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Abstract

Traditional fuzzy graph models assign membership values to vertices and edges based on a specific
uncertain situation. However, this work investigates a novel approach: representing the situation as a graph
and deriving fuzziness from the graph's inherent structure. We introduce "ratio labeling” (RL), a new
labelling procedure where vertex and edge membership grades are determined by graph parameters.
These labels, derived directly from the graph's structure, characterize the graph itself and serve as the
basis for examining the admissibility of fuzziness within the graph. This approach allows the study of
fuzziness arising from the properties of the graph representing a situation. This paper explores this new
idea and examines certain graphs for the admissibility of fuzziness. This topic study the methodologies,
properties, and applications of ratio labelling in fuzzy graph identification, focusing on its theoretical
foundations and practical implications in solving real-world problems. Furthermore, the proposed ideas are
illustrated with several numerical instances. To emphasize the theoretical concept, an application that
ensures an effective communication between groups of people in a social media under RL is discussed.

Keywords: Fuzzy Graph, Ratio Labelling, Complete Graph, Complete Bipartite Graph, Cycle, Path.
AMC Subject Classification: 05C72

1. INTRODUCTION

Graph theory plays a fundamental role in modeling relationships and interactions in
various real-world problems. Among the numerous extensions of classical graph theory,
fuzzy graph theory provides a powerful framework for dealing with uncertainties,
imprecision, and vagueness inherent in many systems. Fuzzy relations were introduced
by Zadeh in 1965. A fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset.
Kaufmann initially introduced the concept of a fuzzy graph in 1973, building upon Zadeh’s
work on fuzzy relations. However, it was Rosenfeld who significantly advanced the theory
of fuzzy graphs in 1975 by exploring fuzzy relations defined on fuzzy sets. Rosenfeld
provided a more formal and rigorous definition of fuzzy graphs, building upon Kaufmann’s
initial work. He introduced the concepts like fuzzy paths, cycles, and connectedness,
laying the foundation for further research. In subsequent decades investigations on
various types of fuzzy graphs were done, including intuitionistic fuzzy graphs, bipolar
fuzzy graphs [4, 12]. Labelling of fuzzy graph was introduced by A. Nagoor Gani and D.
Rajalakshmi [9]. The concept of domination in fuzzy graphs was investigated by
Somasundaram [10]. The concept of complement of fuzzy graph was investigated by
Sunitha and Vijayakumar [11]. The work by Mathew Varkey T K and Sreena T D on
evidence labelling of fuzzy graph examines the fuzziness on graphs with a particular
labelling [8].
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Applications of the fuzzy graph structures in decision making process, regarding detection
of marine crimes and road crimes are presented by Ali N. A. Koam et al. [1]. Asima
Razzaque et al. explained the idea of t-intuitionistic fuzzy graphs to analyse complex
relationships with multiple factors [7]. Anushree Bhattacharya et al. discussed a fuzzy
graph theory approach to a case study problem [3]. Connectivity status of vertices in an
intuitionistic fuzzy graph and its application to merging of banks was discussed by Jayanta
Bera et al. [6].

These advancements in fuzzy graph theory have sparked significant interest in exploring
fuzzy graphs. Labelling the vertices and edges of a graph to examine its "fuzziness" can
be approached in a few different ways. In graph theory, this might refer to various forms
of uncertainty or imprecision in the relationships between vertices and edges. Blue et al.
categorized fuzzy graphs into different types based on various criteria as follows [5].

o “Type I: Crisp vertex set and fuzzy edge set.
o Type IlI: Crisp vertices and edges with fuzzy connectivity.
o Type lll: Fuzzy vertex set and crisp edges.

« Type IV: Crisp graph with fuzzy weights, representing a graph where the vertices
and edges have uncertain weights, but the connections are well-defined.

« Type V: Fuzzy set of crisp graphs, involving the fuzzy composition of crisp graphs.”

Type IV graphs are particularly useful when the relationships between elements in a
graph are clear, but the attributes of these relationships are uncertain. To analyze the
"fuzziness" in such graphs, we propose the concept of Ratio Labelling (RL). This
technique uses established graph parameters to assign membership values to both the
vertices and edges, ranging from 0 to 1. By doing so, RL effectively represents the
structural properties of the graph while quantifying the level of fuzziness. This approach
is especially beneficial in scenarios where the network's structure is well-understood, but
the characteristics of the connections are imprecise or ambiguous. Analyzing fuzziness
in a crisp graph through ratio labelling—where vertices are assigned values using o and
edges using y—reveals that the ability to incorporate fuzziness varies based on the
structure of the graph. We examined some of interconnection networks for admissibility
of fuzziness using RL [2]. Since ratio labelling promotes strong connectivity among
vertices, a ratio-labelled fuzzy graph can represent an efficient communication network
or strong interpersonal bonds in a social network.

