two adjacent neuron layers.
The number of neurons (also called units) in each layer is Ni, Nh, and No for the input,
hidden, and output neuron layers, respectively. The network can be extended to any
number of layers; however, because most applications use two-weight layers, the
description here has been restricted to two-layer networks. The BP learning phase for a
pattern consists of a forward phase followed by a backward phase. The training algorithm
of backpropagation involves four stages: Initialization of weights, Feedforward,
Backpropagation of errors, and Updation of the weights and biases.

There are two types of learning in backpropagation: sequential learning and batch
learning. In sequential learning a given input pattern is propagated forward, the error is
determined and back propagated, and the weights are updated. In batch learning the
weights are updated only after the entire set of training networks has been presented to
the network. Thus, the weights update is only performed after every epoch.

Figure 5.1(a): A Three Weight Layer Feed-Forward Neural Network

To train the network, the proposed training algorithm used in the backpropagation
algorithm with set of steps. The main steps are as follows:

• Initialize the weights to small random values.

• Select a training vector pair (input and the corresponding output) from the training
set and present the input vector to the inputs of the network.

• Calculate the actual outputs in the forward phase.

• According to the difference between actual and desired outputs (error). Adjust the
weights Wo and Wh to reduce the difference this is the backward phase.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 275

• Repeat from step 2 for all training vectors.

• Repeat from step 2 until the error is acceptably small.

In the forward phase the hidden layer weight matrix Wh is multiplied by the input vector
X= (X1, X2, X3,.........Xn) T to calculate the hidden layer output

Yh, j=f (∑Wh ji, *X)

Where Wh,ji is the weight connecting input unit I to unit j in the hidden neuron layer. The
function f is a nonlinear activation function. Normally the S-shaped sigmoid function F (α)
=1/1+e-α is used. It compresses the output value to lie in (0, 1), as shown in Figure 5.1(b).
Moreover, the function is differentiable, which is a demand of the training algorithm.

The output from the hidden layer Yh, j is used to calculate the output of the network Yo, k

Yo, k =ƒ (∑Wo,kj *Yh,j)

The error measure Ep for a training pattern p is given by

Ep=1/2∑ (dp,k−Yp,o,k) 2

The overall error measure for a training set of P patterns is E=∑ Ep

Figure 5.1(b): The Sigmoid Function f (α) =1/1+e- α

In the following expressions, the pattern index p has been omitted on all variables to
improve clarity. In the backward phase the target, d, and output, Yo, are compared and
the difference (error) is used to adapt the weights to reduce the error. The error used to
update the weights can be shown to be

δo,k =Yo,k(1−Yo,k)(dk−Yo,k)

Like computing the output delta error, the hidden delta error value for neuron j is

δh,j =Yh,j(1−Yh,j)∑δo,k Wo,kj

The error is not explicitly given and is computed based on the impact of the fan-in of the
output delta errors. To perform the steepest descent in the weight space, the weight
changes become

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 276

Wo, kj =η δo, k Yh, j

Wh,ji =η δh,j Xi

Where η is the learning rate coefficient.

If learning by pattern is applied, the output layer weights are changed to Wo, kj Wo, kJ=Wo,

kj+ η δ o, k*Yh, j

The hidden layer weights are updated accordingly Wh, ji=Wh, ji+ηδh, j*Xi

The training continues for each vector in the training set until the error for the entire set
becomes acceptably small.

5.2 MATLAB Configurations for Distributed Computing

Generally, there is not much difficulty in deciding which machines will run worker
processes and which will run client processes. Worker sessions usually run on the cluster
of machines dedicated to that purpose. The client session of MATLAB usually runs where
MATLAB programs are run, often on a user's desktop. The job manager process should
run on a stable machine, with adequate resources to manage the number of tasks and
amount of data expected in our distributed computing applications. The following table
shows what products and processes are needed for each of these roles in the distributed
computing configuration.

Table 5.2: Distributed Computing Configuration

Session Products Process

Client Distributed Computing Toolbox MATLAB with toolbox

Worker MATLAB Distributed Computing Engine
worker; mdce service(if using a job
manager)

Job manager MATLAB Distributed Computing Engine mdce service; job manager

5.2.1 Worker Configuration

The different workers running on different machines can be connected using the following
configurations. The 3 workers running on a machine with IP address 172.31.5.105 and
the 4 workers running on the machine with IP address 172.31.5.96.

