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Abstract 

Traditional fuzzy graph models assign membership values to vertices and edges based on a specific 
uncertain situation. However, this work investigates a novel approach: representing the situation as a graph 
and deriving fuzziness from the graph's inherent structure. We introduce "ratio labeling" (RL), a new 
labelling procedure where vertex and edge membership grades are determined by graph parameters. 
These labels, derived directly from the graph's structure, characterize the graph itself and serve as the 
basis for examining the admissibility of fuzziness within the graph. This approach allows the study of 
fuzziness arising from the properties of the graph representing a situation. This paper explores this new 
idea and examines certain graphs for the admissibility of fuzziness. This topic study the methodologies, 
properties, and applications of ratio labelling in fuzzy graph identification, focusing on its theoretical 
foundations and practical implications in solving real-world problems. Furthermore, the proposed ideas are 
illustrated with several numerical instances. To emphasize the theoretical concept, an application that 
ensures an effective communication between groups of people in a social media under RL is discussed. 

Keywords: Fuzzy Graph, Ratio Labelling, Complete Graph, Complete Bipartite Graph, Cycle, Path. 
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1. INTRODUCTION 

Graph theory plays a fundamental role in modeling relationships and interactions in 
various real-world problems. Among the numerous extensions of classical graph theory, 
fuzzy graph theory provides a powerful framework for dealing with uncertainties, 
imprecision, and vagueness inherent in many systems. Fuzzy relations were introduced 
by Zadeh in 1965. A fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. 
Kaufmann initially introduced the concept of a fuzzy graph in 1973, building upon Zadeh’s 
work on fuzzy relations. However, it was Rosenfeld who significantly advanced the theory 
of fuzzy graphs in 1975 by exploring fuzzy relations defined on fuzzy sets. Rosenfeld 
provided a more formal and rigorous definition of fuzzy graphs, building upon Kaufmann’s 
initial work. He introduced the concepts like fuzzy paths, cycles, and connectedness, 
laying the foundation for further research. In subsequent decades investigations on 
various types of fuzzy graphs were done, including intuitionistic fuzzy graphs, bipolar 
fuzzy graphs [4, 12]. Labelling of fuzzy graph was introduced by A. Nagoor Gani and D. 
Rajalakshmi [9]. The concept of domination in fuzzy graphs was investigated by 
Somasundaram [10]. The concept of complement of fuzzy graph was investigated by 
Sunitha and Vijayakumar [11]. The work by Mathew Varkey T K and Sreena T D on 
evidence labelling of fuzzy graph examines the fuzziness on graphs with a particular 
labelling [8].  
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Applications of the fuzzy graph structures in decision making process, regarding detection 
of marine crimes and road crimes are presented by Ali N. A. Koam et al. [1]. Asima 
Razzaque et al. explained the idea of t-intuitionistic fuzzy graphs to analyse complex 
relationships with multiple factors [7]. Anushree Bhattacharya et al. discussed a fuzzy 
graph theory approach to a case study problem [3]. Connectivity status of vertices in an 
intuitionistic fuzzy graph and its application to merging of banks was discussed by Jayanta 
Bera et al. [6]. 

These advancements in fuzzy graph theory have sparked significant interest in exploring 
fuzzy graphs. Labelling the vertices and edges of a graph to examine its "fuzziness" can 
be approached in a few different ways. In graph theory, this might refer to various forms 
of uncertainty or imprecision in the relationships between vertices and edges. Blue et al. 
categorized fuzzy graphs into different types based on various criteria as follows [5]. 

• “Type I: Crisp vertex set and fuzzy edge set. 

• Type II: Crisp vertices and edges with fuzzy connectivity. 

• Type III: Fuzzy vertex set and crisp edges. 

• Type IV: Crisp graph with fuzzy weights, representing a graph where the vertices 
and edges have uncertain weights, but the connections are well-defined. 

• Type V: Fuzzy set of crisp graphs, involving the fuzzy composition of crisp graphs.” 

Type IV graphs are particularly useful when the relationships between elements in a 
graph are clear, but the attributes of these relationships are uncertain. To analyze the 
"fuzziness" in such graphs, we propose the concept of Ratio Labelling (RL). This 
technique uses established graph parameters to assign membership values to both the 
vertices and edges, ranging from 0 to 1. By doing so, RL effectively represents the 
structural properties of the graph while quantifying the level of fuzziness. This approach 
is especially beneficial in scenarios where the network's structure is well-understood, but 
the characteristics of the connections are imprecise or ambiguous. Analyzing fuzziness 
in a crisp graph through ratio labelling—where vertices are assigned values using σ and 
edges using μ—reveals that the ability to incorporate fuzziness varies based on the 
structure of the graph. We examined some of interconnection networks for admissibility 
of fuzziness using RL [2]. Since ratio labelling promotes strong connectivity among 
vertices, a ratio-labelled fuzzy graph can represent an efficient communication network 
or strong interpersonal bonds in a social network. 

The novelties and effectiveness in ratio labelling are listed as follows. 

1. RL involves assigning labels that represent a ratio or relative value, between two 
parameters. These ratios can help capture the relative strength, importance, or 
influence of a node or edge in a graph. For example, an edge between two nodes 
could be labelled with a ratio that compares the influence or closeness of the two 
nodes relative to others in the network. 
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2. RL can dynamically adjust based on the relative importance of a node or edge 
compared to others in the graph, allowing for more context-sensitive labelling. 

3. By using ratios, one can capture subtle differences in interactions or properties 

4. Ratio labelling relies heavily on accurate, high-quality data to compute meaningful 
ratios. In cases where data is sparse, incomplete, or noisy, the ratios may not be 
reliable.  

The focus of this paper is on introducing ratio labelling and assessing its impact on various 
traditional graphs including cycles, path, complete graphs, complete bipartite graphs to 
determine their suitability for accommodating fuzziness and to discuss their properties 
(see section 3). Moreover, we wish to discuss an application that represents the 
relationship bonding between the group of people in social media using RL (see section 
4).   
 
2. BASIC CONCEPTS 

A fuzzy graph G: (σ, μ) is a pair of functions σ: V→[0,1] and μ:V×V→[0,1], where for all 
x, y ∈V,  

𝜇(𝑥, 𝑦) ≤ 𝜎(𝑥)⋀𝜎(𝑦) . 

where ⋀ stands for minimum. Also 

𝜎∗ = 𝑠𝑢𝑝𝑝(𝜎) = {𝑢𝜖𝑆: 𝜎(𝑢) > 0}. 𝜇∗ = 𝑠𝑢𝑝𝑝(𝜇) = {(𝑢, 𝑣)𝜖𝑆 × 𝑆: 𝜇(𝑢, 𝑣) > 0). 

In G: (σ, µ), the order of G is   

𝑝 =∑𝜎(𝑥) .