The novelties and effectiveness in ratio labelling are listed as follows.

1. RL involves assigning labels that represent a ratio or relative value, between two
parameters. These ratios can help capture the relative strength, importance, or
influence of a node or edge in a graph. For example, an edge between two nodes
could be labelled with a ratio that compares the influence or closeness of the two
nodes relative to others in the network.
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2. RL can dynamically adjust based on the relative importance of a node or edge
compared to others in the graph, allowing for more context-sensitive labelling.

3. By using ratios, one can capture subtle differences in interactions or properties

4. Ratio labelling relies heavily on accurate, high-quality data to compute meaningful
ratios. In cases where data is sparse, incomplete, or noisy, the ratios may not be
reliable.

The focus of this paper is on introducing ratio labelling and assessing its impact on various
traditional graphs including cycles, path, complete graphs, complete bipartite graphs to
determine their suitability for accommodating fuzziness and to discuss their properties
(see section 3). Moreover, we wish to discuss an application that represents the
relationship bonding between the group of people in social media using RL (see section
4).

2. BASIC CONCEPTS

A fuzzy graph G: (o, p) is a pair of functions o: V—[0,1] and p:VxV—[0,1], where for all
X,y €V,

u(x,y) < o(x)Na(y) .
where A stands for minimum. Also

o* = supp(o) = {ueS: a(u) > 0}. u* = supp(u) = {(u, v)eS X S: u(u,v) > 0).

p=Za(x).

XES

If u(x,y) > 0then x and y are called neighbours, x and y are said to lie on the same edge
e. The neighbourhood of a vertex v € S is a set of all vertices which are neighbours of v
denoted by N(v) Let G: (o, p) be a fuzzy graph. The degree of a vertex v of a fuzzy graph
G is defined as degg(v) = Yuzy H(u,v). In a fuzzy graph G the minimum degree 6(G), and
maximum degree A(G), are defined as follows.

8(G) = min {degg(w):forallu € V} and A(G) = max {deg;(u): forallu € V}. The order of
a fuzzy graph G(o, p) is defined to be 0(G) = Y. ,ev 0(u). The size of a fuzzy graph G(o, p)
is defined to be S(G) = Y y,v)ee H(u, v). A fuzzy graph G is said to be regular if for a positive
real number k, degg(v) =k, for all u € V. In this case, G is called k-regular fuzzy graph.

In G: (o, M), the order of G is

In a fuzzy graph G (o, u), a path is a sequence of distinct vertices vo, Vvi..., vn such that
u(vi_q,v;) > 0,1 <i <n.Here, 'n"is called the length of the path. The consecutive pairs
(vi-1, vi) are called arcs of the path. The strength of the path between two vertices v; and
v, is defined as Aj=; u(v;_1,v;). If u and v are connected using paths of length ‘k’ then
u*(u, v) is defined as

u*(u,v) = sup{ p(u, v)) A p(v, V) A e A (i1, V): U, Uy, ..., Vg1, V €S}
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If u, v € S the strength of connectedness between u and v is,

sup{u¥(u,v):k = 1,2,3,...}, and it is denoted as CONNg_(y»y(w, v) or p*(u,v). A fuzzy
graph G is connected if u®(u,v) > 0 [forallu, vino”.

An arc (u, v) of a fuzzy graph G (o, u) is said to be a strong arc if u(u, v) > 0 and u(u, v) =
u®(u,v). A path P (vo, v1,...,vn) from vo to vn is called a strong path if (vi,vi+1) is strong for
alll1 <i<n-1.Theedge (u, V) in G (o, u) is said to be

() a — strong if u(u,v) > CONNg_ ) (0, v)
(i) p —strong if u(u,v) = CONNg_(y ) (u, v)
(iii) 6 —arc if u(u,v) < CONNg_(yv)(w, v)

A path in a fuzzy graph G (o, u) is called an a — strong path if all its edges are a — strong
and is called a g — strong path if all its edges are 8 — strong.