5.2.2 Job Manager Configuration

For the job Manager Configuration First Parallel pull-down menu must be selected on the
MATLAB desktop. to open the Configurations Manager, we Click the Parallel Manage
Configurations. The first time when the Configurations Manager opens, it lists only one
configuration called local, which at first is the default configuration and has only default
settings.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 277

Figure 5.2.2(a): Job Manager Configuration Properties 1

Figure 5.2.2(b): Job Manager Configuration Properties 2

To create a new configuration whose type of scheduler is a job manager in the
Configurations Manager, click New Job Manager. This opens a new Job Manager
Configuration Properties dialog box. Enter a configuration name, such as “MyJMconfig1”,
and a description as shown in Figure 5.2.2. In the Scheduler tab, enter the hostname for
the machine on which the job manager is running and the name of the job manager. If
entering information for an actual job manager already running on your network, enter the
appropriate text. In the Jobs tab, enter 4 and 4 for the maximum and minimum number of
workers. This specifies that jobs using this configuration require at least four workers and
use no more than four workers. Therefore, the job runs on exactly four workers, even if it
has to wait until four workers are available before starting. After creating a job, apply either
configuration to that job as a way of specifying how many workers it should run on.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 278

5.3 Training

The training process requires a set of examples of proper network behavior - network
inputs p and target outputs t. In the previous section, it has been already mentioned that
the backpropagation neural network is used for behavior classification. In this work neural
network is constructed with 2 units in the input layer and one unit in the output layer. Only
one hidden layer is used in this work and there is an option to choose a different number
of hidden nodes for the system. This can be simply done by changing the value of the
variable for hidden units in the implementation. A weight value is associated with each of
the connections. The output of the neural network will be our desired target output.

5.4 Different Training Algorithms

According to [Gu et al. 2013], a more complex algorithm leads to increased complexity of
memory management, synchronization details, and tracking of processes involved in
tasks, especially when tasks are generically distributed. Different test runs were made for
each of the following training algorithms with varying numbers of hidden nodes. Table 5.4
in this work shows the training function used along with some other training functions.

Table 5.4: Description of Different Neural Network Training Functions

Function Description

Trainbfg BFGS quasi-Newton method. Requires storage of approximate Hessian matrix
and has more computation in each iteration than conjugate gradient algorithms,
but usually converges in less iteration.

Trainoss One-step secant method. Compromise between conjugate gradient methods
and quasi-Newton methods.

Trainlm

Levenberg-Marquardt algorithm. Fastest training algorithm for networks of
moderate size. Has a memory reduction feature for use when the training set is
large.

5.5 Testing

The system has already been trained with the normal given data. During the training
phase, both the input pattern and output pattern are given to the network. However, in
this phase, only the input pattern is given. After initializing the weights, the input units of
the input layer are activated with the input patterns taken from the input file. The outputs
of the input layer are propagated towards the output layer, like training. The calculated
output from the output unit of the output layer is considered as the desired output pattern.
This output will indicate whether the given input pattern represents the desired output or
not.

6. RESULT EVALUATION

This section discusses experimental issues and compares single and parallel data
processing with the trainlm training function. The experiment examines the number of
hidden layers required to train the neural network and compares data processing in the
case of serial and parallel processing. The experiments use different data for plate
vibration analysis. They compare single processing and parallel processing to increase
system performance using a distributed system in the MATLAB environment.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 279

In a preliminary experiment, a training function with 10 hidden units was used to train the
network until the RMS error value was reduced to an acceptable level. The training
sessions were collected for plate vibration analysis. The results of the training for plate
vibration analysis are shown in Table 6.1 with 10 and 15 hidden nodes. In the table, the
number of hidden units denotes the number of neurons in the first layer.

The number of epochs represents the number of iterations needed to converge the
network with the desired accuracy. The performance goal status indicates whether the
desired goal is achieved or not. Table 6.1 compares single and parallel data processing
for training the network to increase system performance using a distributed system in the
Matlab environment.

6.1 Training

Table 6.1: Comparison of Training Patterns between Single and Parallel System

 No. of Epocs/sec Hidden Units Performance goal

Single 8520 10 Achieved

Parallel 1326 10 Achieved

Single 2761 15 Achieved

Parallel 821 15 Achieved

6.2 Experiment

6.2.1 Single processing with hidden units 10

Figure 6.1.1: Output of Training Dataset-using Trainlm Training Function

The graph shown in Figure 6.1.1 represents the output of the training of the network and
8520 epochs have been taken to get trained the network using the trainlm train function.
and the performance goal of the network has been achieved.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 280

6.2.2 Parallel processing with hidden units 10

Figure 6.2.2: Output of Training Dataset-using Trainlm Training Function

The graph shown in Figure 6.2.2 represents the output of the training of the network and
1326 epochs have been taken to get train the network using the trainlm train function. In
this case, the performance goal of the network has been achieved.

6.2.3 Single processing with hidden units 15

Figure 6.2.3: Output of Testing Dataset-using Trainlm Training Function

The graph shown in Figure 6.2.3 represents the output of the training of the network and
2761 epochs have been taken to get trained the network using the trainlm train function.
In this case, the performance goal of the network has been achieved.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 281

6.2.4 Parallel processing with hidden units 15

Figure 6.2.4: Output of Testing Dataset-using Trainlm Training Function

The graph shown in Figure 6.2.4 represents the output of the training of the network and
821 epochs have been taken to get train the network using the trainlm train function. In
this case, the performance goal of the network has been achieved.