𝑥∈𝑆

 

If 𝜇(𝑥, 𝑦) > 0 then 𝑥 and 𝑦 are called neighbours, 𝑥 and 𝑦 are said to lie on the same edge 
𝑒. The neighbourhood of a vertex 𝑣 ∈ 𝑆 is a set of all vertices which are neighbours of 𝑣 
denoted by 𝑁(𝑣) Let G: (σ, µ) be a fuzzy graph. The degree of a vertex v of a fuzzy graph 
G is defined as degG(v) = ∑ μ(u, v)u≠v . In a fuzzy graph 𝐺 the minimum degree δ(G), and 

maximum degree ∆(G), are defined as follows.  

δ(G) = min {degG(u): for all u ∈ V}  and ∆(G) = max {degG(u): for all u ∈ V}. The order of 
a fuzzy graph G(σ, μ) is defined to be O(G) = ∑ σ(u)u∈V . The size of a fuzzy graph G(σ, μ) 
is defined to be S(G) = ∑ μ(u, v)(u,v)∈E . A fuzzy graph G is said to be regular if for a positive 

real number k, degG(v) = k, for all u ∈ V. In this case, G is called k-regular fuzzy graph. 

In a fuzzy graph G (𝜎, 𝜇), a path is a sequence of distinct vertices v0, v1…, vn such that 
𝜇(𝑣𝑖−1, 𝑣𝑖) > 0, 1 ≤ 𝑖 ≤ 𝑛. Here, ‘n’ is called the length of the path. The consecutive pairs 
(vi-1, vi) are called arcs of the path. The strength of the path between two vertices 𝑣1 and 
𝑣2 is defined as ⋀ 𝜇(𝑣𝑖−1, 𝑣𝑖)

𝑛
𝑖=1 . If u and v are connected using paths of length ‘k’ then 

𝜇𝑘(𝑢, 𝑣) is defined as 

𝜇𝑘(𝑢, 𝑣) = sup{ 𝜇(𝑢, 𝑣1) ∧  𝜇(𝑣1, 𝑣2) ∧ …∧ 𝜇(𝑣𝑘−1, 𝑣): 𝑢, 𝑣1, … , 𝑣𝑘−1, 𝑣 𝜖𝑆}         
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If u, v ∈ S the strength of connectedness between u and v is, 

sup{𝜇𝑘(𝑢, 𝑣): 𝑘 = 1,2,3, … . }, and it is denoted as 𝐶𝑂𝑁𝑁𝐺−(𝑢,𝑣)(𝑢, 𝑣) 𝑜𝑟 𝜇
∞(𝑢, 𝑣). A fuzzy 

graph G is connected if 𝜇∞(𝑢, 𝑣) > 0 ,for all u, v in 𝜎∗.  

An arc (u, v) of a fuzzy graph G (𝜎, 𝜇)  is said to be a strong arc if 𝜇(𝑢, 𝑣) > 0 and 𝜇(𝑢, 𝑣) ≥
𝜇∞(𝑢, 𝑣). A path P (v0, v1,…,vn) from v0 to vn is called a strong path if (vi,vi+1) is strong for 
all 1 ≤ 𝑖 ≤ 𝑛 − 1. The edge (u, v) in G (𝜎, 𝜇) is said to be 

  (i) 𝛼 – strong if 𝜇(𝑢, 𝑣) >  𝐶𝑂𝑁𝑁𝐺−(𝑢,𝑣)(𝑢, 𝑣) 

 (ii) 𝛽 – strong if 𝜇(𝑢, 𝑣) =  𝐶𝑂𝑁𝑁𝐺−(𝑢,𝑣)(𝑢, 𝑣) 

(iii) 𝛿 – arc if 𝜇(𝑢, 𝑣) <  𝐶𝑂𝑁𝑁𝐺−(𝑢,𝑣)(𝑢, 𝑣) 

A path in a fuzzy graph G (𝜎, 𝜇) is called an 𝛼 – strong path if all its edges are 𝛼 – strong 
and is called a 𝛽 – strong path if all its edges are 𝛽 – strong. 

 A vertex x, is said to be an isolated vertex if 𝜇(𝑢, 𝑣) = 0 for all  𝑢 ≠ 𝑣. 

The fuzzy distance between two vertices  𝑢 and 𝑣 is defined as 

𝑑𝑓(𝑢, 𝑣) = ⋀∑{⋀(𝜎(𝑢), 𝜎(𝑣)) × 𝜇(𝑢, 𝑣)}. 

 
3. MAIN RESULTS    

The section discusses the method of labelling the vertices and edges of a given graph 
using RL (Ratio Labelling). The impact of RL in admitting fuzziness of the given graph is 
examined. The graphs that are fuzzy under RL can handle fuzzy or uncertain information. 
Initiated by this the graphs such as paths 𝑃𝑛 , cycles 𝐶𝑛, complete graphs 𝐾𝑛 and complete 

bipartite graph 𝐾𝑛,𝑚 are examined. The complete bipartite graph 𝐾𝑛,𝑚is fuzzy when  𝑚 =
𝑛 ; however, when  𝑚 ≠  𝑛 , the graph is fuzzy under some restrictions on degree of the 
adjacent vertices. The properties such as diameter, eccentricity, strength of the edge of 
these graphs are discussed. Also, the edges of ratio labelled fuzzy graphs are classified 
as 𝛼 − strong, 𝛽 − strong which helps to identify the structure of ratio labelled fuzzy 
graphs.  

3.1 Definition 

Let 𝐺 = (𝑉, 𝐸) be a simple connected graph. The functions, 𝜎: 𝑉 → [0,1] , 𝑎𝑛𝑑 𝜇: 𝐸 → [0, 1] 
that labels the vertices and edges of 𝐺, are defined as 

𝜎(𝑣) =
|𝑁(𝑣)|

|𝐸|
                                                  (1) 

𝜇(𝑢, v) =
max
(𝑢,𝑣)∈𝐸

[𝜎(𝑢),𝜎(𝑣)] 

∑ 𝜎(𝑣)𝑣∈𝑉
                                 (2) 

and is called ratio labelling of 𝐺 . The graph G that is a fuzzy graph due to ratio labelling 
is called as ratio labelled fuzzy graph (RLFG) 
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Example.1  

 

Fig 1 

Consider the cycle 𝐶5 with vertex set 𝑉 = { 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}.  

The vertices are labelled using 𝜎 as,  𝜎(𝑣1) =
|𝑁(𝑣1)|

|𝐸|
=

2

5
.  

Similarly, 𝜎(𝑣2) =  𝜎(𝑣3) = 𝜎(𝑣4) = 𝜎(𝑣5) =
2

5
 . The edges are labelled using 𝜇 as  

𝜇(𝑣1, 𝑣2) =
max[𝜎(𝑣1),𝜎(𝑣2)]

∑ 𝜎(𝑣)𝑣∈𝑉
=

max{
2

5
,
2

5
}

5×
2

5

=
1

5
  . 