A vertex X, is said to be an isolated vertex if u(u,v) = 0 for all u # v.

The fuzzy distance between two vertices u and v is defined as

de(u,v) = /\Z{/\(a(u),a(v)) X u(u, v)}.

3. MAIN RESULTS

The section discusses the method of labelling the vertices and edges of a given graph
using RL (Ratio Labelling). The impact of RL in admitting fuzziness of the given graph is
examined. The graphs that are fuzzy under RL can handle fuzzy or uncertain information.
Initiated by this the graphs such as paths P, , cycles C,,, complete graphs K,, and complete
bipartite graph K, ,,, are examined. The complete bipartite graph K, ,,is fuzzy when m =
n ; however, when m # n, the graph is fuzzy under some restrictions on degree of the
adjacent vertices. The properties such as diameter, eccentricity, strength of the edge of
these graphs are discussed. Also, the edges of ratio labelled fuzzy graphs are classified
as a — strong, B — strong which helps to identify the structure of ratio labelled fuzzy
graphs.

3.1Definition

Let G = (V, E) be a simple connected graph. The functions, 6:V — [0,1],and u: E — [0, 1]
that labels the vertices and edges of G, are defined as
_ INM)I
o(v) = T (1)

max [o(w),0(v)]

_ (uwv)eE
nwv) =5 200

(@)

and is called ratio labelling of G . The graph G that is a fuzzy graph due to ratio labelling
is called as ratio labelled fuzzy graph (RLFG)
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Example.1

V3

Va
Fig 1
Consider the cycle Cs with vertex set V = { vy, v,, U3, V4, Vs }.

The vertices are labelled using o as, o(v;) = % = %

Similarly, o(v,) = o(v3) = o(v,) = a(vs) = % . The edges are labelled using u as

max[o(v1),0(v,)] max{z’z} 1
) = » — od 5

Yvev o(v) 5><§ 5

1
-
Here, u(v;,vj) < o(w)Ao(v)) forall1 <i,j < 5and i # .

Hence Cs is a fuzzy graph under RL.

Similarly, u(v,,v3) = u(vs,vy) = (v, vg) = u(vs,vq) =

Example.2

Fig 2
Consider the graph G = (V, E) with vertex set V = { v, v,,v5,v,}. The vertices of G are
labelled using RL as,

IN@DI _ 3

|E| -=10w;) =0(v3) = o(vy) = % and

o(vy) = 3

Aug 2025 | 319



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 58 Issue: 08:2025

DOI: 10.5281/zenodo.16830904

The edges are labelled using RL as,

1
_ maxlo(@evp)] _ max{1i} 1 _ 1
nu'(vli UZ) - ZVEVO-(U) - 3X§+1 - 2! lu(vlﬁ U3) - M(vll U4) - 2'

Here, u(vy,v,) = % > % = o(v)Na(vy) .
Hence G is not a fuzzy under RL.

Remark.

K, , is not a fuzzy under RL for n > 3.

3.2Theorem

For a cycle C,,(V, E), with n vertices and n edges, the vertices and edges are labelled as
%% respectively by RL.

Proof: InC,, |V|=n,|E|=n,and [N(v)| =2, forall v € V. Now, by RL,

_ Nl _
o(v) = ]

Z‘UEV o(v) = ZUEV

2
= forallveV

n

2 2
~=nx=-=2 and
n n

max[o(u),c(v)] _ 1

=1 forall €E .
Soerowm ncioral o)

p(u,v) =

Hence follows.

3.3Theorem

For all n > 3, the cycle C,(V,E) is a fuzzy graph under ratio labelling.
Proof: By theorem 3.2,

o(v) =% ,forall veV, and ulu,v) = % ,forall (u,v) €E .
Hence, u(u,v) = % < % =og(WNo(), for all (u,v) EE .

Hence, C,, is a RLFG.
3.4Theorem
Let G be a RLFG C,(V,E) . In G the following results holds,

(i) the degree of every vertex is %

(if) G is regular

(iii) the size of the graphis 1
Proof: In C,,, |V| =n and |E| = n.

In G, by theorem 3.2, o(v) = % yforallveVv,and u(u,v) = % , forall (u,v) €E.
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() Now, deg;(u) = X u(u,v),u # v. Since degree of every vertex of C, is 2, degree
of uin G is degg(w) = 2 x - ==, for all u.
(i) follows, from (i)
(ihS(G) = Yu(u,v), forall (u,v) €EE.
Since every edge is of equal weight, S(G) = |E| X u(u,v)
1
S(G) =n x —=1

3.5Theorem
Let G be a RLFG C,(V,E) .
(i) Every edge is a strong edge
(i) Every edge is S- strong
(iif) Any path is a strong path
Proof: By theorem 3.2, o(v) = % forallveV,and pu(u,v) = % , for all (w,v) e Ein G.

