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Abstract 

Artificial intelligence (AI) is rapidly entering prehospital emergency care, where time-critical triage, transport, 
and early treatment decisions determine outcomes. We systematically reviewed original studies evaluating 
AI tools used before hospital arrival, focusing on prediction/triage, diagnostic support, and transport 
optimization, and synthesized insights from contemporary reviews to contextualize clinical adoption. Seven 
original studies met inclusion for quantitative results synthesis: an ensemble waveform-based triage model 
predicting lifesaving interventions in trauma; an AI-enhanced regional platform guiding hospital selection 
and first aid; two studies on prehospital ST-elevation myocardial infarction (STEMI) detection (mini-12-lead 
and smartphone capture); a randomized trial of AI dispatcher alerts for out-of-hospital cardiac arrest; a 
gradient-boosted model for dyspnea serious adverse events; and a deep-learning severity algorithm 
predicting need for critical care in EMS. Across studies, AI frequently achieved AUCs around or above 0.80, 
improved sensitivity or operational timeliness (faster ECG interpretation/feedback), and in specific 
subgroups reduced adverse outcomes (lower mortality when AI guided optimal hospital transfer). However, 
not all trials showed clinical recognition gains despite superior model sensitivity, underscoring 
implementation challenges. Current reviews emphasize the promise of AI alongside the need for rigorous 
prospective validation, workflow integration, transparency, and equity. AI can augment prehospital decision-
making, but robust clinical pathways and governance remain essential.  

Keywords: Prehospital Emergency Care; Artificial Intelligence; Triage; Transport; STEMI; Dispatcher; 
Dyspnea; Critical Care Prediction. 
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INTRODUCTION  

AI applications in prehospital care have accelerated, spanning triage/prognostication, 
dispatch optimization, diagnostic support (ECG), and multimodal monitoring. Recent 
scoping and systematic reviews identify over one hundred studies with AI often 
outperforming traditional tools or clinicians in predictive tasks, particularly 
triage/prognosis and cardiac arrest detection, while highlighting limited 
external/prospective validation and the need for explainability and workflow fit (Chee et 
al. 2023; Almulihi et al. 2024; El Arab et al. 2025). A 2025 systematic literature review 
similarly charts rapid growth since 2018 across dispatch, on-scene care, and transport 
decision-support, noting rising interest in large language models (LLMs) and multimodal 
data pipelines but persistent barriers in data linkage, privacy, and generalizability (Elfahim 
et al. 2025). 

In low- and middle-income countries (LMICs), AI evaluations remain sparse, with most 
implementations in dispatch forecasting, classification, and disease prediction; deep 
learning predominates, and algorithms generally outperform conventional comparators, 
yet local sociotechnical adaptation and dataset completeness are crucial (Mallon et al. 
2025). Horizon scanning from health-technology assessors echoes that prehospital AI is 
early in implementation, with promising pilots in call-taking (OHCA detection) and triage 
during surges, but more real-world trials are needed before broad deployment (Clark & 
Severn 2023). 

Across reviews, common themes emerge: (1) AI can enhance prehospital triage accuracy 
and resource allocation; (2) ECG-based AI for STEMI and audio/NLP for dispatcher 
support are leading use cases; (3) external validation, calibration reporting, and 
transparent reporting  (TRIPOD-AI/CONSORT-AI) remain inconsistent; and (4) 
integration into EMS workflows, training, and governance (bias, privacy, accountability) 
are preconditions for impact (Chee et al. 2023; Almulihi et al. 2024; El Arab et al. 2025; 
Elfahim et al. 2025; Clark & Severn 2023). 

Against this backdrop, we synthesize seven original prehospital studies spanning trauma 
LSI prediction, regional AI transport orchestration, STEMI detection, dispatcher support 
for OHCA, dyspnea risk, and critical-care prediction. We aim to present performance, 
operational effects, and implementation signals, and to discuss implications using insights 
from contemporary reviews. Our focus is on the prehospital window where seconds 
matter and AI may translate most directly into lives saved through better triage, faster 
diagnosis, and optimized transport. 
 
METHODS 

We conducted this systematic review following the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The aim was to evaluate 
studies that investigated the use of artificial intelligence in prehospital emergency care, 
including applications for transport decisions, diagnostic support, and treatment 
optimization. 
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Eligibility criteria 

We included original research articles that reported on artificial intelligence or machine 
learning models applied in prehospital settings, such as dispatch centers, ambulance 
services, or on-scene emergency care.  

Studies were eligible if they evaluated performance outcomes, clinical impact, or 
operational efficiency. I excluded papers that focused solely on in-hospital applications, 
editorials, protocols, or articles without measurable outcomes. 

