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ABSTRACT:

Compressed Sensing method suppress the MRI acquisition time for considering the
patient's health. So the sensing process is carried out by a way of projecting an
under-sampled data from spatial and k-space domain simultaneously. In this paper,
our proposed Multi-domain reconstruction net acquires the under-sampled data with
local binary pattern at the different sampling rates and reconstructs the resultant
under-sampled data through the MD-USLBPRNET. Our proposed MD-USLBPRNET
consists of two parallel channel and act together sections and also execute on spatial
and k-space domain data simultaneously. Experimentally, the proposed method
shows the performance better than the existing Deep learning method with the
gualitative metric such as Peek-Signal-to-Noise Ratio and Structural Similarity Index.

Keywords: Compressed Sensing, Local Binary Pattern, MRl Reconstruction, Multi-
domain Reconstruction Net

1. Introduction

Magnetic resonance imaging technology is noninvasively for gathering the information about
physiological functions of human body. MRI is excellent for other modalities like soft-tissue
contrast and resolution. But in k-space, the sampling process of MRI suffers from the
patient's health for long time acquisition due to physiological and hardware constraints. So
this long time acquisition creates some artifacts for reducing the image quality. These
problem make an unsuitable diagnosing a time-critical disease like stroke [1]. So MRI
reconstruction method is implemented by Compressed Sensing.

CS joins compression and sensing or acquisition. Here the under-sampled data are collected
at a few numbers of measurements [2]. The high dimensional data is analyzed in medical
regions such as MRI and CT, audio or video or image [3]. So the CS mechanism is very
important for this kind of analysis.

The compressed representation of the testing signal is held by CS sensing mechanism. It is
examined by sensing or projection matrix. A well-known algorithm like Basis Pursuit [4] is a
predictable CS method and provides the time complexity of the number of measurements
O(s log (n/s)) in the n-dimensional s-sparse signal based on Gaussian random matrices [5].
The significant problem of BP that random matrices are typically considered to build
hardware is complicated. Also, arbitrary matrices multiply with signal vectors of high
dimension. If there is no fast matrix multiplication algorithm, it evaluates the high
computation cost. In this article, a new CNN method proposes reconstructing the image for
the fusion of spatial and frequency under-sampled data.
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Related review and the proposed network are described in Section 2 and 3. The
experimental results are evaluated for the existing and proposed methods that are
highlighted in Section 4. Finally the conclusion is represented in this paper.

2. Literature Review

Many developed CS algorithms reduce the acquisition time in MRI. Firstly, the hardware-
based parallel MRI (pMRI) [6] algorithm, which may be measured raw data from an
individual tissue type with the help of phased array coils, which contains multiple
independent receiver channels [7]. The pMRI reconstruction methods are classified into
three types such as image domain-based methods SENSE with its variants [8] [9], k-space
based methods SMASH [10] and GRAPPA [11], and combinations of the previous two kinds
of ways, such as SPACE-RIP [12] and SPIRIT [13]. In wide clinical application, the pMRI still
has modest acceleration rates.

In compressed sensing magnetic resonance imaging (CS-MRI) [14,15] , the acceleration
rate is proportional to the sampling ratio. CS-MRI attempts to get faster reconstruction with
under-sampled k-space data at a lower rate than the one set by the classical Nyquist-
Shannon sampling theorem. In CS-MRI, the image is sparsified by a certain sparsifying
transform like Fourier transform (FT), wavelet, total variation (TV), and low-rank[16] before
the image is reconstructed. Currently, the two data-driven CS methods have been improved
the CS-MRI performance [17] such as dictionary learning and transform learning. Although
these methods have achieved several critical drawbacks still slow down the clinical practice
of CS-MRI. Because the major issues are time-consuming iteration and also high
computation cost. The regular process cannot guarantee constantly advanced performance
for all scanning protocols and patients because of the need of precise preceding information.