Similarly, 𝜇(𝑣2, 𝑣3) =  𝜇(𝑣3, 𝑣4) =  𝜇(𝑣4, 𝑣5) =  𝜇(𝑣5, 𝑣1) =
1

5
. 

Here, 𝜇(𝑣𝑖 , 𝑣𝑗) < 𝜎(𝑣𝑖)⋀𝜎(𝑣𝑗) for all 1 ≤ 𝑖, 𝑗 ≤ 5 𝑎𝑛𝑑  𝑖 ≠ 𝑗. 

Hence 𝐶5 is a fuzzy graph under RL. 

Example.2 

 

Fig 2 

Consider the graph 𝐺 = (𝑉, 𝐸) with vertex set 𝑉 = { 𝑣1, 𝑣2, 𝑣3, 𝑣4}. The vertices of G are 
labelled using RL as, 

𝜎(𝑣1) =
|𝑁(𝑣1)|

|𝐸|
=

3

3
= 1, 𝜎(𝑣2) = 𝜎(𝑣3) =  𝜎(𝑣4) =

1

3
 and 
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The edges are labelled using RL as, 

𝜇(𝑣1, 𝑣2) =
max[𝜎(𝑣1),𝜎(𝑣2)]

∑ 𝜎(𝑣)𝑣∈𝑉
=

max{1,
1

3
}

3×
1

3
+1

=
1

2
, 𝜇(𝑣1, 𝑣3) =  𝜇(𝑣1, 𝑣4) =

1

2
. 

Here,   𝜇(𝑣1, 𝑣2) =
1

2
>

1

3
= 𝜎(𝑣1)⋀𝜎(𝑣2) . 

Hence G is not a fuzzy under RL. 

Remark.  

𝐾1,𝑛 is not a fuzzy under RL for 𝑛 ≥ 3. 

3.2 Theorem 

For a cycle 𝐶𝑛(𝑉, 𝐸), with n vertices and n edges, the vertices and edges are labelled as 
2

𝑛
,
1

𝑛
 respectively by RL. 

Proof: In 𝐶𝑛 ,  |𝑉| = 𝑛 , |𝐸| = 𝑛 , and  |𝑁(𝑣)| = 2 , for all 𝑣 ∈ 𝑉. Now, by RL, 

𝜎(𝑣) =
|𝑁(𝑣)|

|𝐸|
=

2

𝑛
  , for all 𝑣 ∈ 𝑉 

∑ 𝜎(𝑣)𝑣∈𝑉 = ∑
2

𝑛𝑣∈𝑉 = 𝑛 ×
2

𝑛
= 2  and 

𝜇(𝑢, 𝑣) =
max[𝜎(𝑢),𝜎(𝑣)]

∑ 𝜎(𝑣)𝑣∈𝑉
=

1

𝑛
 , for all (𝑢, 𝑣) ∈ 𝐸 . 

Hence follows. 

3.3 Theorem   

For all 𝑛 ≥ 3, the cycle 𝐶𝑛(𝑉, 𝐸) is a fuzzy graph under ratio labelling. 

Proof:  By theorem 3.2, 

𝜎(𝑣) =
2

𝑛
   , for all  𝑣 ∈ 𝑉 ,  and      𝜇(𝑢, 𝑣) =

1

𝑛
 , for all (𝑢, 𝑣) ∈ 𝐸 . 

Hence,   𝜇(𝑢, 𝑣) =
1

𝑛
<

2

𝑛
= 𝜎(𝑢)⋀𝜎(𝑣), 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑢, 𝑣) ∈ 𝐸 . 

Hence, 𝐶𝑛 is a RLFG. 

3.4 Theorem 

Let G be a RLFG 𝐶𝑛(𝑉, 𝐸) . In G the following results holds, 

(i) the degree of every vertex is 
2

𝑛
 

(ii) G is regular 

(iii) the size of the graph is 1 

Proof: In 𝑪𝒏, |𝑽| = 𝒏  𝒂𝒏𝒅 |𝑬| = 𝒏. 

In G, by theorem 3.2,   𝜎(𝑣) =
2

𝑛
 , for all 𝑣 ∈ 𝑉 , and  𝜇(𝑢, 𝑣) =

1

𝑛
 , for all (𝑢, 𝑣) ∈ 𝐸.  
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(i) Now, 𝑑𝑒𝑔𝐺(𝑢) =   ∑ 𝜇(𝑢, 𝑣) , 𝑢 ≠ 𝑣. Since degree of every vertex of 𝐶𝑛 is 2, degree 

of 𝑢 in G is deg𝐺(𝑢) = 2 ×
1

𝑛
=

2

𝑛
, for all 𝑢. 

(ii) follows, from (i) 

(ii) 𝑆(𝐺) =   ∑ 𝜇(𝑢, 𝑣), for all (𝑢, 𝑣) ∈ 𝐸. 

Since every edge is of equal weight, 𝑆(𝐺) = |𝐸| × 𝜇(𝑢, 𝑣) 

𝑆(𝐺) = 𝑛 ×
1

𝑛
= 1 

3.5 Theorem 

Let G be a RLFG 𝐶𝑛(𝑉, 𝐸) . 

(i) Every edge is a strong edge 

(ii) Every edge is 𝛽- strong  

(iii) Any path is a strong path 

Proof: By theorem 3.2,   𝝈(𝒗) =
𝟐

𝒏
, for all 𝒗 ∈ 𝑽, and  𝝁(𝒖, 𝒗) =

𝟏

𝒏
 , for all (𝒖, 𝒗) ∈ 𝑬 in G. 

(i) In G, every edge is of same weight, 𝜇(𝑢, 𝑣) = 𝐶𝑂𝑁𝑁𝐺−(𝑢,𝑣)(𝑢, 𝑣). Hence every edge 

is a strong edge. 

(ii) By (i) it follows that every edge is 𝛽- strong 

(iii) follows from(i)  

Hence follows. 

3.6 Theorem  

The diameter of a ratio labelled Cycle 𝐶𝑛(𝑉, 𝐸) is  ⌊
𝑛

2
⌋ ×

2

𝑛2
. 

Proof: For the cycle 𝐶𝑛, by theorem 3.2,  

𝜎(𝑣) =
2

𝑛
  for all 𝑣 and 𝜇(𝑢, 𝑣) =

1

𝑛
 for all (𝑢, 𝑣) ∈ 𝐸. 

  Distance between any two vertices in a cycle 𝐶𝑛 varies from i= 1 to ⌊
𝑛

2
⌋. 

  Fuzzy distance between two vertices, 

𝑑𝑓(𝑢, 𝑣) = ⋀∑ {⋀𝑖
1 (𝜎(𝑢), 𝜎(𝑣)) × 𝜇(𝑢, 𝑣)}  when u and v 

  are at a distance i in 𝐶𝑛. 