(i) In G, every edge is of same weight, u(u,v) = CONNg_(,.,»)(u, v). Hence every edge
is a strong edge.

(ii) By (i) it follows that every edge is - strong
(iii) follows from(i)
Hence follows.

3.6 Theorem

The diameter of a ratio labelled Cycle C,(V,E) is EJ X %
Proof: For the cycle C,, by theorem 3.2,
o(v) = % forall vand u(u,v) = %for all (u,v) €E.
Distance between any two vertices in a cycle C,, varies from i= 1 to EJ

Fuzzy distance between two vertices,
dr(u,v) = AZHA (c(w),0(v)) X u(u, v)} whenu and v

are at a distance i in C,,.

Y21
= /\Z[—X—]forallu,v
—ln
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3 fori=1

2
= ZXﬁforizz

kngx% fori= EJ

The eccentricity of ratio labelled C,,,
er(v) = V{d;(w,v)}, forallu eV

n 2

=5z
diams(C,) = max{ef(v)},for allv

n 2

sk

This completes the proof.
3.7Theorem

For a path B,(V, E) with n vertices, n-1 edges, the vertices and edges are labelled as

1 .
—  for pendant vertices 1

o(w)={""1 and p(u,v) = — forall (w,v) in B, by RL.

2 . . ~
— for the internal vertices 1

Proof: InB,, |[V|=n,|E|=n—-1,

1, for pendant vertices
and |N(v)|={ forp ces.
2, for internal vertices
Now,
1 .
Nl E,for pendant vertices
oW) =T =

As there are two pendant vertices in a path B, ,

1 2
ZUEVO'(U)=2XE+(TI—2)XE=2.

max[o(u),0(v)]

2vev o(v)

p(u,v) =

Hence follows.

2 . ) '
— for internal vertices

1
=— forall (w,v) €E .
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3.8Theorem
For alln > 2, the path P,(V, E) is a fuzzy graph under RL.

1 .
IN)| — for pendant vertices

Proof: By theorem 3.7, a(v) = and
|E| 2 : .
— for internal vertices
ulu,v) = ﬁ forall (u,v) €EE .
Case (i)
When (u, v) is an edge incident with pendent vertex?
1
pu(u,v) = 1= o(w)\o(v)
Case (i)
When (u, v) is an edge incident with non-pendent vertices,
1 2
ulu,v) = —<-—== oc(w)N\o(v) .
From Case(i) and (ii),
ulu,v) < a(w)Ao(v), forall (u,v) €EE
Hence follows.
3.9Theorem
Let G be a RLFG P,.(V,E) Then
(i) minimum degree of G= §(G) = ﬁ
(i) maximum degree of G =A (6) = —
(iii) the size of the graph is 1
%' for pendant vertices
Proof: In G, by theorem 3.7, a(v) =™ and

2 ] .
— for internal vertices

ulu,v) = ﬁ forall (u,v) €EE .
() Now, deg;(u) = Y u(u,v),u #v.

1 .
ﬁ,for pendant vertices

degG (u) = 2 i i
— for internal vertices

minimum degree of G = §(G) = Ll
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" . 2
(i) maximum degree of G =A (G) = —

(i) S(G) = Y u(u,v), for all (u,v) € E. Since every edge is of equal weight, S(G) =
|E| x u(u,v)

=1

SG)=n—-1)x
n—1

Hence follows.
3.10 Theorem

The diameter of a ratio labelled path graph P,(V,E) is (n—2) X

(n-1)%’

Proof: For the path graph B,, under RL,

— 1 -
INWI =1 for pendant vertices
o(v) = IE| =

1’ for internal vertices
n —

max[o(u),0(v)]

1
Yoy o)  n-1' for all (u,v) € E.

p(u,v) =

Fuzzy distance between two vertices,

4w v) = A (\ (o), o)) x (v}

In a path B,, max{df(u, v)} is attained between the pendant vertices.