Information sources and search strategy 

We systematically gathered the relevant literature from peer-reviewed journals, covering 
studies published in the last decade. Searches were conducted in key databases 
including PubMed, Embase, Web of Science, and IEEE Xplore. To ensure 
comprehensiveness, I also screened the reference lists of identified studies. Only full-text 
articles in English were considered. 

Study selection 

Titles and abstracts were screened for relevance, followed by full-text review. Articles that 
clearly met the inclusion criteria were retained, while duplicates and unrelated reports 
were removed.  

The selection process was performed independently to minimize bias, and disagreements 
were resolved by re-evaluating the full text according to the predefined criteria. 

Data extraction 

From each included study, I extracted details on study design, setting, population, type of 
artificial intelligence model, input data (such as physiological signals, electrocardiograms, 
or dispatch records), comparators, and reported outcomes.  

Key performance measures such as sensitivity, specificity, area under the curve (AUC), 
predictive values, timeliness, and patient-centered outcomes were noted. 

Data synthesis 

Because of the diversity of study designs and outcomes, we synthesized the findings 
narratively rather than performing a meta-analysis. Two summary tables were developed 
to present study characteristics and key performance results.  

Where appropriate, we compared the findings with recognized clinical standards, existing 
triage tools, or expert performance. 

Reporting 

The methodology was designed and reported according to PRISMA standards to ensure 
transparency, reproducibility, and clarity. This process allowed me to provide a structured 
overview of the current evidence base regarding artificial intelligence in prehospital 
emergency care. 
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RESULTS  

Study characteristics 

Table 1 summarizes seven original studies spanning North America, Europe, and Asia, 
covering dispatch-center audio/NLP inference, physiologic waveforms, 12-lead ECGs 
(portable and camera-captured), and structured prehospital data. Tasks included 
predicting lifesaving interventions (LSI), need for critical care/ICU, severe adverse events 
in dyspnea, STEMI detection, and enhancing dispatcher recognition of OHCA. 
Comparators ranged from human experts and standard call protocols to established 
triage tools (RETTS-A, NEWS2, ESI, KTAS). (Weidman et al. 2025; Kim et al. 2025; Chen 
et al. 2022; Lee et al. 2024; Blomberg et al. 2021; Kauppi et al. 2025; Kang et al. 2020) 

Table 1: Included studies settings, tasks, inputs, comparators, and samples. 

Study (year) Setting & design AI task & inputs Comparator Sample/episodes 

Weidman et 
al. (2025) 

US critical-care 
air transport; 
retrospective 
cohort 

Predict LSI during care 
using ensemble ML on 
continuous physiologic 
waveforms (ECG, PPG, 
EtCO₂, BP) 

N/A (model 
metrics vs 
triage goals) 

2,809 patients; 
15,088 2-min 
epochs; 910 LSI 
epochs 

Kim et al. 
(2025) 

Korea; 
community, non-
randomized 2×16-
week periods in 2 
regions 

AI platform (CONNECT-
AI): first-aid guidance, 
critical-illness prediction, 
optimal hospital 
recommendation; 5G/IoT 
data + live video 

Conventional 
practice 
(control 
periods) 

14,853 
ambulance 
transports 

Chen et al. 
(2022) 

Taiwan; 
implementation 
study 

Real-time AI STEMI 
detection on prehospital 
mini-12-lead ECG; CNN-
LSTM; response time to 
EMTs 

Remote 
online 
physicians 

275 patients; 362 
ECGs (AI sites) + 
335 ECGs (non-
AI sites) 

Lee et al. 
(2024) 

Korea; diagnostic 
study 

Smartphone AI extracting 
STEMI biomarker from 
printed ECG images 

Consensus of 
5 EMS 
directors + 3 
interventional 
cardiologists 

53 patients (24 
STEMI) 

Blomberg et 
al. (2021) 

Denmark; double-
masked RCT at 
EMS dispatch 

Real-time ML alerts for 
suspected OHCA during 
112 calls 

Standard 
dispatcher 
protocol (no 
alert) 

169,049 calls 
screened; 5,242 
randomized 
alerts; 654 
confirmed OHCAs 

Kauppi et al. 
(2025) 

Sweden; 
retrospective 

Predict serious adverse 
events in dyspnea using 
gradient boosting vs 
RETTS-A/NEWS2 

RETTS-A, 
NEWS2 

6,354 EMS 
missions 
(dyspnea primary 
symptom) 

Kang et al. 
(2020) 

Korea; 
dev+external 
validation 

Deep-learning algorithm 
to predict need for critical 
care using age, sex, chief 
complaint, onset-to-
arrival, trauma, initial 
vitals 

ESI, KTAS, 
NEWS, 
MEWS 

Dev: 8,981,181 
ED visits; External 
EMS run-sheets: 
2,604 
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Using 2-minute epochs immediately preceding interventions, Weidman et al. reported 
AUC 0.810 (95% CI 0.782–0.842), specificity 0.960, NPV 0.953 for overall LSI prediction, 
with comparable or better performance for subcategories (airway, transfusion, 
vasopressor).  

