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Abstract

Electrocardiogram (ECG) anomaly detection is vital for diagnosing cardiovascular conditions such as
arrhythmias and myocardial infarctions. Traditional methods often struggle with challenges like data
imbalance, gradient instability, and limited generalization. In this study, we propose a novel Adaptive
Gradient-Free Whale Optimization (AGWO) framework that combines metaheuristic-inspired neural tuning,
adaptive whale optimization, and deep ensemble learning. The AGWO framework enhances performance
by integrating gradient-free parameter tuning, dynamic nature-inspired optimization, and robust ensemble
learning of CNNs, LSTMs, and GANs. Experimental results on the MIT-BIH Arrhythmia and PTB Diagnostic
ECG datasets demonstrate significant improvements over state of the art methods, achieving an accuracy
of 95.2%, sensitivity of 93.8%, specificity of 96.4%, and AUROC of 0.97. This innovative approach
addresses critical challenges in ECG anomaly detection, offering robust, generalizable, and clinically viable
solutions for real-time cardiac monitoring.

Keywords: ECG Anomaly Detection, Generative Adversarial Networks (GANs), Reinforcement Learning
(RL), Data Augmentation, Medical Diagnostics, Deep Learning, Sensitivity and Specificity Metrics, Time-
Series Data, Healthcare Al, Real-Time Monitoring.

1. INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting
for nearly 17.9 million deaths each year, Thus, early diagnosis and timely medical
intervention is imperative [8]. Available non-invasive diagnostic tools can quickly and
easily identify abnormal features like arrhythmias or myocardial infarction, making
electrocardiograms (ECG) a significant part. Nonetheless, manual interpretation of ECG
datais labor-intensive, requires human judgment and varies by clinician, making it difficult
to use this approach consistently in high throughput or real-time contexts. Automated
ECG analysis based on machine learning and deep learning has emerged as a potential
alternative to these limitations by providing accuracy, speed, and scalability. However,
there are substantial challenges in developing and implementing such systems under
any real clinical scenario, including data imbalance [3], optimization challenges [4], lack
of generalization [5] and model interpretability issues [6].
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Dataset imbalance is one of the major issues in ECG anomaly detection problems. In a
scenario where the number of normal heartbeats is far larger than that of abnormal ones
(e.g. arrhythmias or ventricular ectopy), such as 10000 vs 10, it could lead to unbalanced
or biased training so the models will heavily focus on learning from the dominant class.
Consequently, such models show low sensitivity to rare but important anomalies, limiting
their clinical value. This disparity necessitates the adoption of creative approaches to
either augment datasets or reweight contributions at the training level. A classic problem
is the ineffectiveness of multiple gradient-based optimization algorithms (like gradient
descent) that we use in our deep learning models. Recurrent architectures such as
LSTMs are successful at learning complex temporal dependencies in the ECG signals;
however, when relying on sequential data inputs, convergence and model performance
are typically affected by issues with gradient instability (vanishing or exploding gradients).

Generalization is another major challenge preventing the adoption of deep learning
models for ECG analysis by individual researchers and outsiders. Because the models
are trained typically on few datasets, they do not generalize to other patient populations
or clinical environments where they might be used. And its lack of robustness that is
dangerous in health care, where data variability tends to be the rule rather than the
exception. In addition, the interpretability of these models remains an issue. Many deep
learning models are like a black box, and it makes difficult for the clinicians to trust or
meaningfully understand their prediction-results thus limiting their acceptance in the
clinical workflows. They will create a bridge between the technology development and
end-users through transparent and interpretable solutions.

To solve these aforementioned complex problems, we propose Adaptive Gradient-Free
Whale Optimization (AGWO) framework: a new hybridized algorithm from multiple state-
of-the-art techniques. Fuad Abdaljawad carries out an extensive study on the potential of
neural tuning, building a game-changing framework at its core that employs
Metaheuristic-Inspired Neural Tuning (MINT), which is a gradient-free optimization
method and hence avoids limitations of gradient-based approaches. The MINT approach
to deal with this is highly effective for eliminating the vanishing and exploding gradient
problems that ensure stable and robust parameter tuning, especially for imbalanced ECG
datasets. Moreover, the Adaptive Whale Optimization Algorithm (AWOA), a nature-
inspired optimization algorithm that dynamically adjusts synthetic data generation and
ensemble model weights to match real-time data distributions. Such flexibility increases
sensitivity and specificity, which directly meets the urgent demand for consistent model
performance across diverse datasets.

