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Abstract 

Neural networks are composed of many small processors that work simultaneously on the same task. They 
can learn from training data and use their knowledge to compare patterns in a dataset.  Combining the 
strengths of parallel processing and distributed computing, the neural network can enhance the processing 
times for both the learning and execution stages to efficiently calculate the most probable output with a 
remarkable degree of accuracy.  The aim of this research was to design, implement, and demonstrate the 
enhanced computational speed of a generalized large-scale neural network with broad-based applications 
using parallel computing. As a result, we evaluated distributed computing systems and compared the 
performance of different neural network training functions to determine which one worked best for good 
system performance. The results indicate that the proposed method outperforms other methods in terms of 
accuracy and convergence time. The study suggests that parallelism of the backpropagation neural network 
model can lead to faster training convergence time and higher accuracy of the results. The system takes 
input data and runs on different systems in parallel. 

Keywords: ANN, Backpropagation, Parallel Processing, Distributed system, MATLAB. 

 
1. INTRODUCTION 

In some practical applications of neural networks, fast responses to external events within 
an extremely short time are highly demanded and expected. However, the extensively 
used gradient descent-based learning algorithms obviously cannot satisfy real-time 
learning needs in many applications, especially large-scale applications, and when higher 
learning accuracy and generalization performance are required. This developed neural 
network has a parallel-distributed information processing structure that consists of a 
collection of simple processing elements, which are interlinked by means of signal 
channels or connections. The most useful property of neural network design is that it has 
the ability to recognize input it did not see before while maintaining the basic demands of 
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its specific applications. A MATLAB-based face recognition using PCA with a back 
propagation neural network was proposed [ Dhoke et al. 2014]. The characteristics that 
determine the efficiency of this program are Speed, Accuracy, and real-time capability 
(time). It is possible also to compare the performance of two parallelization strategies for 
a backpropagation neural network on a cluster computer: exemplar parallel and node 
parallel strategies [Pethick et al.2003]. With the integration of parallel computing, the 
computational speed of the neural network can be further increased and as the computing 
power of personal computers increases with the times, the reality of achieving real-time 
computations of extremely large problems becomes almost a possibility. Moreover, the 
benefits of training several ANNs in parallel compared to other forecasting  

methods used in the competition. Indeed, training several ANNs in parallel yields a better 
fitting of the weights of the network and allows for training in a short time many ANNs for 
different time series [Cruz-López et al. 2017]. Backpropagation is a widely used method 
for calculating derivatives inside deep feedforward neural networks. It is short for 
backward propagation of errors. The algorithm is used to train the neural network by 
calculating the gradient of the loss function with respect to each of the weights of the 
network. This enables every weight to be updated individually to gradually reduce the loss 
function over many training iterations. Backpropagation involves the calculation of the 
gradient proceeding backward through the feedforward network from the last layer 
through to the first.  The practical implementations of such a powerful tool span across 
various zones are the most interests in engineering applications. From basic image 
recognition problems to time-critical military installments in the form of target tracking and 
identification to more complex uses in strand recognition, there is a huge commercial 
potential for developing a system. 

Section 2 outlines about the artificial neural networks and the literature based on 
implementing distributed environments, Section 3 describes neural network applications 
in parallel computing, and Section 4 discusses the approach to solving the present 
problem and the importance of neural networks to solve the problem, Section 5 Provides 
the details of the training algorithm that has been used, and the architecture of the parallel 
neural network, and implementation of distributed environment system.  Section 6 shows 
the results of training and testing in the case of single processing and parallel processing 
of the data, and finally, Section 7 Concludes the study and future prospects.  
 
2. RELATED WORK 

Many researchers have been dedicated to implementing computationally expensive ANN 
algorithms on parallel or distributed computing systems. An ANN consists of an enormous 
number of massively interconnected nonlinear computational elements (neurons). Each 
neuron receives inputs from other neurons, performs a weighted summation, applies an 
activation function to the weighted sum, and outputs its results to other neurons in the 
network. To address large-scale neural network training problems, a customized parallel 
computing platform called cNeural was proposed [Gu et al. 2013].  
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Artificial Neural Networks (ANNs) need as much as possible data to have high accuracy, 
whereas parallel processing can help us to save time in ANNs training. [Sharif et al. 2018]. 
The simulation of an ANN comprises a simulation of the learning phase and the recall 
phase. The learning and recall of neural networks can be represented mathematically as 
linear algebra functions that operate on vectors and matrices [Means et al. 1994]. Thus, 
standard parallelization schemes can be exploited for both. However, the focus of parallel 
neural simulations has been more on the learning phase, which is the most computation-
intensive part of neuroprocessing. Parallel architectures for simulating neural networks 
can be subdivided into general-purpose parallel computers and neurocomputers. 
 