Performance remained robust up to 15 minutes before intervention, indicating early 
decompensation signatures in waveforms (Weidman et al. 2025). This demonstrates 
prehospital feasibility of high-frequency physiologic AI beyond static vital signs. 

Kim et al. found mixed overall effects on transport delay outliers (>75th percentile): one 
region improved while the other worsened; however, prespecified subgroups benefited—
patients with fever/respiratory symptoms had significantly fewer delays (36.5%→30.1%, 
P=.01), and when “real-time acceptance” signals were used, outliers fell (27.5%→19.6%, 
P=.02). Importantly, among system-guided “optimal hospital” transfers, ED mortality was 
lower (1.54% vs 0.64%, P=.01) (Kim et al. 2025). This suggests AI-enabled 
bed/procedure awareness and hospital selection can be outcome-relevant in defined 
pathways. 

Two complementary studies evaluated field ECG AI. In Taiwan, AI feedback reached 
EMTs in 37.2 ± 11.3 s versus 113.2 ± 369.4 s for online physicians; model metrics were 
excellent (accuracy 0.992; sensitivity/recall 0.941; specificity 0.994; AUC 0.997), promptly 
identifying ten STEMI patients who underwent PPCI with median contact-to-door time 
18.5 min (IQR 16–20.8) (Chen et al. 2022).  

In Korea, the smartphone “qSTEMI” biomarker derived from printed ECGs achieved AUC 
0.815 (0.691–0.938), sensitivity 0.750, specificity 0.862 and was non-inferior to expert 
consensus (AUC 0.736) (Lee et al. 2024). Collectively, these show that both sensor-
native and image-based ECG AI can accelerate triage and meet expert-level accuracy in 
the field. 

In a double-masked RCT, AI alerts did not significantly increase dispatcher recognition 
among confirmed OHCA calls (93.1% vs 90.5%, P=.15), despite the AI’s higher sensitivity 
than dispatchers alone (85.0% vs 77.5%, P<.001) and faster early identification in prior 
observational work (Blomberg et al. 2021). This gap between model capability and clinical 
effect underscores human-factors and integration challenges at dispatch. 

Gradient boosting improved discrimination for SAE (AUC 0.81, 95% CI 0.78–0.84) 
compared with RETTS-A (0.73, 0.70–0.76) and NEWS2 (0.73, 0.70–0.76), with better 
calibration and sensitivity (Kauppi et al. 2025). Given dyspnea’s high 30-day mortality risk, 
enhanced risk stratification may better direct transport priority and pre-alert receiving 
teams.  

Predicting need for critical care. A national-scale deep-learning model predicted critical-
care needs with AUC 0.867 (0.864–0.871), outperforming ESI (0.839), KTAS (0.824), 
NEWS (0.741), and MEWS (0.696); external validation on EMS run-sheets confirmed 
strong discrimination (Kang et al. 2020). Such tools can guide bypass to higher-acuity 
centers and resource activation. 
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Table 2: Key outcomes and performance metrics. 

Study Primary outcome(s) Key results 

Weidman et al. 
2025 

Predict LSI within 2-
min epochs 

AUC 0.810; spec 0.960; NPV 0.953; robust up to 15 min 
pre-LSI 

Kim et al. 2025 
Transport delay 
outliers; mortality 

Mixed overall; fewer outliers in fever/respiratory 
(36.5%→30.1%, P=.01); fewer outliers with acceptance 
signals (27.5%→19.6%, P=.02); lower mortality with 
“optimal hospital” routing (1.54%→0.64%, P=.01) 

Chen et al. 
2022 

STEMI detection; 
feedback time 

AUC 0.997; sens 0.941; spec 0.994; EMT feedback 37.2 
s vs physicians 113.2 s; 10 PPCI cases, median contact-
to-door 18.5 min 

Lee et al. 2024 
STEMI from printed 
ECG images 

AUC 0.815 vs experts 0.736 (non-inferior); sens 0.750; 
spec 0.862 

Blomberg et al. 
2021 

Dispatcher OHCA 
recognition 

No significant improvement with AI alert (93.1% vs 
90.5%); AI sensitivity higher than dispatchers (85.0% vs 
77.5%) 