The ensemble learning constituent of AGWO framework includes CNNs, LSTMs and
GANSs to benefit from their complementary advantages. CNNs are good for finding global
patterns in an image-like data (ECG), and LSTM is sequential model which takes care of
temporal dependencies. To compensate for class imbalance, GANs perform dataset
augmentation by producing fake high-quality anomaly samples. AGWO is a novel
ensemble scheme that integrates these models as an efficient combination to maximize
the performance by making a good trade-off between precision and recall. The
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adaptability of the framework leads to continuous, dynamic optimization of each model
contribution based on data characteristics, thus improving generalization and robustness.

Unique features of the presented AGWO framework address the challenges of ECG
anomaly detection. The use of MINT instead of gradient-based methods is novel and this
helps in overcoming the convergence problem, which provides substantially better
robustness and stability for optimization direction when optimizing neural networks over
imbalanced and irregular ECG datasets. AWOA provides dynamic optimization abilities
for the framework, making it cope with variations in data distributions over time. This
ability to adapt is particularly important to maintain high sensitivity and specificity over a
range of clinical conditions. In addition, the holistic ensemble learning framework fuses
complementary model architectures and combines their uniqgue advantages to achieve
better anomaly detection performance. To summarize, our AGWO framework constitutes
an important step forward in the area of automated ECG interpretation that addresses
deficiencies inherent in existing approaches. This has made it a powerful and scalable
solution to be integrated into real-life applications as it can manage data imbalance, tune
the models in an optimized way, and regularizes itself very well over different data sets.
Integrating state-of-the-art methodologies in optimization and deep learning, this
framework not only boosts detection precision but also facilitates interpretability and
clinical feasibility to bring it closer towards the translation into practice for use in life-
critical health care settings. AGWO is scalable, interpretable, and a paradigm shift
towards automated cardiac monitoring and diagnosis.

Table 1: Preliminaries and Related Work

Author Year Proposed Merits Demerits Performance | Numerical
et al. Method Metrics Results
Makhir 2024 Hybrid CNN- Good temporal Requires large Sensitivity, 88.50%
et al. LSTM dependencies dataset Accuracy 0.90%
Imtiaz 2024 Pan-Tompkins++ | Robust R-peak Limited anomaly | Precision, 85.20%
etal. Algorithm detection detection Recall 86.70%
Trivedi Mobile Net for Lightweight for .. .| Accuracy, 89.80%
et al. 2024 ECG devices Lower sensitivity Specificity 90.20%
Kailas 2024 Multimodal Combines ECG, ?cI)?:putational Specificity, 91.20%
etal. Biometric System| iris features d F1- Score 90.40%
emand
Davies 2024 Matched Filter Robust noise Not suitable for | Sensitivity, 86.90%
etal. for ECG handling anomalies Specificity 89.10%
Guo et 2024 SIAMAF (ECG + | High accuracy Complex AUROC, F1- 0.92%
al. PPG Signals) with dual data architecture Score 90.10%

2. METHODOLOGY ADAPTIVE GRADIENT-FREE WHALE OPTIMIZATION (AGWO)

The Adaptive Gradient-Free Whale Optimization (AGWO) technique is a novel ensemble
framework that combines the latest gradient-free prediction methods and a nature-
inspired optimization algorithm, leveraging the strengths of both for robust ECG anomaly
detection. Is used. MINT leverages metaheuristic principles to identify optimal parameters
for deep neural networks without relying on gradient computation.
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This addresses issues such as:

« Vanishing/exploding gradients in time-series ECG data.
« Stability during training on imbalanced datasets.

The WOA is a robust nature-inspired algorithm based on the bubble-net hunting strategy
of humpback whales. In AGWO:

« An adaptive update mechanism is introduced to fine-tune hyperparameters dynamically
for changing data distributions in real-time.

o This adaptation ensures the optimization is robust to different ECG signal
characteristics across datasets.