3. NEURAL NETWORK APPLICATIONS 

To efficiently utilize parallel processing for speeding up neural network training, we should 
be aware of which types of networks and training sets are used in today’s neural 
applications. Mainly large applications, where parallel processing is of interest, will be 
described. The Feed-forward neural network with a single hidden layer is assumed unless 
otherwise stated.  

3.1 Speech Recognition 

Several research groups are working on the difficult task of continuous speech 
recognition. Promising results using neural networks are described in [15] however, the 
network and training set need to be large. For recognizing 300 sentences (speaker 
independently), the system achieved 4 to 5 percent error, which is competitive with a 
statistically based system. For a larger recognition problem, the error for the neural 
network system became twice that of the best mainstream system. However, the 
mainstream system is larger than the neural–network–based system. As the speech 
networks get larger, they tend more toward networks that are not fully connected [16]. 
This is in the form of fully connected subnets. 

3.2 Parallel Implementation of Back Propagation Neural Network 

Feed-forward neural network with backpropagation learning is the most widely used 
configuration. 

Back-propagation neural network algorithm uses input training samples and their 
respective desired output values to learn to recognize specific patterns, by modifying the 
activation values of its nodes and weights of the links connecting its nodes [Joshi and 
Cheeran, 2014]. 

The backpropagation learning for a bigger network with a large training set takes a long 
time (in terms of days), it becomes imperative to look at parallel implementation schemes 
to reduce this large training time and the implementations depend very much on the type 
of parallelism used. The parallelism can be regarded as the practical solution in solving 
large workloads and in achieving an optimal training time and generalization ability, 
possessing the problem for generating a suitable comprehensive classifier will positively 
to the time and maintain accuracy at the same time [Mohamad et al., 2012]. 
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3.3 Parallelization of Feed-Forward Neural Network 

The basic terminology used in parallel implementation of back propagation neural 
networks is described in the following terms. 

Training Set: It consists of several training patterns, each given by an input vector and 
the corresponding output vector. 

Network Size: A network of Ni inputs units, Ni hidden units, and No output units is for 
short written Ni *Ni * No. Note that the word network is used for neural networks in this 
study, not for processor topology networks. 

Training Iteration: It denotes one presentation of the whole training set. 

Weight Updating Strategies: Three different approaches are used: 

- Learning by pattern (LBP) updates the weights after each training pattern has been 
presented. 

- Learning by block (LBB) updates the weights after a subset of the training patterns 
has been presented 

- Learning by epoch (LBE) updates the weights after all patterns have been 
presented. 

Weight Update Interval: The number of training patterns presented between weight 
updates is termed µ. For LBP, µ=1, whereas for LBE µ=p, where p is the number of 
training patterns in the training set. The backpropagation algorithm reveals for different 
kinds of parallelism 

Training Session Parallelism: It starts training sessions with different initial training 
parameters on different processing elements. 

Training Set Parallelism: It splits the training set across the processing elements. Each 
element has a local copy of the complete weight matrix and accumulates weight change 
values for the given training patterns. The weights are updated using learning by block. 

Pipelining: It allows the training patterns to be “pipelined” between the layers, that is, the 
hidden and output layers are computed on different processors. While the output layer 
processor calculates output and error values for the present training pattern, the hidden 
layer processor processes the next training pattern. The forward and backward phases 
may also be parallelized in a pipeline. 

Node Parallelism: It computes the neurons within a layer in parallel (neuron parallelism). 
Further, the computation within each neuron may also run in parallel. (Nord Strom [2] 
names this node parallelism as weight or synapse parallelism). In this method, the 
weights can be updated using learning by pattern. 
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3.4 Distributed Computing for Backpropagation Parallelism 

In this section, the first training set parallelism has been described. Then the other main 
parallel degree, network partitioning, is detailed by describing pipelining and node 
parallelism. 

3.4.1 Training Set Parallelism 

The great advantage of parallel implementations is the number of different ANNs that can 
be trained in the same amount of time. It is a good alternative when many different time 
series have to be forecasted [Cruz-López at el. 2017].  Training set parallelism is also 
called data parallelism because the training set is partitioned, not the training program. 
Each processing element (PE) has a local copy of the complete weight matrices and 
accumulates weight change values for the given training patterns. The neural network 
weights must be consistent across all the PEs, thus weights are updated in a global 
operation (learning by block, epoch). The weight change values of each PE are summed 
and used to update the local weight matrices. 
 