6.3 Different Node Status in Distributed Environment

6.3.1 Nodestatus1

Figure. 6.3.1: Node Status of the Worker on System hec103

As shown in Figure 6.3.1 this is one of the node statuses in a distributed environment,
there are four workers are running in this hec103 host, and three workers are (3worke1,
3work2, 3worke2) related to the job manager name with hec107job on the system
172.31.5.92. And one worker's name with hec103_worker is not connected with the job
manager; the connection is failed because the default_ job manager is not running on the
system 172.31.5.92.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 282

6.3.2 Nodestatus2

As shown in figure 6.3.2 this is one of the node statuses in a distributed environment,
there are two workers are running in this hec104 host and two workers are
(4worker1,4worker2) relate to job manager name with hec107job on the system
172.31.5.92.

Figure 6.3.2: Node Status of the Worker on System hec104

6.3.4 Nodestatus3

As shown in figure 6.3.3 this is the job manager node status in a distributed environment,
there are on job manager lookup processes and one job manager and one worker,
hec107_worker is not connected with the default job manager, and the connection is lost,
because the default job manager is not running on this node hec107 and five other
workers relate to this job manager name with hec107job as described in the above node
statuses.

Figure 6.3.3: Node Status of the Job Manager on System hec107

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 283

7. CONCLUSION

The implementation of parallelism of back propagation neural network algorithm on a
distributed computing system with good performance has been demonstrated. The
parallelism of the backpropagation neural network has been trained and tested for the
analysis of vibration data. It has been observed that the convergence time for the training
of backpropagation neural networks by parallel processing is faster as compared to single
processing. This is because the data has been processed parallelly. In the case of parallel
processing, training of back propagation neural network has achieved the performance
goal with the desired accuracy of the results.

The training of the backpropagation neural network algorithm has been performed by
using trainlm training function of the Mat Lab environment with 10 and 15 nodes in the
hidden layer of the network model. It has also been observed that with 15 numbers of
nodes in the hidden layer of the network takes less time to converge. It is also tested that
while increases the number of nodes in the hidden layer the accuracy of the results does
not increase. The proposed research work gives a faster estimation for the analysis of
vibration data. It is well documented that parallelism of the backpropagation neural
network model gives the faster training convergence time and higher accuracy of the
results.

7.1 Limitations and Future Work

In this research work, there is no fixed size of the cluster of the distributed systems for
the particular to problem under test. Only one can assign a number of workers to the Job
manager depending on the achievement of the higher performance of the system. In
future work, this can be trained with different training functions of the Mat Lab
environment. As shown in this research work, back propagation neural networks can be
successfully implemented in the distributed environment system for data processing. The
same experiments should also be conducted with other types of neural networks to see
if the different types can improve the performance of the system as we got the experiment
results with the backpropagation neural network.

References

1) Rumelhart, D. E., Durbin, R., Golden, R., & Chauvin, Y. (1995). Backpropagation: The basic
theory. Backpropagation: Theory, architectures and applications, 1-34.

2) Kashem, M. A., Akhter, M. N., Ahmed, S., & Alam, M. M. (2011). Face recognition system based on
principal component analysis (PCA) with back propagation neural networks (BPNN). Canadian Journal
on Image Processing and Computer Vision, 2(4), 36-45.

3) Meng, Y. (2004). Speech recognition on DSP: Algorithm optimization and performance analysis. The
Chinese University of Hong Kong, 1-18.

4) Le, C. G. (1993). Application of a Back-propagation neural network to isolated-word speech
recognition (Doctoral dissertation, Monterey, California. Naval Postgraduate School).

5) Mehrotra, K., Mohan, C. K., & Ranka, S. (1997). Elements of artificial neural networks. MIT Press.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10223972

Nov 2023 | 284

6) Dhoke, P., & Parsai, M. P. (2014). A MATLAB-based Face Recognition using PCA with Back
Propagation Neural network. International Journal of Innovative Research in Computer and
Communication Engineering, 2(8), 5291-5297.

7) Joshi, S. C., & Cheeran, A. N. (2014). MATLAB-based back-propagation neural network for automatic
speech recognition. International Journal of Advanced Research in Electrical, Electronics and
Instrumentation Engineering, 3(7), 10498-10504.

8) Mohamad, M., Saman, M. Y. M., & Hitam, M. S. (2012). Parallel Training for Back Propagation in
Character Recognition. University Malaysia of Terengganu.

9) Cruz-López, J. A., Boyer, V., & El-Baz, D. (2017, May). Training many neural networks in parallel via
back-propagation. In 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW) (pp. 501-509). IEEE.

10) Pethick, M., Liddle, M., Werstein, P., & Huang, Z. (2003, November). Parallelization of a
backpropagation neural network on a cluster computer. In International conference on parallel and
distributed computing and systems (PDCS 2003).

11) Gu, R., Shen, F., & Huang, Y. (2013, October). A parallel computing platform for training large scale
neural networks. In 2013 IEEE International Conference on big data (pp. 376-384). IEEE.

12) Sharif, M. H., & Gursoy, O. (2018). Parallel computing for artificial neural network training using java
native socket programming. Periodicals of engineering and natural sciences, 6(1), 1-10.