3. Existing Method:

According to data processing and specific pipeline, the fast MRl methods can be classified
into five groups based on Deep Learning. The main gathering is post-preparing calculations
that utilization the inverse Fourier Transform (IFT) to get an underlying picture as the
previously contribution to the organization. In this gathering, the organization model
demonstrations the job of a picture to-picture planning capacity. The soonest strategy [18]
presents a generative ill-disposed organization (GAN) into post-handling based quick MRI
reproduction. DAGAN [19] adds an information consistency layer to guarantee the focuses
on the reasonable information complex. DAGAN-Cyclic misfortune [20] is utilized as a more
profound generator and discriminator network with cyclic information consistency misfortune
to additional improve imaging quality. This sort of technique is the standard of current DL-
based models, as it is helpful to embed into the current work process of business scanners.
The second step denotes the below average straightforwardly manages the under-sampled
k-space information utilizing a neural organization, and from that point onward, IFT is applied
to get the eventual outcomes [21]. Since any relics presented by the organization may
spread to the entire reproduced picture, this sort of technique has not yet been generally
contemplated. The third Step such as the emphasis unrolling techniques [22]. In particular, in
[23], the information consistency layer was inserted into the unrolling cycle organization, and
a similar gathering improved the previous organization by presenting enlarged convolution
and stochastic design [24].

Distinctive iterative mathematical solvers are treated as different intermittent organizations in
these techniques, and the learned regularization terms compel the picture regarding each
halfway remade result. The fourth step incorporates strategies that straightforwardly take in
the picture from the under-sampled k-space information [25]. Completely associated layers
are typically required for this sort of model, and the organization scale is by and large
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gigantic. All the referenced techniques acted in a solitary area have not completely
investigated the idle connection between k-space and the spatial area. The last step has
acquired a lot of consideration as of late. This technique endeavors to investigate the data in
both the k-space and the spatial area [26]. It as a rule receives two fell organizations
performing on k-space and spatial-area information, with IFT utilized to fabricate the scaffold
between the two organizations.

Different iterative numerical solvers are treated as various recurrent networks in these
methods, and the learned regularization terms constrain the image in terms of each
intermediate reconstructed result. Fig. 1(d) includes techniques that directly learn the image
from the under-sampled k-space data. Fully connected layers are usually needed for this
kind of model, and the network scale is generally massive. All the mentioned methods
performed in a single domain have not fully explored the latent relationship between k-space
and the spatial domain. The last step has gained much attention very recently. This method
attempts to explore the information in both the k-space and the spatial domain. It usually
adopts two cascaded networks performing on k-space and spatial-domain data, with IFT
employed to build the bridge between the two networks.

Currently, state-of-the-art performance is achieved using such dual-domain based methods.
However, existing dual-domain methods [27] executes the k-space and spatial-domain data
sequentially, which implicitly adds a certain priority priori into the reconstruction and may
ignore the internal interplay between both domains. In this paper, the intrinsic relation
between the k-space and spatial domains be noticed, a novel MRI Dual-domain
Reconstruction Network (MD-DLLBPRNet) is proposed to accelerate magnetic resonance
imaging. Unlike current methods, the proposed MD-DLLBPRNet contains two parallel and
interactive branches that simultaneously operate on k-space with Local Binary Pattern
descriptor and spatial-domain data. Data consistency layers are included to improve
performance further. In the end, dual-domain fusion layers combine the results from the two
branches.

4. Proposed MD-DLLBPRNET Architecture

In this proposed architecture [Fig.1], let's take the input data from fully and under-sampled
image. However, the fast Fourier transform apply on the fully image to get a fully k-space
image. Next the mask of that image multiplies with a temporary image to get an under-
sampled k-space image. Lets apply the inverse fast Fourier transform into the insensitive
LBP image portion which has feature extractor parameter a, (less than 128) for getting a
normalized under-sampled image. And also the sensitive LBP image portion which has
feature extractor parameter a, (greater than 128) preserve the structure itself. Finally the
under-sampled image obtain for spatial and frequency domain. Let's take these resultant
under-sampled images as input data for the proposed MD-USLBPRNET architecture to
enhance its image quality.