4. METHODOLOGY 

The objective was to run the system in a distributed environment to reduce time and to 
improve the performance of the system. The neural network has a parallel-distributed 
information processing structure that consists of a collection of simple processing 
elements, which are interlinked by means of signal channels or connections. The 
operation of the system was divided into five phases: Input Data, Data distribution among 
different processors, Training, Testing, and output. 

 

Figure 4.1:  Block Diagram of System Overview 
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4.1 Input Data 

In this phase, a three-layer architecture of a back propagation neural network is 
considered in a distributed environment for the plate vibration problem. The input layer 
consists of two inputs, (i) specified boundary condition and (ii) aspect ratio (m) of the 
elliptic plate. The digitized values for the input parameters corresponding to the boundary 
conditions are fed as 2 for clamped, 1 for simply supported, and 0 for free boundary 
condition. The output layer of the artificial neural network architecture consists of one 
output in the form of the corresponding frequency parameter (f) obtained from the RR 
method using the BCOPs. However, the number of nodes in the hidden layer has been 
taken as 10 and 15 for comparison of the results. 

Table 4.1: Training Patterns for Artificial Neural Network 

 Boundary Condition 

 2 1 0 

Aspect ratio 
(m) 

1.00 1.00 1.00 

0.90 0.90 0.90 

0.80 0.80 0.80 

0.70 0.70 0.70 

0.60 0.60 0.60 

0.50 0.50 0.50 

0.40 0.40 0.40 

0.30 0.30 0.30 

0.20 0.20 0.20 

0.10 0.10 0.10 

Frequency 
parameter (f) 

10.216 4.9351 5.3583 

11.442 5.5282 5.8381 

13.229 6.3935 6.1861 

15.928 7.7007 6.4185 

20.195 9.7620 6.5712 

27.377 13.213 6.6705 

40.646 19.514 6.7321 

69.147 32.813 6.7654 

149.66 69.684 6.7778 

579.36 262.98 6.7781 

4.2 Parallel Computing 

Parallel computing is the simultaneous use of multiple computing resources to solve a 
computational problem. There are several different forms of parallel computing bit level, 
instruction level, and task parallelism. The test on larger distributed systems would help 
to accurately measure the systems’ performance in more diverse environments Mohamad 
et al., (2012). A distributed Computing environment enables us to coordinate and execute 
independent operations simultaneously on a cluster of computers, speeding up the 
execution of jobs that contain large amounts of data. A job is some large operation that 
needs be to performed in a distributed environment. A job is broken down into segments 
called tasks. The job is divided into identical tasks, but tasks do not have to be identical, 
in a distributed environment the job and its tasks are defined in the client processor or 
user processor. The client uses a Distributed environment to perform the definition of jobs 
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and tasks. The job manager is the part of the environment that coordinates the execution 
of jobs and the evaluation of their tasks. The job manager distributes the tasks for 
evaluation to the different systems called workers as shown in figure 4.2. 

 

Figure 4.2: Basic Parallel Computing Configuration 

4.3 Training 

The propagation neural network is used for behavior classification. The neural network 
was constructed for this research. It has two units in the input layer and one unit in the 
output layer. The network consisted of only one hidden layer and selected the number of 
hidden nodes in the hidden layer. In this phase, the network has been trained and tested 
by the trainlm training function of neural network tool in MATLAB environment. 

4.4 Testing 

In the training phase, the input pattern and output pattern were given to the network. But 
in this phase, only the input pattern is given. After the initialization of the weights, the input 
units of the input layer are activated with the input patterns that have been taken from the 
input file. The outputs of the input layer are propagated toward the output layer similarly 
to training. The calculated output from the output unit of the output layer was considered 
as the desired output pattern. 