Kauppi et al. 
2025 

Dyspnea SAE 
prediction 

AUC 0.81 vs RETTS-A 0.73, NEWS2 0.73; better 
calibration and sensitivity 

Kang et al. 
2020 

Need for critical care 
AUC 0.867; > ESI 0.839; KTAS 0.824; NEWS 0.741; 
MEWS 0.696; external EMS validation 

The seven studies show consistent model-level accuracy (AUCs around/above 0.80) and 
notable operational gains in specific contexts (faster AI ECG reads, subgroup mortality 
benefit with AI-guided routing). The RCT at dispatch illustrates that human-system 
interaction can limit realized impact, despite AI’s superior sensitivity. Models leveraging 
high-resolution physiologic signals (waveforms) and tailored disease-specific features 
(ECG biomarkers) perform strongly, aligning with review-level observations that AI excels 
in prehospital prognostication and cardiac use cases (Chee et al. 2023; Elfahim et al. 
2025). 
 
DISCUSSION  

This synthesis supports three practical messages. First, AI can enhance early recognition 
and risk stratification in the field. Waveform-based triage predicted imminent LSIs, while 
dyspnea and global severity models outperformed conventional triage scores, echoing 
review findings that AI frequently surpasses non-AI tools for prehospital prognostication 
(Chee et al. 2023; Almulihi et al. 2024; El Arab et al. 2025).  

Second, diagnostic acceleration is feasible: prehospital ECG AI achieved expert-level 
STEMI performance and materially shortened interpretation/feedback time, which 
plausibly compresses reperfusion pathways—an archetype of AI’s value where seconds 
matter.  

Third, system-level orchestration (bed/procedure awareness, hospital acceptance, 
routing) can translate into fewer delays and, in targeted groups, lower mortality—
consistent with horizon scanning that identifies dispatch and in-ambulance decision 
support as early high-yield domains (Clark & Severn 2023). 
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Implementation determines impact. The OHCA RCT shows that adding alerts does not 
guarantee higher recognition, a reminder from the reviews that workflow integration, trust, 
alert design, dispatcher training, and organizational readiness are essential for AI to 
change outcomes (Chee et al. 2023; Elfahim et al. 2025). The CONNECT-AI mixed 
results in regions highlight context sensitivity: benefits depend on reliable hospital 
acceptance signals, communication infrastructure, and adherence to AI 
recommendations.  

Reviews in LMIC contexts stress that data completeness, infrastructure, and sociocultural 
tailoring are prerequisites; when addressed, AI typically outperforms conventional 
comparators but must be locally validated (Mallon et al. 2025). 

Methodological considerations from the review literature apply here: external validation is 
uncommon, calibration is under-reported, and prospective/multi-center trials remain 
limited (Chee et al. 2023; El Arab et al. 2025).  

The included studies partially address this (an RCT at dispatch; external EMS validation 
for a critical-care model), but broader uptake will require TRIPOD-AI/CONSORT-AI-
aligned reporting, bias audits, and health-economic evaluation. 

Equity and governance are also central. As AI expands to audio (call centers), images 
(printed ECGs), and high-frequency signals, datasets must represent diverse accents, 
devices, and pathophysiology to avoid performance gaps.  

Explainable interfaces may support trust for paramedics and dispatchers, as 
recommended across reviews (Chee et al. 2023; El Arab et al. 2025; Almulihi et al. 2024). 
The emergence of LLMs could enhance documentation, checklists, and protocol 
adherence, but rigorous guardrails are needed for reliability in high-stakes settings 
(Elfahim et al. 2025; Clark & Severn 2023). 

Services considering prehospital AI should prioritize (1) validated, high-signal tasks 
(STEMI, waveform-based decompensation, critical-care prediction); (2) strong socio-
technical integration (training, interface design, escalation paths); (3) local pilots with 
outcome tracking; and (4) governance frameworks spanning bias, privacy, and 
accountability. 
 
CONCLUSION 

Across heterogeneous prehospital settings, AI tools show strong discrimination for 
triage/prognosis and disease-specific diagnosis, and, when well-integrated, improved 
operational timeliness and select patient outcomes. Yet clinical impact hinges on workflow 
fit, reliable data flows, and rigorous validation.  

The path forward is purposeful deployment where time-critical decisions and high-fidelity 
signals meet robust integration, STEMI ECG AI, waveform-based decompensation 
prediction, and critical-care routing, accompanied by prospective evaluation, 
transparency, and governance. With these guardrails, AI can meaningfully augment 
prehospital transport, diagnosis, and treatment to improve patient outcomes.  
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