4.1 Formation of LBP Image

The traditional LBP operator [28] works on image patches of size 3 X 3, 5 X 5, etc. The
neighboring pixel intensity is compared to that of the central pixel within the patch
sequentially for forming the LBP descriptor. If the central pixel's higher intensity values are
compared to the neighboring pixel, the value 1 is assigned or otherwise 0. Finally, these bit
string is converted to a decimal number (using base 2) as the feature value assigned to the
central pixel. These cumulative feature values characterize the local texture in the image.
The LBP for the center pixel (X. , Y¢) within a patch can be represented as
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LBP (Xc, Yo) = Sno " " S(in, i) - 2" (1)

Where i, denotes the intensity of the nth neighboring pixel, i denotes the intensity of the
central pixel, L is the length of the sequence, and s () =1ifi,>i.and s (-) = 0 otherwise.
For example, a N x N neighborhood consists of N? -1 neighboring pixels and therefore
results in an N? - 1 long bit string. The different parameters and configurations of the LBP
formulation can result in different feature descriptors. Thus, the texture image is found using
the LBP descriptor adaptive parameter. Let us reformulate the LBP encoding more efficiently
using filters. The traditional implementations of encoding LBP features use a 3 x 3 window to
scan through the entire image in an overlapping fashion. At each 3 x 3 patch, the encoding
involves (1) compute the difference between the pivot and the neighboring pixels (or pairs of
pixels more generally), (2) a non-linear thresholding operation mapping the pixel differences
to binary values, and (3) pooling the binary values through a weighted sum. Each filter is a 2-
sparse difference filter. The 8 resulting bit maps after binarization are also found. Standard
formulations of LBP are simply a weighted sum of all the bit maps using a predefined weight
vectorv =[27,2°%, 2% 2%, 23 22 2% 2°].

Therefore, standard LBP feature extraction can be reformulated as 'y = ¥i-; ® o(b; * X)-v; .
Where, x € R is the original image’s vectorized version.

bi's are the sparse filters.

> be the non-linear binarization operator.

y € RY be the resulting LBP image.

By appropriately changing the linear weights v, that can vary the base and the encoding
ordering. Similarly, changing the non-zero {+1 and -1} support in the filters allows us to
change the pivot. So the obtained scaling parameter a, or o, represents as o based on
texture image value either greater or less than a predefined threshold.

Gray Image Texture Image

Let y; € C™" be the fully sampled k-space data, and y € C™" be the corresponding under-
sampled data.
Where, m and n are the image size. The under-sampled data and fully sampled data are
reconstructed from zero-filling solution. The under-sampled data are represented as X, Oy, X
a, € C™". The solution of image reconstruction can be formulated as:

=texcd Frormm 2rca-Til 3 =l

The sonl) nofi = gerd) T (X, Okt X Oy )€ = f, (X, O+ X 0y ) + € (2)

= Npp ! Ay S Nop !

Where, T signifies the 2D FT operator. Uy, € R ™" represents the binary under-sampling
mask with LBP. f, = Up, O T denotes the under-sampling Fourier encoding operator. © is
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element-wise multiplication. € is acquisition noise. The first relationship between spatial and
frequency domain data indicates the accelerated MRI algorithm that focuses on this article.
The ill-posed problem of Eqn.2 is solved by the classic basic model CS-MRI. The associated
optimization problem can be expressed as the following variational minimization:

as th Follc imng
+

min 1/ 2 If, (x, o+ Xs 0y ) —
X rullz® AR x) (3)

Where f, (X, o+ X a, ) — yy represents data fidelity. This solution signifies the data
consistency between the reconstruction result and the proposed under-sampled k-space
data. R(x) denotes the regularization term that constrains the least-squares data fidelity
term, and A >= 0 is a balancing parameter that controls the tradeoff between that.
Particularly, R(x) is usually an I norm or [; norm in a certain sparsifying transform field such
as FT, wavelet, total variation (TV), and lowrank.
DL-based CS-MRI [29] makes the reconstructed image and the corresponding fully sampled
image by optimizing the parameter set 6 of the neural network. This method can be
represented as:
min 172 |[fun(2]0)= (Xa 06t X Oy )|+
Al (Xu Ot X¢ 0y ) — J’u”22

X 4
Where f,, is the network model with parameter set 6, z is the input of the model, either y, or
Xy, and f,, (z]0) is the output. Hence the resultant Ibpunder-sampled image is forwarded to
the extension of network architecture namely as Multi-domain Under-sampled Local Binary
Pattern Reconstruction network for reconstructing the image.