= ⋀ ∑[
2

𝑛
×
1

𝑛
]

𝑖

1

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 
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= 

{
  
 

  
 

2

𝑛2
  𝑓𝑜𝑟 𝑖 = 1

2 ×
2

𝑛2
 𝑓𝑜𝑟 𝑖 = 2    
…

⌊
𝑛

2
⌋ ×

2

𝑛2
    𝑓𝑜𝑟 𝑖 =  ⌊

𝑛

2
⌋

 

    The eccentricity of ratio labelled 𝐶𝑛, 

        𝑒𝑓(𝑣) = ⋁{𝑑𝑓(𝑢, 𝑣)}, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑉 

= ⌊
𝑛

2
⌋ ×

2

𝑛2
 

𝑑𝑖𝑎𝑚𝑓(𝐶𝑛) = max{𝑒𝑓(𝑣)} , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 

= ⌊
𝑛

2
⌋ ×

2

𝑛2
 

This completes the proof. 

3.7 Theorem 

For a path 𝑃𝑛(𝑉, 𝐸) with n vertices, n-1 edges, the vertices and edges are labelled as  

𝜎(𝑣) = {

1

𝑛−1
     𝑓𝑜𝑟 𝑝𝑒𝑛𝑑𝑎𝑛𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

2

𝑛−1
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

  and 𝜇(𝑢, 𝑣) =
1

𝑛−1
 for all (𝑢, 𝑣) in 𝑃𝑛 by RL. 

Proof: In 𝑃𝑛 ,  |𝑉| = 𝑛 ,|𝐸| = 𝑛 − 1 ,  

and  |𝑁(𝑣)| = {
1, 𝑓𝑜𝑟 𝑝𝑒𝑛𝑑𝑎𝑛𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
2, 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

 . 

Now, 

𝜎(𝑣) =
|𝑁(𝑣)|

|𝐸|
= {

1

𝑛−1
, 𝑓𝑜𝑟 𝑝𝑒𝑛𝑑𝑎𝑛𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

2

𝑛−1
, 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

  . 

As there are two pendant vertices in a path 𝑃𝑛 , 

∑ 𝜎(𝑣)𝑣∈𝑉 = 2 ×
1

𝑛−1
+ (𝑛 − 2) ×

2

𝑛−1
= 2 . 

𝜇(𝑢, 𝑣) =
max[𝜎(𝑢),𝜎(𝑣)]

∑ 𝜎(𝑣)𝑣∈𝑉
=

1

𝑛−1
, for all (𝑢, 𝑣) ∈ 𝐸 . 

Hence follows. 
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3.8 Theorem 

For all 𝑛 ≥ 2, the path 𝑃𝑛(𝑉, 𝐸) is a fuzzy graph under RL. 

Proof: By theorem 3.7, 𝜎(𝑣) =
|𝑁(𝑣)|

|𝐸|
= {

1

𝑛−1
, 𝑓𝑜𝑟 𝑝𝑒𝑛𝑑𝑎𝑛𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

2

𝑛−1
, 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

  and 

𝜇(𝑢, 𝑣) =
1

𝑛−1
, for all (𝑢, 𝑣) ∈ 𝐸 . 

Case (i) 

When (𝑢, 𝑣) is an edge incident with pendent vertex? 

𝜇(𝑢, 𝑣) =
1

𝑛 − 1
= 𝜎(𝑢)⋀𝜎(𝑣)  

Case (ii) 

When (𝑢, 𝑣) is an edge incident with non-pendent vertices, 

𝜇(𝑢, 𝑣) =
1

𝑛−1
<

2

𝑛−1
= 𝜎(𝑢)⋀𝜎(𝑣)  . 

From Case(i) and (ii), 

𝜇(𝑢, 𝑣) ≤ 𝜎(𝑢)⋀𝜎(𝑣), 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑢, 𝑣) ∈ 𝐸 

Hence follows. 

3.9 Theorem 

Let G be a RLFG 𝑃𝑛. (𝑉, 𝐸) Then  

(i) minimum degree of G= 𝛿(𝐺) =
1

𝑛−1
  

(ii) maximum degree of G =△ (𝐺) =
2

𝑛−1
 

(iii) the size of the graph is 1 

Proof: In G, by theorem 3.7, 𝝈(𝒗) = {

𝟏

𝒏−𝟏
, 𝒇𝒐𝒓 𝒑𝒆𝒏𝒅𝒂𝒏𝒕 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔

𝟐

𝒏−𝟏
, 𝒇𝒐𝒓 𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍 𝒗𝒆𝒓𝒕𝒊𝒄𝒆𝒔

  and 

𝜇(𝑢, 𝑣) =
1

𝑛−1
, for all (𝑢, 𝑣) ∈ 𝐸 . 

(i) Now, 𝑑𝑒𝑔𝐺(𝑢) =   ∑ 𝜇(𝑢, 𝑣) , 𝑢 ≠ 𝑣. 

          𝑑𝑒𝑔𝐺(𝑢) = {

1

𝑛−1
, 𝑓𝑜𝑟 𝑝𝑒𝑛𝑑𝑎𝑛𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

2

𝑛−1
, 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

 

minimum degree of G = 𝛿(𝐺) =
1

𝑛−1
   



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 58 Issue: 08:2025 
DOI: 10.5281/zenodo.16830904 

Aug 2025 | 324 

(ii)  maximum degree of G =△ (𝐺) =
2

𝑛−1
 

(iii) 𝑆(𝐺) =   ∑ 𝜇(𝑢, 𝑣), for all (𝑢, 𝑣) ∈ 𝐸. Since every edge is of equal weight, 𝑆(𝐺) =
|𝐸| × 𝜇(𝑢, 𝑣) 

𝑆(𝐺) = (𝑛 − 1) ×
1

𝑛 − 1
= 1 

Hence follows. 

3.10 Theorem  

The diameter of a ratio labelled path graph 𝑃𝑛(𝑉, 𝐸) is  (𝑛 − 2) ×
2

(𝑛−1)2
. 

Proof: For the path graph 𝑃𝑛, under RL,  

𝜎(𝑣) =
|𝑁(𝑣)|

|𝐸|
= {

1

𝑛 − 1
, 𝑓𝑜𝑟 𝑝𝑒𝑛𝑑𝑎𝑛𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

2

𝑛 − 1
, 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

 

𝜇(𝑢, 𝑣) =
max[𝜎(𝑢),𝜎(𝑣)]

∑ 𝜎(𝑣)𝑣∈𝑉
=

1

𝑛−1
 , for all (𝑢, 𝑣) ∈ 𝐸. 

Fuzzy distance between two vertices, 

𝑑𝑓(𝑢, 𝑣) = ⋀∑{⋀(𝜎(𝑢),  𝜎(𝑣)) × 𝜇(𝑢, 𝑣)} 

In a path 𝑃𝑛, max{𝑑𝑓(𝑢, 𝑣)} is attained between the pendant vertices. 