Mof 2 1 2 2 2 1
G O el ey P g s P g s EASRS copm ) EA copug

(n —1terms)

_ 2 2
St d g T

The eccentricity of ratio labelled path B,,
er(v) = V{df(u, v)}, forallueVv

= %,for allv
diams(B,) = max{ef(v)},for all v
2(n—2)
(n—1)?

This completes the proof.
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3.11 Theorem

In a complete graph K,,(V,E), foreveryv eV , a(v) = % and for all (u,v) € K,,, u(u,v) =
1

Proof: InK, , |V|=n,|E| =222 and [N(w)|=n-1,forallveV.
_IN@I _ -1 2
Hence,o(v) = T Rm < for all n.

Soevo(v) =nx =2,

max[o(u),0(v)]
Yvevo(v)

u(u,v) = =111,f0r all, (u,v) €E,

Hence follows.

3.12 Theorem

Every complete graph K, (V, E) is a fuzzy graph under RL.
Proof: By theorem 3.11,

o(w) ==, forallnand u(u,v) =, forall (uv)€E
ulu,v) = % < % =od(WNo(), for all (u,v) €EE..

Hence follows.
3.13 Theorem
Let G be a RLFG K, (V,E) . In G the following results holds,

(i) the degree of every vertex is "T_l

(ii) G is regular

(iii the size of the graph is “=
Proof: In G, by theorem 3.11, o(v) = % ,forallveVv, and
u(u,v) = % , forall (u,v) €E.

(i) Now, deg;(uw) = Y u(u,v),u #v. Since degree of every vertex of K,is n—1,
1 n—-1
degs(u) =(n—1) x -=—, forall u € G.

(i) (ii) follows, from (i)
(i) S(G) = Yulu,v), forall (w,v) EE
Since every edge is of equal weight, S(G) = |E| X u(u,v)

Aug 2025 | 325



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 58 Issue: 08:2025

DOI: 10.5281/zenodo.16830904

() =n(n2 1)X%=n2 1
Hence follows.
3.14 Theorem
Let G be a RLFG K, (V,E). In G the following results holds.
(i) Every edge is a strong edge
(i) Every edge is - strong
(iif) Every path is a strong path
Proof: In G, by theorem 3.11, ¢(v) =% , and for all veV, u(uv) =% , for all
(u,v) €E.
(i) In G, every edge is of same weight, u(u,v) = CONNg_(,.,»)(u, v). Hence every edge
is a strong edge.
(i) By (i) it follows that every edge is - strong
(i) From (i), (iii) follows
This completes the proof.

3.15 Theorem

The diameter of a ratio labelled complete graph K,,(V,E) is 2z

n2’

Proof: For the complete graph K,,, under ratio labelling,

o(v) = INOI _ 2 torallveV.
|E| n
_ max[o(u),0(v)] _ 1
ulu,v) = “Soem  n for all (u,v) € E,

Fuzzy distance between two vertices,
dy(,v) = A Y ( [\ (o), 6)) x u(w,v))
2 1
= /\[—x—]for all u,v
n n
2
= = for all u,v.

The eccentricity of ratio labelled K,,,
er(v) = V{df(u, v)},for alluev

= F,forallvEV
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diams(K,) = max{e;(v)}, for all v
2

n2

Hence follows.
3.16 Theorem

In a complete bipartite graph K,, ,(V,E), foreveryv eV , o(v) = % and for all

(u,v) €E, u(u,v) = % by RL.
Proof: In K,,,, , |V| = 2n, where [V}| = V3]l =n, |E|l=nXn,INW)|=n,forallveV.
Now,

_INmI _ 1
o(v) = T Tn for all n.

Yveyo(v) = 2nx%= 2.

max[o(u),c(v)] _
Ypevo(®)

ulu,v) = % forall (u,v) €E.

Hence follows.
3.17 Theorem
Every complete bipartite graph K,, ,(V, E) is a fuzzy graph under RL.

Proof: By theorem 3.16,

o(v) = % forallv eV and u(u,v) =— ,forall (wv) € E.

2n '
Hence, u(u,v) = % < % =og(WNo(), forall (u,v) EE .
Hence follows.
3.18 Theorem

Let G be a RLFG K, ,(V, E) . In G the following results holds,
(i) the degree of every vertex is %
(if) G is regular
(iii) the size of the graph is >

Proof: In G, by theorem 3.16, o(v) = % ,forallveVv, and

u(u,v) = —, for all (w,v) €EE.