4.5 Parameters for the Neural Network 

A back propagation artificial neural network was used in this research work. The 
parameter setting for the training of the neural network is of most important. Number of 
inputs i.e. how many units are there in the input vector. Number of outputs i.e. how many 
units are there in the output vector. RMS error is a value that can be adjusted, for the 
accuracy of the output 

Table 4.5: Parameters for the neural network 

Parameters Values 

Number of Input 2 

Number of Output 1 

Number of hidden layers 15 

RMS-Error 0.000001 
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5. IMPLEMENTATION  

5.1 Multi-Layer Feed-Forward Networks with Bp Learning 

A three-layer feed-forward network is shown in Figure 5.1(a); the network is called fully 
connected. Because there are all-to-all connections between two adjacent neuron layers. 
The number of neurons (also called units) in each layer is Ni, Nh, and No for the input, 
hidden, and output neuron layers, respectively. The network can be extended to any 
number of layers; however, because most applications use two-weight layers, the 
description here has been restricted to two-layer networks. The BP learning phase for a 
pattern consists of a forward phase followed by a backward phase. The training algorithm 
of backpropagation involves four stages: Initialization of weights, Feedforward, 
Backpropagation of errors, and Updation of the weights and biases. 

There are two types of learning in backpropagation: sequential learning and batch 
learning. In sequential learning a given input pattern is propagated forward, the error is 
determined and back propagated, and the weights are updated. In batch learning the 
weights are updated only after the entire set of training networks has been presented to 
the network. Thus, the weights update is only performed after every epoch. 

 

Figure 5.1(a): A Three Weight Layer Feed-Forward Neural Network 

To train the network, the proposed training algorithm used in the backpropagation 
algorithm with set of steps. The main steps are as follows: 

• Initialize the weights to small random values. 

• Select a training vector pair (input and the corresponding output) from the training 
set and present the input vector to the inputs of the network. 

• Calculate the actual outputs in the forward phase. 

• According to the difference between actual and desired outputs (error). Adjust the 
weights Wo and Wh to reduce the difference this is the backward phase. 
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• Repeat from step 2 for all training vectors. 

• Repeat from step 2 until the error is acceptably small. 

In the forward phase the hidden layer weight matrix Wh is multiplied by the input vector 
X= (X1, X2, X3,.........Xn) T to calculate the hidden layer output 

Yh, j=f (∑Wh ji, *X) 

Where Wh,ji is the weight connecting input unit I to unit j in the hidden neuron layer. The 
function f is a nonlinear activation function. Normally the S-shaped sigmoid function F (α) 
=1/1+e-α is used. It compresses the output value to lie in (0, 1), as shown in Figure 5.1(b). 
Moreover, the function is differentiable, which is a demand of the training algorithm. 

The output from the hidden layer Yh, j is used to calculate the output of the network Yo, k 

Yo, k =ƒ (∑Wo,kj  *Yh,j) 

The error measure Ep for a training pattern p is given by 

Ep=1/2∑ (dp,k−Yp,o,k) 2 

The overall error measure for a training set of P patterns is E=∑ Ep 

 

Figure 5.1(b): The Sigmoid Function f (α) =1/1+e- α 

In the following expressions, the pattern index p has been omitted on all variables to 
improve clarity. In the backward phase the target, d, and output, Yo, are compared and 
the difference (error) is used to adapt the weights to reduce the error. The error used to 
update the weights can be shown to be 

δo,k   =Yo,k(1−Yo,k)(dk−Yo,k) 

Like computing the output delta error, the hidden delta error value for neuron j is 

δh,j   =Yh,j(1−Yh,j)∑δo,k Wo,kj 

The error is not explicitly given and is computed based on the impact of the fan-in of the 
output delta errors. To perform the steepest descent in the weight space, the weight 
changes become 
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Wo, kj =η δo, k Yh, j 

Wh,ji =η δh,j Xi 

Where η  is the learning rate coefficient.  

If learning by pattern is applied, the output layer weights are changed to Wo, kj Wo, kJ=Wo, 

kj+ η δ o, k*Yh, j 

The hidden layer weights are updated accordingly Wh, ji=Wh, ji+ηδh, j*Xi 

The training continues for each vector in the training set until the error for the entire set 
becomes acceptably small. 

5.2 MATLAB Configurations for Distributed Computing 

Generally, there is not much difficulty in deciding which machines will run worker 
processes and which will run client processes. Worker sessions usually run on the cluster 
of machines dedicated to that purpose. The client session of MATLAB usually runs where 
MATLAB programs are run, often on a user's desktop. The job manager process should 
run on a stable machine, with adequate resources to manage the number of tasks and 
amount of data expected in our distributed computing applications. The following table 
shows what products and processes are needed for each of these roles in the distributed 
computing configuration. 

Table 5.2: Distributed Computing Configuration 

Session Products Process 

Client Distributed Computing Toolbox MATLAB with toolbox 

Worker MATLAB Distributed Computing Engine 
worker;  mdce  service(if using a job 
manager) 

Job manager MATLAB Distributed Computing Engine mdce service; job manager 

5.2.1 Worker Configuration 

The different workers running on different machines can be connected using the following 
configurations. The 3 workers running on a machine with IP address 172.31.5.105 and 
the 4 workers running on the machine with IP address 172.31.5.96. 