Max{𝑑𝑓(𝑢, 𝑣)} =
1

(𝑛 − 1)2
+

2

(𝑛 − 1)2
+

2

(𝑛 − 1)2
+⋯+

2

(𝑛 − 1)2
+

1

(𝑛 − 1)2
, (𝑛 − 1 𝑡𝑒𝑟𝑚𝑠) 

=
2

(𝑛 − 1)2
+ (𝑛 − 3)

2

(𝑛 − 1)2
 

= (𝑛 − 2)
2

(𝑛 − 1)2
 

The eccentricity of ratio labelled path 𝑃𝑛, 

   𝑒𝑓(𝑣) = ⋁{𝑑𝑓(𝑢, 𝑣)}, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑉 

=
2(𝑛 − 2)

(𝑛 − 1)2
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 

𝑑𝑖𝑎𝑚𝑓(𝑃𝑛) = max{𝑒𝑓(𝑣)} , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 

=   
2(𝑛 − 2)

(𝑛 − 1)2
 

This completes the proof. 
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3.11 Theorem 

In a complete graph 𝐾𝑛(𝑉, 𝐸), for every 𝑣 ∈ 𝑉 , 𝜎(𝑣) =
2

𝑛
 and for all (u, v)  ∈ 𝐾𝑛,  𝜇(𝑢, 𝑣) =

1

𝑛
 by RL. 

Proof: In 𝐾𝑛 ,  |𝑉| = 𝑛 ,|𝐸| =
𝑛(𝑛−1)

2
 ,  and   |𝑁(𝑣)| = 𝑛 − 1, for all 𝑣 ∈ 𝑉.  

Hence,𝜎(𝑣) =
|𝑁(𝑣)|

|𝐸|
=

𝑛−1
𝑛(𝑛−1)

2

=
2

𝑛
  , for all n. 

∑ 𝜎(𝑣)𝑣∈𝑉 = 𝑛 ×
2

𝑛
= 2. 

𝝁(𝒖, 𝒗) =
𝐦𝐚𝐱[𝝈(𝒖),𝝈(𝒗)]

∑ 𝝈(𝒗)𝒗∈𝑽
=

𝟏

𝒏
 , for all, (𝒖, 𝒗) ∈ 𝑬, 

Hence follows. 

3.12 Theorem  

Every complete graph 𝐾𝑛(𝑉, 𝐸) is a fuzzy graph under RL. 

Proof: By theorem 3.11, 

  𝜎(𝑣) =
2

𝑛
 , for all n and  𝜇(𝑢, 𝑣) =

1

𝑛
 , for all, (𝑢, 𝑣) ∈ 𝐸   

 𝜇(𝑢, 𝑣) =
1

𝑛
<

2

𝑛
= 𝜎(𝑢)⋀𝜎(𝑣), 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑢, 𝑣) ∈ 𝐸. .  

Hence follows. 

3.13 Theorem 

Let G be a RLFG 𝐾𝑛(𝑉, 𝐸) . In G the following results holds, 

(i) the degree of every vertex is 
𝑛−1

𝑛
 

(ii) G is regular 

(iii) the size of the graph is 
𝑛−1

2
 

Proof: In G, by theorem 3.11,    𝝈(𝒗) =
𝟐

𝒏
 , for all 𝒗 ∈ 𝑽 , and  

 𝜇(𝑢, 𝑣) =
1

𝑛
 , for all (𝑢, 𝑣) ∈ 𝐸.  

(i) Now, 𝑑𝑒𝑔𝐺(𝑢) =   ∑ 𝜇(𝑢, 𝑣) , 𝑢 ≠ 𝑣. Since degree of every vertex of 𝐾𝑛 is 𝑛 − 1, 

 𝑑𝑒𝑔𝐺(𝑢) = (𝑛 − 1) ×
1

𝑛
=

𝑛−1

𝑛
, for all 𝑢 ∈ 𝐺. 

(ii)  (ii) follows, from (i) 

(iii) 𝑆(𝐺) =   ∑ 𝜇(𝑢, 𝑣), for all (𝑢, 𝑣) ∈ 𝐸 

Since every edge is of equal weight, 𝑆(𝐺) = |𝐸| × 𝜇(𝑢, 𝑣) 
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𝑆(𝐺) =
𝑛(𝑛 − 1)

2
×
1

𝑛
=
𝑛 − 1

2
 

Hence follows. 

3.14 Theorem 

Let G be a RLFG 𝐾𝑛(𝑉, 𝐸). In G the following results holds. 

(i) Every edge is a strong edge 

(ii) Every edge is 𝛽- strong  

(iii) Every path is a strong path 

Proof: In G, by theorem 3.11,  𝝈(𝒗) =
𝟐

𝒏
  , and for all 𝒗 ∈ 𝑽, 𝝁(𝒖, 𝒗) =

𝟏

𝒏
 , for all 

(𝒖, 𝒗) ∈ 𝑬.  

(i) In G, every edge is of same weight, 𝜇(𝑢, 𝑣) = 𝐶𝑂𝑁𝑁𝐺−(𝑢,𝑣)(𝑢, 𝑣). Hence every edge 

is a strong edge. 

(ii) By (i) it follows that every edge is 𝛽- strong 

(iii) From (i), (iii) follows 

This completes the proof.  

3.15 Theorem 

The diameter of a ratio labelled complete graph 𝐾𝑛(𝑉, 𝐸) is  
2

𝑛2
. 

Proof: For the complete graph 𝐾𝑛, under ratio labelling,  

𝜎(𝑣) =
|𝑁(𝑣)|

|𝐸|
=

2

𝑛
  for all 𝑣 ∈ 𝑉. 

𝜇(𝑢, 𝑣) =
max[𝜎(𝑢),𝜎(𝑣)]

∑ 𝜎(𝑣)𝑣∈𝑉
=

1

𝑛
 , for all (𝑢, 𝑣) ∈ 𝐸, 

Fuzzy distance between two vertices, 

𝑑𝑓(𝑢, 𝑣) = ⋀∑{⋀(𝜎(𝑢),  𝜎(𝑣)) × 𝜇(𝑢, 𝑣)} 

= ⋀ [
2

𝑛
×
1

𝑛
] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣 

= 
2

𝑛2
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑣. 

The eccentricity of ratio labelled 𝐾𝑛, 

𝑒𝑓(𝑣) = ⋁{𝑑𝑓(𝑢, 𝑣)}, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑉 

=         
2

𝑛2
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉     
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𝑑𝑖𝑎𝑚𝑓(𝐾𝑛) = max{𝑒𝑓(𝑣)} , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 

=              
2

𝑛2
 

Hence follows. 