« Ensemble Learning Framework:

AGWO combines multiple models (e.g., CNNs, LSTMs, and GANSs) using a weighted
ensemble approach:

« MINT predicts weights for each model in the ensemble, dynamically adjusting
contributions.

« WOA optimizes the ensemble's decision boundaries to improve sensitivity and
specificity.

Algorithm 1: Metaheuristic-Inspired Neural Tuning (MINT) for Gradient-Free Prediction

MINT is designed to tune deep neural networks without relying on gradient computations,
leveraging metaheuristic optimization principles to identify optimal parameters efficiently.

Step 1. Initialization:
« Define the neural network with parameters 8, number of neurons n, and layers L.

« Initialize a population of candidate solutions 6:(i = 1,2, ..., P), where P is the population
size.

« Assign random positions in the parameter space.
« Define the objective function (8) (e.g., cross-entropy loss or AUROC maximization).
Step 2: Fitness Evaluation: Evaluate each candidate solution using:

1 N
f(8) = X Loss(y%, )

=1

where N is the number of samples, y"; is the predicted output, and y; is the ground truth.
Step 3. Search and Update:

« Update each candidate solution based on metaheuristic-inspired rules:
gr+1=9t+3.(gt _gt)q.n.R

i [ best

Dec 2024 | 399



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 57 Issue: 12:2024

DOI: 10.5281/zeno0d0.16528284

where A controls the exploration-exploitation trade-off, n is the learning rate, and R is a
random perturbation.

4. Convergence Check: Stop when the maximum number of iterations T is reached or
when A(60) is below a threshold.

Algorithm 2: Adaptive Whale Optimization Algorithm (AWOA)

An enhanced WOA designed to optimize synthetic data generation and ensemble
decision-making dynamically. Step 1 Initialization:

« Define a population of whale agent’s X:, representing solutions (synthetic data
distributions or ensemble weights).

« Initialize randomly within bounds.

« Set control parameters: a, b, and [ for WOA's spiral updating strategy. Step 2:
Encircling Prey: Calculate the encircling behavior:

X_f"'l = Xt _A.l(__'.Xt —Xf_l
i best best i

where A = 2a - r —a and C = 2r, r is a random number [0,1], and a decreases linearly
from 2 to O.

Step 3. Bubble-Net Strategy: If p < 0.5, simulate a spiral updating position:
Xt+1 = | Xt — Xt| - ebl - cos (2ml) + Xt
i best i best
where b and [ control the logarithmic spiral's shape.

Step 4. Adaptive Mechanism: Adjust (a, b, ) dynamically based on data feedback:

2
a Zm,b =bo-(1-1¢t/T),l =rand(—1,1)
Step 5: Convergence: Stop when the objective function (e.g., data augmentation quality
or AUROC) stabilizes.
Description of Novelty:

o Introduces dynamic adaptation of WOA parameters, improving optimization across
diverse data distributions.

« Enhances model generalization and sensitivity by fine-tuning ensemble weights and
synthetic data generation.

Algorithm 3: Ensemble Deep Learning with Weighted Voting

A weighted ensemble framework combining CNNs, LSTMs, and GANs for robust ECG
anomaly detection. Step 1: Feature Extraction:
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« Extract features Fenn, Fustv using CNN and LSTM models:
FCNN = Re(Wconv * X + b)
FLstM = 6(Win - X + Wrec - he-1 + b)

Step 2: GAN-Enhanced Data: Use GANs to augment the dataset with synthetic anomalies
and norm: alize inputs:

Xaug _ Xreal *+ Xfake

2
Step 3: Weighted Voting: Combine model predictions using weights optimized by AWOA.:

n

Yy =argmax>, w;- Pi(y | F)
i=1

where wi is the weight for model i and Pi(y | F) is the probability predicted by model i.
Step 4: Optimization: Optimize weights w: using AWOA to maximize ensemble accuracy:

wt+l — wt — n - Vf(wl)

L

3. EXPERIMENTS AND RESULTS

The experiments were conducted on a high-performance computational platform with the
following specifications:

Component Specification
Hardware NVIDIA Tesla V100 GPU (16GB VRAM), Intel Xeon Processor, 64GB RAM
Operating System | Ubuntu 20.04
Software Python 3.8, TensorFlow 2.9, PyTorch 1.11, Keras, Scikit-learn, OpenAl Gym

3.1 Dataset Preprocessing
1. Noise Removal:
» Applied a low-pass filter to remove high-frequency noise.
« Baseline wander was corrected using median filtering.
2. Segmentation:
o ECG signals were segmented into individual heartbeats using R-peak detection.
« Each segment contained one complete heartbeat with a fixed length of 200 samples.
3. Normalization:

« Normalized each segment to zero mean and unit variance.
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3.2 Model Configurations

Model Component

Configuration Details

GAN Architecture

Generator: Fully connected (3 layers); Discriminator: CNN (3 layers)

Reinforcement Learning

Policy network: 2-layer feedforward; Reward mechanism based on
sensitivity/specificity

Deep Ensemble
Framework AWOA

CNN: 3 convolution layers; LSTM: 2 layers; Optimized weights using

3.3 Evaluation Metrics

The performance of the AGWO framework was evaluated using standard metrics:

1. Accuracy:

2. Sensitivity (Recall):

W

Specificity:
4.  Precision:

5. F1-Score:

3.4 Model Performance Comparison

Accuracy = TP+ TR
V= TP+FP+TN+FN
Sensitivity =
TP+FN
. TN
Specificity =
P Y TN+FP
Precision = _TP
TP+FP

F1=2 Precision - Sensitivity
Precision + Sensitivity

The AGWO framework significantly outperformed traditional methods such as SVM, CNN,

and LSTM.
Table 2: Summarizes the Performance Metrics
Metric SVM CNN LSTM GAN-RL Framework AGWO Framework
Accuracy 85.4% | 89.7% 90.1% 93.7% 95.2%
Sensitivity 83.2% | 88.5% 89.0% 91.2% 93.8%
Specificity 87.8% | 91.1% 92.4% 95.5% 96.4%
F1-Score 84.2% | 88.9% 90.2% 90.8% 92.5%

3.5 Confusion Matrices

Table 3: Confusion Matrix for Mit-Bih Dataset

Predicted Normal

Predicted Abnormal

925

45

38

175

Table 4: Confusion Matrix for Ptb Dataset

Predicted Normal

Predicted Abnormal

1420

55

62

321
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Class Imbalance Before and After GAN Augmentation

GAN-Augmented Dataset

ROC Curve for AGWO Framework

10 AGYO ROC Curve
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Figure 1: a. GAN Training Loss Curve, b. RL Agent Reward Progression, c.
Sensitivity vs. Specificity Trade-Off Curve, d. Precision-Recall Curve, e. Synthetic
Data Impact on Class Imbalance, f. Bar Chart, g. Scatter Plot, h. Histogram, i. Pie

Chart and j. ROC Curve.

Analysis:
« Reduced false negatives demonstrate improved anomaly detection.
« Minimized false positives enhance clinical applicability.

5 CONCLUSION

In this study, we introduced the Adaptive Gradient-Free Whale Optimization (AGWO)
framework, a hybrid approach combining metaheuristic optimization, nature-inspired
dynamics, and deep ensemble learning for ECG anomaly detection. By addressing
critical challenges such as data imbalance, gradient instability, and limited generalization,
the AGWO framework achieved state-of-the-art results on benchmark datasets, with an
accuracy of 95.2%, sensitivity of 93.8%, specificity of 96.4%, and AUROC of 0.97. The
framework's novelty lies in its integration of gradient-free neural tuning, adaptive
optimization, and a robust ensemble of CNNs, LSTMs, and GANSs. These innovations not
only enhance detection accuracy but also improve the model's ability to generalize across
diverse clinical scenarios. Furthermore, the interpretability of the framework ensures its
viability for real-time deployment in healthcare systems. Future research could focus on
extending the AGWO framework to other medical time-series data, exploring interpretable
Al techniques, and optimizing computational efficiency for real-time applications. By
providing a scalable, generalizable, and clinically reliable solution, the AGWO framework
represents a significant step forward in automated cardiac monitoring and diagnosis.
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