Figl. Proposed MD-DLLBPRNET Method
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4.2.1 Extension MD-USLBPRNET Architecture

In this segment, the proposed MD-USLBPRNET Network Architecture shows in Fig. 2(a). It
comprises of five essential squares, and all squares share a similar design with the
exception of the last square. The organization takes both under-sampled k-space
information y and zero-filling LBP reconstruction x, as input and calculates the full-sampling
reconstruction x. The proposed network contains two branches to deal with the k-space and
spatial information independently. The essential handling block’s overall structure delineate
in Fig. 2(b) and 2(c). The block structure of the proposed technique is the principle
commitment of this paper. The initial four block share a similar construction, which shows in
Fig. 2(b). This block contains the accompanying segments: CNN, FT, IFT, k-space
information consistency (KDC), spatial information consistency (SDC), k-space combination
(KF), and spatial combination (SF) layers. Each block acknowledges two sources of info, k-
space, and spatial information, and contains two CNN modules which are utilized to
separate and recuperate the two domain’s feature.

The subtleties of the CNN show in Fig. 2.(d). It comprises of 5 convolutional layers with 32,
32, 32, 32, and 2 channels, individually. Leftover association [30] quickens the preparation
system and save more detail. Since MR information are mind boggling esteemed, two
channels address the genuine and fanciful parts, separately. The first convolutional layer
input contains two channels. The last convolutional layer just contains two filters. All kernels
are set to 3 x 3 and follow by a LeakyReLU unit with a negative incline 1le —2. The step sets
to 1, and we keep the components of the information and yield steady by setting the
estimation of padding=1. The two CNN modules’ yields are taken care of into two diverse
information consistency modules, for example, KDC and SDC. These CNN module force
information imperatives on the two spaces’ middle of the road results. From that point
forward, FT and IFT are applied to the spatial and k-space information individually to get the
outcomes from various areas. At that point, KDC and FT's yields are taken care of into the
KF module, and the yields of SDC and IFT are taken care of into the SF module. At last, the
KF and SF modules yield gives the middle of the road remade results. The last block,
appeared in Fig. 2.(c), is like the past ones in Fig. 2.(b), with the lone contrast happening
after the information consistency layers. Since this block fares the last recreated pictures
rather than the double area results, the FT and KF modules are taken out, and the end-
product is acquired after spatial combination. For effortlessness, mean square error (MSE) is
embraced as the proposed organization’'s misfortune capacity, and it is characterized as:

Fter spatial combinat
so=ed organization’s’ (5)

o= 1/ N S|l — xN 1127
i=1

Where x’ is the evaluated MR image of the network, and N denotes the total number of
samples.

4.2.1.1Data Consistency Module

A data consistency layer imposes the An information consistency layer force the limitations
from the first estimations. The possibility of consistency consolidates the data fidelity into the
neural network. Consequently the recipe for KDC as indicated by the shut structure
arrangement of (3), as follows:

Srec () =Y'() if ] €Q
(y+yy@)/(+y) ifjeQ (6)
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Where, j represents the index of the vectorized representation of k-space data. y’ denotes
the evaluated k-space data from the previous CNN module. y signifies the under-sampled k-
space data, Q is the sampling index set, and y is a hyperparameter. In (6) if the k-space
coefficients are not sampled (j € 2) the value predicted by the CNN module is used for the
sampled entries, this is a linear weighted summation between the evaluated and original
sampled data by CNN. SDC plays a similar role to KDC but performs in spatial domain. It
can be implemented easily by adding FT and IFT before and after SDC. The forward and

backward passes of KDC and SDC can be easily captured.

Fig. 2 Proposed MD-USLBPRNET Architecture
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4.2.1.2Data Fusion Module

As per the k-space method, the trial of this technique has preferred execution over k-space
area organization; a few subtleties must be recuperated by k-space organization. In light of
this perception, the proposed MD-USLBPRNet attempts to exploit the benefits in double
areas and an equal intelligent design with two branches is utilized. One of the principle
commitments in this paper is that the information from the two spaces are not independent,
however intelligent by means of the combination modules. In Fig.2, two kinds of combination
modules, KF and SF, are utilized. The formulae of two modules are same and the distinction
lies in the pre-owned information structures. KF and SF modules separately manage the k-
space and spatial information. KF module takes the yields of past KDC and FT as data
sources and SF module takes the yields of past SDC and IFT as information sources. The
calculations of KF and SF are gotten together with a straight blend between two information
sources and can be defined as:

A= (111 +y)) A+ (P (1+ W) A2 (7)

Where A is the output of the fusion module, 4, and A, are the inputs, p is the balancing
factor.