3.16 Theorem 

In a complete bipartite graph 𝐾𝑛,𝑛(𝑉, 𝐸), for every 𝑣 ∈ 𝑉 , 𝜎(𝑣) =
1

𝑛
 and for all 

(𝑢, 𝑣) ∈ E,  𝜇(𝑢, 𝑣) =
1

2𝑛
 by RL. 

Proof: In 𝐾𝑛,𝑛 ,  |𝑉| = 2𝑛,  where |𝑉1| = |𝑉2| = 𝑛 ,    |𝐸| = 𝑛 × 𝑛 , |𝑁(𝑣)| = 𝑛 , for all 𝑣 ∈ 𝑉. 

Now, 

𝜎(𝑣) =
|𝑁(𝑣)|

|𝐸|
=

1

𝑛
  , for all n. 

∑ 𝜎(𝑣)𝑣∈𝑉 = 2𝑛 ×
1

𝑛
= 2 . 

𝜇(𝑢, 𝑣) =
max[𝜎(𝑢),𝜎(𝑣)]

∑ 𝜎(𝑣)𝑣∈𝑉
=

1

2𝑛
  ,for all (𝑢, 𝑣) ∈ 𝐸. 

Hence follows. 

3.17 Theorem  

Every complete bipartite graph 𝐾𝑛,𝑛(𝑉, 𝐸) is a fuzzy graph under RL. 

Proof: By theorem 3.16,  

𝜎(𝑣) =
1

𝑛
, for all 𝑣 ∈ 𝑉 and  𝜇(𝑢, 𝑣) =

1

2𝑛
  ,for all (𝑢, 𝑣) ∈ 𝐸. 

Hence,    𝜇(𝑢, 𝑣) =
1

2𝑛
<

1

𝑛
= 𝜎(𝑢)⋀𝜎(𝑣), 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑢, 𝑣) ∈ 𝐸 . 

Hence follows. 

3.18 Theorem 

Let G be a RLFG 𝐾𝑛,𝑛(𝑉, 𝐸) . In G the following results holds, 

(i) the degree of every vertex is 
1

2
 

(ii) G is regular 

(iii) the size of the graph is 
𝑛

2
 

Proof: In G, by theorem 3.16,   𝝈(𝒗) =
𝟏

𝒏
 , for all 𝒗 ∈ 𝑽 , and  

𝜇(𝑢, 𝑣) =
1

2𝑛
 , for all (𝑢, 𝑣) ∈ 𝐸. 
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(i) Now, 𝑑𝑒𝑔𝐺(𝑢) =   ∑ 𝜇(𝑢, 𝑣) , 𝑢 ≠ 𝑣. Since degree of every vertex of 𝐾𝑛,𝑛 is n, 

 𝑑𝑒𝑔𝐺(𝑢) = 𝑛 ×
1

2𝑛
=

1

2
, for all 𝑢 ∈ 𝐺. 

(ii) follows, from (i)  

(iii) 𝑆(𝐺) =   ∑ 𝜇(𝑢, 𝑣), for all (𝑢, 𝑣) ∈ 𝐸 

Since every edge is of equal weight, 𝑆(𝐺) = |𝐸| × 𝜇(𝑢, 𝑣) 

𝑆(𝐺) = 𝑛2 ×
1

2𝑛
=
𝑛

2
 

Hence follows. 

3.19 Theorem 

Let G be a RLFG 𝐾𝑛,𝑛(𝑉, 𝐸) . In G the following results hold. 

(i) Every edge is a strong edge 

(ii) Every edge is 𝛽- strong  

(iii) Every path is a strong path 

Proof: In G, by theorem 3.16,   𝜎(𝑣) =
1

𝑛
 , for all 𝑣 ∈ 𝑉 , and  𝜇(𝑢, 𝑣) =

1

2𝑛
 , for all (𝑢, 𝑣) ∈

𝐸.  

(i) In G, every edge is of same weight, 

𝜇(𝑢, 𝑣) = 𝐶𝑂𝑁𝑁𝐺−(𝑢,𝑣)(𝑢, 𝑣). 

Hence every edge is a strong edge. 

(ii) By (i) it follows that every edge is 𝛽- strong 

(iii) From(i) , (iii) follows 

Hence follows. 

3.20 Theorem 

The diameter of a ratio labelled complete bipartite graph 𝐾𝑛,𝑛(𝑉, 𝐸) is  
1

𝑛2
. 

Proof: For the complete bipartite graph 𝐾𝑛,𝑛, under ratio labelling, 

𝜎(𝑣) =
|𝑁(𝑣)|

|𝐸|
=

1

𝑛
  for all 𝑣. 

𝜇(𝑢, 𝑣) =
max[𝜎(𝑢),𝜎(𝑣)]

∑ 𝜎(𝑣)𝑣∈𝑉
=

1

2𝑛
 , for all (𝑢, 𝑣) ∈ 𝐸, 

Fuzzy distance between two vertices, 

𝑑𝑓(𝑢, 𝑣) = ⋀∑{⋀(𝜎(𝑢),  𝜎(𝑣)) × 𝜇(𝑢, 𝑣)} 
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In a complete bipartite graph 𝐾𝑛,𝑛, max{𝑑(𝑢, 𝑣)} is 2. Hence in 𝐺, 

max{𝑑𝑓(𝑢, 𝑣)} =
1

𝑛
×
1

2𝑛
+
1

𝑛
×
1

2𝑛
 

= 
2

2𝑛2
=
1

𝑛2
 

The eccentricity of ratio labelled 𝐾𝑛,𝑛, 

𝑒𝑓(𝑣) = ⋁{𝑑𝑓(𝑢, 𝑣)}, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑉 

=         
1

𝑛2
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣     

𝑑𝑖𝑎𝑚𝑓(𝐾𝑛,𝑛) = max{𝑒𝑓(𝑣)} , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 

 =            
1

𝑛2
 

Hence follows. 

3.21 Theorem 

In a complete graph 𝐾𝑚,𝑛(𝑉, 𝐸) , 𝑚 ≠ 𝑛 , for every 𝑣 ∈ 𝑉, 

𝜎(𝑣) = {

1

𝑚
,  𝑓𝑜𝑟 𝑣 ∈ 𝑉1

1

𝑛
,  𝑓𝑜𝑟𝑣 ∈ 𝑉2

  and (𝑢, 𝑣) ∈ 𝐸  𝜇(𝑢, 𝑣) = {

1

2𝑚
,  𝑓𝑜𝑟 𝑚 < 𝑛

1

2𝑛
,  𝑓𝑜𝑟 𝑚 > 𝑛

  by RL. 

Proof: In 𝐾𝑚,𝑛 ,  |𝑉| = 𝑚 + 𝑛,  where |𝑉1| = 𝑚, |𝑉2| = 𝑛 ,    |𝐸| = 𝑚 × 𝑛 , and 

|𝑁(𝑣)| = {
𝑛  𝑖𝑓 𝑣 ∈ 𝑉1
𝑚  𝑖𝑓 𝑣 ∈ 𝑉2

 . 