2n’
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(i) Now, degs(u) = X u(u,v),u#v. Since degree of every vertex of K,,is n,
degs(u) =nx i = % forallu € G.
(i) follows, from (i)
(i) S(G) = Yu(u,v), forall (u,v) €E
Since every edge is of equal weight, S(G) = |E| X u(u,v)
n

S(G) = n? x ! _
Mo T2

Hence follows.
3.19 Theorem
Let G be a RLFG K,,,(V, E) . In G the following results hold.
(i) Every edge is a strong edge
(i) Every edge is B- strong
(iii) Every path is a strong path
Proof: In G, by theorem 3.16, o(v) = % ,forallveV ,and u(u,v) = i , for all (u,v) €
E.
(@) In G, every edge is of same weight,
p(u, v) = CONNg_(y ) (U, v).
Hence every edge is a strong edge.
(i) By (i) it follows that every edge is - strong
(i) From(i) , (iii) follows
Hence follows.
3.20 Theorem

The diameter of a ratio labelled complete bipartite graph K,, ,(V,E) is ni

2

Proof: For the complete bipartite graph K, ,,, under ratio labelling,

_INw)l _ 1
o(v) = BT for all v.
__ max[o(u),0(v)] _ 1
ulu,v) = o forall (u,v) € E,

Fuzzy distance between two vertices,

dy(u,v) = A [\ (o0, o)) x u(w,v))
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In a complete bipartite graph K, ,, max{d(u,v)} is 2. Hence in G,
1 1 1 1

= — X — —_ X —
max{d(u,v)} - 2n+n o

2 1

2n2  n2

The eccentricity of ratio labelled K, ,,,

er(v) = V{df(u, v)},for alluev
= ﬁ,for all v

diamg (Kn,n) = max{ef(v)},for allv
1

nZ

Hence follows.

3.21 Theorem

In a complete graph K,,, ,(V,E) ,m #n , foreveryv € V,

1 1
—, forvel; —, form<n

o) =4" and (w,v) €E p(u,v) ={*" by RL.
;,forvEVz 5,form>n

Proof: In K., , |V| =m+n, where [Vy| =m,|V;|=n, |E|]=mxn,and

_(nifvel
IN@)I _{m ifvev,’
1
—ifvel
Now, 0(v)=M= T :
IE| ;'fUEVZ

1 1
ZUEVO'(U)—TTI.X;-i-nX;—Z.

max[o(u),0(v)]

Case () Form <n, u(u,v) = = ; for all (u,v) €E.

2vev o (V) o 2_
Case (i) For m > n _ maxo@)o@)] _ 1
) ‘u(u, v) - Z o‘(v) = o fOr a” (u' v) € E
veV

1
ﬁform<n

1

Hence, u(u,v) =
= form>n

Hence follows.
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3.22 Theorem
The necessary and sufficient condition for a complete bipartite graph K, ,(V, E)
to be a fuzzy graph for m # n under ratio labelling is that

(i) foreverym < n,n < 2m

(ii) foreverym >n,m < 2n

1ifvEV 1form<n

1 4 2

Proof: By theorem 3.21, o(v) =17 . and p(wv) =4 for all
;ifvEVZ %form>n

(w,v)€EE

When m <n, u(u,v) = ﬁ < % = o(u)A\o(v) only whenn < 2m.

When > n, u(u,v) = i < % = g(u)A\o(v) only when m < 2n.

Hence follows.
3.23 Theorem
Let G be a RLFG K,,, ,(V, E) , the following results holds

(i) the degree of every vertex is given by

~u€ev,
- 4
form < n, degg(u) = {2™
E, u E VZ
ZUEV
form > n, degg(u) = {,,f’ !
E' u e Vz
(i) the size of the graph is
n
E,m <n
S(G)={m
?, m>n
1 .
—ifvel
Proof: In G, by theorem 3.21, o(v) =17 .and
—-ifvel,
n
1
— form<n
pw(u,v) = 42" for all (u,v) €E

1
5f0rm>n
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(i) Now, degg(u) = {%Z((Z:j)) 321‘2 v

Since degree of every vertex of K, ,, isn for u € V;and m, for u € V,

n X i,u eV,
In G, form < n, degg(u) = am

X—, uel,
1 EV
_J 7t
—_—, eV
2n u 2

(i) S(G) = Yu(u,v), forall (u,v) EE
For m < n, Since every edge is of equal weight,

S(G) = |E| x u(u,v)