5.2.2 Job Manager Configuration 

For the job Manager Configuration First Parallel pull-down menu must be selected on the 
MATLAB desktop. to open the Configurations Manager, we Click the Parallel Manage 
Configurations. The first time when the Configurations Manager opens, it lists only one 
configuration called local, which at first is the default configuration and has only default 
settings. 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 56 Issue: 11:2023 
DOI: 10.5281/zenodo.10223972 

Nov 2023 | 277 

 

Figure 5.2.2(a): Job Manager Configuration Properties 1 

 

Figure 5.2.2(b): Job Manager Configuration Properties 2 

To create a new configuration whose type of scheduler is a job manager in the 
Configurations Manager, click New Job Manager. This opens a new Job Manager 
Configuration Properties dialog box. Enter a configuration name, such as “MyJMconfig1”, 
and a description as shown in Figure 5.2.2. In the Scheduler tab, enter the hostname for 
the machine on which the job manager is running and the name of the job manager. If 
entering information for an actual job manager already running on your network, enter the 
appropriate text. In the Jobs tab, enter 4 and 4 for the maximum and minimum number of 
workers. This specifies that jobs using this configuration require at least four workers and 
use no more than four workers. Therefore, the job runs on exactly four workers, even if it 
has to wait until four workers are available before starting. After creating a job, apply either 
configuration to that job as a way of specifying how many workers it should run on. 
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5.3 Training 

The training process requires a set of examples of proper network behavior - network 
inputs p and target outputs t. In the previous section, it has been already mentioned that 
the backpropagation neural network is used for behavior classification. In this work neural 
network is constructed with 2 units in the input layer and one unit in the output layer. Only 
one hidden layer is used in this work and there is an option to choose a different number 
of hidden nodes for the system. This can be simply done by changing the value of the 
variable for hidden units in the implementation. A weight value is associated with each of 
the connections. The output of the neural network will be our desired target output. 

5.4 Different Training Algorithms 

According to [Gu et al. 2013], a more complex algorithm leads to increased complexity of 
memory management, synchronization details, and tracking of processes involved in 
tasks, especially when tasks are generically distributed. Different test runs were made for 
each of the following training algorithms with varying numbers of hidden nodes. Table 5.4 
in this work shows the training function used along with some other training functions. 

Table 5.4: Description of Different Neural Network Training Functions 

Function Description 

Trainbfg BFGS quasi-Newton method. Requires storage of approximate Hessian matrix 
and has more computation in each iteration than conjugate gradient algorithms, 
but usually converges in less iteration. 

Trainoss One-step secant method. Compromise between conjugate gradient methods 
and quasi-Newton methods. 

Trainlm 
 

Levenberg-Marquardt algorithm. Fastest training algorithm for networks of 
moderate size. Has a memory reduction feature for use when the training set is 
large. 

5.5 Testing 

The system has already been trained with the normal given data. During the training 
phase, both the input pattern and output pattern are given to the network. However, in 
this phase, only the input pattern is given. After initializing the weights, the input units of 
the input layer are activated with the input patterns taken from the input file. The outputs 
of the input layer are propagated towards the output layer, like training. The calculated 
output from the output unit of the output layer is considered as the desired output pattern. 
This output will indicate whether the given input pattern represents the desired output or 
not. 
 
6. RESULT EVALUATION 

This section discusses experimental issues and compares single and parallel data 
processing with the trainlm training function. The experiment examines the number of 
hidden layers required to train the neural network and compares data processing in the 
case of serial and parallel processing. The experiments use different data for plate 
vibration analysis. They compare single processing and parallel processing to increase 
system performance using a distributed system in the MATLAB environment. 
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In a preliminary experiment, a training function with 10 hidden units was used to train the 
network until the RMS error value was reduced to an acceptable level. The training 
sessions were collected for plate vibration analysis. The results of the training for plate 
vibration analysis are shown in Table 6.1 with 10 and 15 hidden nodes. In the table, the 
number of hidden units denotes the number of neurons in the first layer.  

The number of epochs represents the number of iterations needed to converge the 
network with the desired accuracy. The performance goal status indicates whether the 
desired goal is achieved or not. Table 6.1 compares single and parallel data processing 
for training the network to increase system performance using a distributed system in the 
Matlab environment. 