Now,   𝜎(𝑣) =
|𝑁(𝑣)|

|𝐸|
= {

1

𝑚
 𝑖𝑓 𝑣 ∈ 𝑉1

1

𝑛
 𝑖𝑓 𝑣 ∈ 𝑉2

 . 

∑ 𝜎(𝑣)𝑣∈𝑉 = 𝑚 ×
1

𝑚
+ 𝑛 ×

1

𝑛
= 2 . 

Case (i) For 𝑚 < 𝑛, 𝜇(𝑢, 𝑣) =
max[𝜎(𝑢),𝜎(𝑣)]

∑ 𝜎(𝑣)𝑣∈𝑉
=

1

2𝑚
, for all (𝑢, 𝑣) ∈ 𝐸. 

Case (ii) For 𝑚 > 𝑛, 𝜇(𝑢, 𝑣) =
max[𝜎(𝑢),𝜎(𝑣)]

∑ 𝜎(𝑣)𝑣∈𝑉
=

1

2𝑛
 , for all (𝑢, 𝑣) ∈ 𝐸. 

Hence, 𝜇(𝑢, 𝑣) = {

1

2𝑚
 𝑓𝑜𝑟 𝑚 < 𝑛

1

2𝑛
 𝑓𝑜𝑟 𝑚 > 𝑛

 

Hence follows. 
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3.22 Theorem  

The necessary and sufficient condition for a complete bipartite graph 𝐾𝑚,𝑛(𝑉, 𝐸) 

 to be a fuzzy graph for 𝑚 ≠ 𝑛 under ratio labelling is that 

(i) for every 𝑚 < 𝑛, 𝑛 ≤ 2𝑚 

(ii) for every 𝑚 > 𝑛,𝑚 ≤ 2𝑛 

Proof: By theorem 3.21,  𝜎(𝑣) = {

1

𝑚
 𝑖𝑓 𝑣 ∈ 𝑉1

1

𝑛
 𝑖𝑓 𝑣 ∈ 𝑉2

 .    and   𝜇(𝑢, 𝑣) = {

1

2𝑚
 𝑓𝑜𝑟 𝑚 < 𝑛

1

2𝑛
 𝑓𝑜𝑟 𝑚 > 𝑛

  for all 

(𝑢, 𝑣) ∈ 𝐸 

When   𝑚 < 𝑛, 𝜇(𝑢, 𝑣) =
1

2𝑚
<

1

𝑛
= 𝜎(𝑢)⋀𝜎(𝑣) 𝑜𝑛𝑙𝑦 𝑤ℎ𝑒𝑛 𝑛 ≤ 2𝑚. 

When > 𝑛, 𝜇(𝑢, 𝑣) =
1

2𝑛
<

1

𝑚
= 𝜎(𝑢)⋀𝜎(𝑣) 𝑜𝑛𝑙𝑦 𝑤ℎ𝑒𝑛 𝑚 ≤ 2𝑛. 

Hence follows. 

3.23 Theorem 

Let G be a RLFG 𝐾𝑚,𝑛(𝑉, 𝐸) , the following results holds 

(i) the degree of every vertex is given by 

for 𝑚 < 𝑛, 𝑑𝑒𝑔𝐺(𝑢) = {

𝑛

2𝑚
, 𝑢 ∈ 𝑉1

1

2
,   𝑢 ∈ 𝑉2

 

for 𝑚 > 𝑛, 𝑑𝑒𝑔𝐺(𝑢) = {

1

2
, 𝑢 ∈ 𝑉1

𝑚

2𝑛
,   𝑢 ∈ 𝑉2

 

(ii) the size of the graph is 

  

𝑆(𝐺) = {

𝑛

2
,𝑚 < 𝑛

𝑚

2
,   𝑚 > 𝑛

 

Proof: In G, by theorem 3.21,   𝜎(𝑣) = {

1

𝑚
 𝑖𝑓 𝑣 ∈ 𝑉1

1

𝑛
 𝑖𝑓 𝑣 ∈ 𝑉2

 .and    

                                               𝜇(𝑢, 𝑣) = {

1

2𝑚
 𝑓𝑜𝑟 𝑚 < 𝑛

1

2𝑛
 𝑓𝑜𝑟 𝑚 > 𝑛

  for all (𝑢, 𝑣) ∈ 𝐸 
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(i) Now, 𝑑𝑒𝑔𝐺(𝑢) = {
∑𝜇(𝑢, 𝑣),   𝑢 ∈ 𝑉1
∑𝜇(𝑢, 𝑣) ,   𝑢 ∈ 𝑉2

 , 𝑢 ≠ 𝑣.  

Since degree of every vertex of 𝐾𝑚,𝑛, is 𝑛 𝑓𝑜𝑟 𝑢 ∈ 𝑉1and 𝑚, 𝑓𝑜𝑟 𝑢 ∈ 𝑉2 

In G, for 𝑚 < 𝑛, 𝑑𝑒𝑔𝐺(𝑢) = {
𝑛 ×

1

2𝑚
, 𝑢 ∈ 𝑉1

𝑚 ×
1

2𝑚
,   𝑢 ∈ 𝑉2

, 

= {

𝑛

2𝑚
, 𝑢 ∈ 𝑉1

1

2
,   𝑢 ∈ 𝑉2

 

In G, for 𝑚 > 𝑛, in G, 𝑑𝑒𝑔𝐺(𝑢) = {
𝑛 ×

1

2𝑛
, 𝑢 ∈ 𝑉1

𝑚 ×
1

2𝑛
,   𝑢 ∈ 𝑉2

, 

= {

1

2
, 𝑢 ∈ 𝑉1

𝑚

2𝑛
,   𝑢 ∈ 𝑉2

 

(ii) 𝑆(𝐺) =   ∑ 𝜇(𝑢, 𝑣), for all (𝑢, 𝑣) ∈ 𝐸 

For 𝑚 < 𝑛, Since every edge is of equal weight,  

𝑆(𝐺) = |𝐸| × 𝜇(𝑢, 𝑣) 

𝑆(𝐺) = 𝑚𝑛 ×
1

2𝑚
=
𝑛

2
 

For 𝑚 > 𝑛, Since every edge is of equal weight,  

𝑆(𝐺) = |𝐸| × 𝜇(𝑢, 𝑣) 

𝑆(𝐺) = 𝑚𝑛 ×
1

2𝑛
=
𝑚

2
 

Hence follows. 

3.24 Theorem 

The diameter of a RLFG 𝐾𝑚,𝑛(𝑉, 𝐸) is  
1

𝑚𝑛
. 