1 n
S(G) =mn X — = —
(@) =mnxo =3

For m > n, Since every edge is of equal weight,

S(6) = |E| x p(u,v)
m

1
S(G) =mn X — = —
(@) =mnxoo=>

Hence follows.
3.24 Theorem

The diameter of a RLFG K, ,(V,E) is %

Proof: For the complete bipartite graph K,,,, under RL, by theorem 3.21,

1

1
— ifvely — form<n
o(v) = Wl _ iy for all v and p(u,v) = { %" for all (u,v) € E
IE] —ifveV, — form>n
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Case(i) Form < n, K,,, , is a fuzzy graph under RL when n < 2m

max[o(u),c(v)] 1
Ypevo(w)  2m’

Forall (w,v) €E, u(u,v)=

Fuzzy distance between two vertices is given by,

dr(wv) =AY { [\ (o), o)) x u(av)}

In a complete bipartite graph K, ,, max{d(u,v)} is 2 forany u,v € V

Hence in RLFG Ky, , Max{d(u, )} = = X — + = X —

n 2m n 2m
2 1

2mn mn
Case(ii) Form > n, K, ,, is a fuzzy graph under RL when m < 2n

max[o(u),c(v)] _

1
ulu,v) = o) 2m forall (u,v) €E.
Hence for any u,v € V, Max{d;(u,v)} = % X % + % X %
_ 2 _ 1
 2mn mn

The eccentricity of ratio labelled K, ,,
er(v) = V{df(u, v)},for alluev
= ﬁ,for all v from case (i) and (ii)

diams(Kpmn) = max{e;(v)}, for all v
1

mn
This completes the proof.

4. APPLICATION OF RATIO LABELLED FUZZY GRAPHS

The relationship between individuals on social media can be analyzed using ratio
labelling. In this context, the individuals in a family or friend group on social media are
represented as vertices, and the communication between two individuals is represented
by edges. The level of interaction determines closeness of relationship rather than being
connected online. Such a friendship analysis was done for a group of friends in social
media. Their chats and responses were examined and analyzed using RL. The
admissibility of fuzziness is verified using the definition u(x,y) < o(x)Aa(y). Graphs that
allow fuzziness indicate a strong communication bond between individuals. In this study,
a group of friends—Sasi, Mathu, Uma, Sudha, Hema, Joe, Rani, Priya, and Sharmila—
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are considered. The communication between them is analyzed, and a corresponding
graph is constructed.

Malhig

fla

Fig 3 Fig 4
The graph in Fig. 3 is ratio labelled as,

8 5
o(Sasi) = 50 = o(Uma); o(Mathu) = c(Hema) = >0

2
;0(Priya) = o(Rani) = —.

4 3
o(Sudha) = >0 o(Sharmila) = o(Joe) = 70

20
For any x, # Sasi,Uma ,

p(Sasi, x) = u(Uma, x) = f—o; u(Mathu, x) = u(Hema, x) = %;

Now,u(Sasi, Priya) = — = = > — = ¢(Sasi) A o(Priya), which violates the definition of
fuzzy graph. This indicates that in a group of nine friends, the individual Priya and some
other individuals are not as closely connected with the rest of the group as Sasi and Uma
are. This weakens the overall relationship bond between the individuals. Therefore, the
graph does not qualify as a fuzzy graph under ratio labelling.

Also, ratio labelling does not expect that every individual communicates with everyone
else at all times, which is impractical in reality. It admits fuzziness to some extent, for
example, Hema is less communicative when compared to Sasi and Uma, for whom

u(Sasi, Hema) = % = % < 25—0 = g(Sasi) A a(Priya). Thus, fuzziness is neither entirely

rejected nor fully accepted by ratio labelling; instead, it is constrained by specific limits
based on the degree of the vertices in accommodating fuzziness.

As we are discussing uncertainty, the communication between the people may vary
depending on the situation and time. On one such situation, the communication between
the friends increases and leads to few more adjacent vertices like (Joe, Priya), (Sudha,
Rani), (Sharmila, Priya), (Rani, Hema) thereby the graph becomes fuzzy under RL, see
Figure 4.
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5. CONCLUSION

This paper examines the graph for admittance of fuzziness under RL. This paper defines
and explores RL and characterized the graph that admits fuzziness. Also, we have
examined strength of connectedness of the path of RLFG. It is noted that all regular
graphs are RLFG. The effectiveness of the theoretical result has been demonstrated
through an application.
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