6.1 Training 

Table 6.1: Comparison of Training Patterns between Single and Parallel System 

 No. of Epocs/sec Hidden Units Performance goal 

Single 8520 10 Achieved 

Parallel 1326 10 Achieved 

Single 2761 15 Achieved 

Parallel 821 15 Achieved 

6.2 Experiment  

6.2.1 Single processing with hidden units 10 

 

Figure 6.1.1: Output of Training Dataset-using Trainlm Training Function 

The graph shown in Figure 6.1.1 represents the output of the training of the network and  
8520 epochs have been taken to get trained the network using the trainlm train function.  
and the performance goal of the network has been achieved. 
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6.2.2 Parallel processing with hidden units 10 

 

Figure 6.2.2: Output of Training Dataset-using Trainlm Training Function 

The graph shown in Figure 6.2.2 represents the output of the training of the network and 
1326 epochs have been taken to get train the network using the trainlm train function. In 
this case, the performance goal of the network has been achieved. 

6.2.3 Single processing with hidden units 15 

 

Figure 6.2.3: Output of Testing Dataset-using Trainlm Training Function 

The graph shown in Figure 6.2.3 represents the output of the training of the network and 
2761 epochs have been taken to get trained the network using the trainlm train function. 
In this case, the performance goal of the network has been achieved.  
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6.2.4 Parallel processing with hidden units 15 

 

Figure 6.2.4: Output of Testing Dataset-using Trainlm Training Function 

The graph shown in Figure 6.2.4 represents the output of the training of the network and 
821 epochs have been taken to get train the network using the trainlm train function. In 
this case, the performance goal of the network has been achieved. 

6.3 Different Node Status in Distributed Environment 

6.3.1 Nodestatus1 

 

Figure. 6.3.1: Node Status of the Worker on System hec103 

As shown in Figure 6.3.1 this is one of the node statuses in a distributed environment, 
there are four workers are running in this hec103 host, and three workers are (3worke1, 
3work2, 3worke2) related to the job manager name with hec107job on the system 
172.31.5.92. And one worker's name with hec103_worker is not connected with the job 
manager; the connection is failed because the default_ job manager is not running on the 
system 172.31.5.92. 
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6.3.2 Nodestatus2 

As shown in figure 6.3.2 this is one of the node statuses in a distributed environment, 
there are two workers are running in this hec104 host and two workers are 
(4worker1,4worker2) relate to job manager name with hec107job on the system 
172.31.5.92. 

 

Figure 6.3.2: Node Status of the Worker on System hec104 

6.3.4 Nodestatus3 

As shown in figure 6.3.3 this is the job manager node status in a distributed environment, 
there are on job manager lookup processes and one job manager and one worker, 
hec107_worker is not connected with the default job manager, and the connection is lost, 
because the default job manager is not running on this node hec107 and five other 
workers relate to this job manager name with hec107job as described in the above node 
statuses. 

 

Figure 6.3.3: Node Status of the Job Manager on System hec107 
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7. CONCLUSION 

The implementation of parallelism of back propagation neural network algorithm on a 
distributed computing system with good performance has been demonstrated. The 
parallelism of the backpropagation neural network has been trained and tested for the 
analysis of vibration data. It has been observed that the convergence time for the training 
of backpropagation neural networks by parallel processing is faster as compared to single 
processing. This is because the data has been processed parallelly. In the case of parallel 
processing, training of back propagation neural network has achieved the performance 
goal with the desired accuracy of the results. 

The training of the backpropagation neural network algorithm has been performed by 
using trainlm training function of the Mat Lab environment with 10 and 15 nodes in the 
hidden layer of the network model. It has also been observed that with 15 numbers of 
nodes in the hidden layer of the network takes less time to converge. It is also tested that 
while increases the number of nodes in the hidden layer the accuracy of the results does 
not increase. The proposed research work gives a faster estimation for the analysis of 
vibration data. It is well documented that parallelism of the backpropagation neural 
network model gives the faster training convergence time and higher accuracy of the 
results. 

7.1 Limitations and Future Work 

In this research work, there is no fixed size of the cluster of the distributed systems for 
the particular to problem under test. Only one can assign a number of workers to the Job 
manager depending on the achievement of the higher performance of the system. In 
future work, this can be trained with different training functions of the Mat Lab 
environment. As shown in this research work, back propagation neural networks can be 
successfully implemented in the distributed environment system for data processing. The 
same experiments should also be conducted with other types of neural networks to see 
if the different types can improve the performance of the system as we got the experiment 
results with the backpropagation neural network. 
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