Proof: For the complete bipartite graph 𝑲𝒎,𝒏   under RL, by theorem 3.21, 

𝜎(𝑣) =
|𝑁(𝑣)|

|𝐸|
= {

1

𝑚
  𝑖𝑓 𝑣 ∈ 𝑉1

1

𝑛 
 𝑖𝑓 𝑣 ∈ 𝑉2

  for all 𝑣 and 𝜇(𝑢, 𝑣) = {

1

2𝑚
 𝑓𝑜𝑟 𝑚 < 𝑛

1

2𝑛
 𝑓𝑜𝑟 𝑚 > 𝑛

  for all (𝑢, 𝑣) ∈ 𝐸 
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Case(i) For 𝑚 <  𝑛 , 𝐾𝑚,𝑛 is a fuzzy graph under RL when 𝑛 ≤ 2𝑚 

For all (𝑢, 𝑣) ∈ 𝐸,    𝜇(𝑢, 𝑣) =
max[𝜎(𝑢),𝜎(𝑣)]

∑ 𝜎(𝑣)𝑣∈𝑉
=

1

2𝑚
 . 

Fuzzy distance between two vertices is given by, 

𝑑𝑓(𝑢, 𝑣) = ⋀∑{⋀(𝜎(𝑢),  𝜎(𝑣)) × 𝜇(𝑢, 𝑣)} 

In a complete bipartite graph 𝐾𝑚,𝑛, max{𝑑(𝑢, 𝑣)} is 2 for any 𝑢, 𝑣 ∈ 𝑉 

Hence in RLFG 𝐾𝑚,𝑛 , Max{𝑑𝑓(𝑢, 𝑣)} =
1

𝑛
×

1

2𝑚
+

1

𝑛
×

1

2𝑚
 

                                                        = 
2

2𝑚𝑛
=

1

𝑚𝑛
 

Case(ii) For 𝑚 >  𝑛 , 𝐾𝑚,𝑛 is a fuzzy graph under RL when 𝑚 ≤ 2𝑛 

𝜇(𝑢, 𝑣) =
max[𝜎(𝑢),𝜎(𝑣)]

∑ 𝜎(𝑣)𝑣∈𝑉
=

1

2𝑛
 , for all (𝑢, 𝑣) ∈ 𝐸. 

Hence for any 𝑢, 𝑣 ∈ 𝑉,  Max{𝑑𝑓(𝑢, 𝑣)} =
1

𝑚
×

1

2𝑛
+

1

𝑚
×

1

2𝑛
 

= 
2

2𝑚𝑛
=

1

𝑚𝑛
 

The eccentricity of ratio labelled 𝐾𝑚,𝑛 

𝑒𝑓(𝑣) = ⋁{𝑑𝑓(𝑢, 𝑣)}, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑉 

=
1

𝑚𝑛
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣    from case (i) and (ii) 

𝑑𝑖𝑎𝑚𝑓(𝐾𝑚,𝑛) = max{𝑒𝑓(𝑣)} , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 

=
1

𝑚𝑛
 

This completes the proof. 
 
4. APPLICATION OF RATIO LABELLED FUZZY GRAPHS 

The relationship between individuals on social media can be analyzed using ratio 
labelling. In this context, the individuals in a family or friend group on social media are 
represented as vertices, and the communication between two individuals is represented 
by edges. The level of interaction determines closeness of relationship rather than being 
connected online. Such a friendship analysis was done for a group of friends in social 
media. Their chats and responses were examined and analyzed using RL. The 
admissibility of fuzziness is verified using the definition 𝜇(𝑥, 𝑦) ≤ 𝜎(𝑥)⋀𝜎(𝑦). Graphs that 
allow fuzziness indicate a strong communication bond between individuals. In this study, 
a group of friends—Sasi, Mathu, Uma, Sudha, Hema, Joe, Rani, Priya, and Sharmila—
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are considered. The communication between them is analyzed, and a corresponding 
graph is constructed. 

 

Fig 3                                                 Fig 4 

The graph in Fig. 3 is ratio labelled as, 

𝜎(𝑆𝑎𝑠𝑖) =
8

20
= 𝜎(𝑈𝑚𝑎);  𝜎(𝑀𝑎𝑡ℎ𝑢) = 𝜎(𝐻𝑒𝑚𝑎) =

5

20
;  

𝜎(𝑆𝑢𝑑ℎ𝑎) =
4

20
; 𝜎(𝑆ℎ𝑎𝑟𝑚𝑖𝑙𝑎) = 𝜎(𝐽𝑜𝑒) =

3

20
; 𝜎(𝑃𝑟𝑖𝑦𝑎) = 𝜎(𝑅𝑎𝑛𝑖) =

2

20
. 

For any x, ≠ 𝑆𝑎𝑠𝑖, 𝑈𝑚𝑎 , 

𝜇(𝑆𝑎𝑠𝑖, 𝑥) = 𝜇(𝑈𝑚𝑎, 𝑥) =
8

40
; 𝜇(𝑀𝑎𝑡ℎ𝑢, 𝑥) = 𝜇(𝐻𝑒𝑚𝑎, 𝑥) =

5

40
; 

Now,𝜇(𝑆𝑎𝑠𝑖, 𝑃𝑟𝑖𝑦𝑎) =
8

40
=

4

20
>

2

20
= 𝜎(𝑆𝑎𝑠𝑖) ⋀ 𝜎(𝑃𝑟𝑖𝑦𝑎), which violates the definition of 

fuzzy graph. This indicates that in a group of nine friends, the individual Priya and some 
other individuals are not as closely connected with the rest of the group as Sasi and Uma 
are. This weakens the overall relationship bond between the individuals. Therefore, the 
graph does not qualify as a fuzzy graph under ratio labelling.  

Also, ratio labelling does not expect that every individual communicates with everyone 
else at all times, which is impractical in reality. It admits fuzziness to some extent, for 
example, Hema is less communicative when compared to Sasi and Uma, for whom 

𝜇(𝑆𝑎𝑠𝑖, 𝐻𝑒𝑚𝑎) =
8

40
=

4

20
<

5

20
= 𝜎(𝑆𝑎𝑠𝑖) ⋀ 𝜎(𝑃𝑟𝑖𝑦𝑎). Thus, fuzziness is neither entirely 

rejected nor fully accepted by ratio labelling; instead, it is constrained by specific limits 
based on the degree of the vertices in accommodating fuzziness. 

As we are discussing uncertainty, the communication between the people may vary 
depending on the situation and time.  On one such situation, the communication between 
the friends increases and leads to few more adjacent vertices like (Joe, Priya), (Sudha, 
Rani), (Sharmila, Priya), (Rani, Hema) thereby the graph becomes fuzzy under RL, see 
Figure 4. 
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5. CONCLUSION  

This paper examines the graph for admittance of fuzziness under RL. This paper defines 
and explores RL and characterized the graph that admits fuzziness. Also, we have 
examined strength of connectedness of the path of RLFG. It is noted that all regular 
graphs are RLFG. The effectiveness of the theoretical result has been demonstrated 
through an application. 
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