5. Experimental Result:

The Tilw MRI DICOM image www.cancerimagearchive.net utilizes for training and testing
set of our proposed model as Numpy image. In total, 5000 slices from 25 images are
randomly selected to form the training set, and the testing set consists of 2000 slices from 10
other images. The size of the acquisition matrix is 256 x 256. Raw MR data are complex
valued, but CNNs can only handle real numbers. Let's take the real and imaginary data as
network input. The Adam optimizer utilize for optimizing this network, and its parameters are
setas o = 5e-5, 31 =0.9, f2 = 0.999.

The initial learning rate be 5e—-5. The parametersy in (8) and p in (9) are trained as network
parameters. Here, three types of mask are generated. For radial sampling mask, 10%, 20%,
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30%, 40%, 50%, 60%, 70%, 80%, 90% sampling rates are tested for under-sampling
strategies. And only 10%, 20%, 30% sampling rates are tested for the other two types.

The performance of the existing and the proposed MD- USLBPRNET method evaluate by

(@) Gaussian
random mask

(b) Cartesian
sampling mask

(© radial
sampling mask

the qualitative metric such as SSIM and PSNR.
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Tablel shows that the performance of the existing and proposed method for
9 images with the PSNR and SSIM values for 20% radial sampling rates.
Method Existing method Proposed

MD-USLBPRNET
Image id PSNR SSIM PSNR SSIM
1 31.40188 0.856319 32.92245 0.915825
2 35.73466 0.936572 30.93831 0.851122
3 30.48668 0.75989 36.07648 0.937305
4 34.56463 0.932973 30.5495 0.786049
5 31.75484 0.894262 34.16445 0.927882
6 28.95324 0.742213 30.86582 0.78054
7 29.8756 0.821782 34.13046 0.928236
8 31.8245 0.849145 32.80678 0.87528
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Table2 shows that the performance of the existing and proposed method for
9 images with the PSNR and SSIM values for 20% Gaussian random sampling
rates.
I Proposed
Method Existing method MD-pUSLBPRNET
Image id PSNR SSIM PSNR SSIM
1 29.57432 0.746466 27.47777 0.732222
2 30.78833 0.735555 28.32473 0.692377
3 28.57744 0.725525 25.47747 0.686665
4 32.45774 0.858588 30.59468 0.756667
5 28.57336 0.827477 23.58675 0.799836
6 27.66446 0.635456 25.47746 0.698387
7 24.84757 0.734666 21.47673 0.723646
8 28.47667 0.834777 24.43577 0.746466

Table3 shows that the performance of the existing and proposed method for 9

images with the PSNR and SSIM values for 20% Cartesian sampling rates.
. Proposed

Method Existing method MD-pUSLBPRNET

Image id PSNR SSIM PSNR SSIM

1 27.48748 0.723212 25.48388 0.634788

2 28.47757 0.697877 27.45778 0.621111

3 28.57744 0.724877 24.32746 0.654578

4 30.37643 0.818988 28.87788 0.776778

5 28.35626 0.824457 23.48584 0.803748

6 26.54777 0.673427 24.87883 0.656364

7 22.45747 0.759898 21.83743 0.725849

8 24.88878 0.736566 24.65747 0.708494
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From the tables 1,2 and 3 the proposed MD-USLBPRNET method shows the values of
PSNR and SSIM. These are better than the existing method for 20% radial sampling rates.
And also this proposed architecture preserves the structural similarity.

Fig 3 shows that the result of the reconstruction
images for that the LBP under-sampling image.

Original Image LBP under- | Reconstructed
sampled image image

6. Conclusion

In this paper, our proposed MD-DLLBPRNET deals with the k-space and spatial data
simultaneously. The proposed under-sampled data from k-space with local binary pattern
and spatial domain are tested in this architecture. The experimental results demonstrate our
proposed MD-DLLBPRNET can effectively preserve more detail at different sampling rates
(10%, 20%, and 30%) with different sampling strategies (radial, Cartesian, and Gaussian
random sampling). The extension of proposed MD-USLBPRNET architecture reconstructs
and fusion the proposed under-sampled data with 20% radial sampling rates form spatial
and k-space domain. This result shows the performance better than the existing method with
the qualitative metric such as PSNR and SSIM.
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