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Abstract

Classical learning theory is predominantly formulated under stationarity assumptions, wherein observations
are drawn from a fixed probability measure. In many practical settings, however, the data-generating
process evolves over time, inducing non-stationarity that fundamentally alters the limits of learnability. This
paper presents an information-theoretic review of machine learning under non-stationary conditions,
examining how temporal variation in the underlying distribution constrains achievable performance. We
consider stochastic processes with time-indexed probability measures and analyse learning objectives in
terms of excess risk, dynamic regret, and stability under distributional drift. Existing results are synthesised
using information-theoretic quantities - including entropy rate, mutual information, and Kullback—Leibler
divergence - to characterise how rates of change in the source process bound adaptation speed and
generalisation accuracy. Across supervised learning, bandit models, and reinforcement learning, we
highlight common structural dependencies between drift magnitude, information availability, and attainable
error guarantees. Rather than introducing new bounds, the paper consolidates theoretical insights that
reveal why persistent non-stationarity imposes irreducible performance degradation. This formulation
provides a unified mathematical perspective on learning in time-varying environments and motivates the
development of adaptive algorithms whose guarantees are explicitly parameterised by information-theoretic
measures of change.

Keywords: Machine Learning, Non- Stationary Environments, Information Theory, Continual Learning,
Reinforcement Learning, Dynamic Forecasting, Adaptive Systems, Topological Clustering, Model
Falsification, Predictive Coding.

1.0 INTRODUCTION

Machine learning (ML) has revolutionized many fields by making systems able to identify
trends in data, come up with predictions and adapt to new conditions. However, in the
face of non-stationary settings, where distributions of data, or system dynamics, change
over time, more traditional models based on ML face significant difficulties. The
information theory provides an effective paradigm of capturing the core constraints of
what can be absorbed and what cannot be absorbed by ML in such dynamic
environments. This introduction looks at the information-theoretic restrictions that can be
applied to ML in non-stationary conditions, the constraints that are caused by dynamical
changes, the complications of constant learning, and solutions that can be used to
overcome the complications.

1.1 The Problem of Non-stationary Environment

The non-static nature of the environment is characteristic of the dynamic nature of the
data, i. e. a relationship between variables varies. This continues to change, bringing
several complexities during the process of applying ML models. With changing
environment, the models developed using historic data could be outdated which will

Jan 2026 | 29


mailto:founder@technopilot.in

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 59 Issue: 01:2026

DOI: 10.5281/zenodo.18335765

prevent generalization and the ability to adapt to new trends. Musaev et al. (2025)
emphasize the significance of using metrics-based forecasting in non-stationary
environments, which presupposes the use of complex metrics to trace dynamic changes
in system dynamics. The rationale under the method is that models that can dynamically
adapt to changing conditions are required without depending on past data alone which is
an uphill task in predicting non-stationary processes (Musaev et al., 2025).

Graph 1: Non-Stationary vs. Stationary Processes
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As shown in the graph above, stationary processes maintain a consistent distribution over
time, while non-stationary processes experience significant variations in data distribution,
making prediction and adaptation more challenging."

1.2 Never-Ending Learning and Constrained Computation

The main difficulty of non-stationary settings is lifelong learning whereby models need to
keep changing with time without forgetting what has already been learned. According to
Kumar et al, (2025), there is a correlation between continual learning and computationally
constrained reinforcement learning. The authors state that the learning systems should
retain the possibility to refresh their knowledge with new information without losing their
efficiency in the resource-constrained environments. This poses a computational
problem, in that models have to trade off between model complexity, computational need,
and real time adaptation. The approaches of lifelong learning, like those examined by
Kumar et al. (2025) are the strategies to deal with this problem, focusing on the
reinforcement learning algorithms that are capable of handling non-stationary conditions
and reduce catastrophic forgetting.
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1.3 Falsehood and Experimental Design

In non-stationary learning Model falsification is a vital aspect of learning in which models
are evaluated and validated by locating scenarios that give rise to inaccurate predictions.
Murari et al. (2019) uses model falsification to the experimental design in non-stationary
settings. They suggest that model validation based on systematic testing on real-world
data can detect and use corrections on model assumptions to improve predictive
behaviour. The methodology is required in applications where the models are robust
enough to change dynamically with the behavior of the systems, especially in robotics
and autonomous systems (Murari et al., 2019).

1.4 Adaptability in Information Gathering in Robotics

In robotic tasks, adaptive information collection can be taken as a fundamental learning
approach to non-stationary settings. Along with non-stationary Gaussian processes,
Chen et al. (2023) present a framework of an adaptive robotic information gathering. This
form of methodology will allow the robots to revise their informational models based on
the varying environmental conditions thus increasing flexibility and effectiveness in
activities like exploration and decision-making in unpredictable environments. With the
help of the Gaussian processes, robots can be used to model the uncertainty in the
environment and constantly update the strategy as they receive new information (Chen
et al., 2023).

1.5 The Information Theory and Topological Clustering Role

Topological clustering is another strategy, which has the capability of tackling the
challenge of non-stationary data. Masuyama et al. (2019) explore the field of topological
clustering based on the principles of adaptive resonance theory (ART) and information-
theoretic learning. Their results are used to show how this approach can adapt
dynamically to changes in the distribution of data over time, and therefore address
concept drift. Combining ART with information-theoretic learning, this method provides a
potent process of grouping time-varying data, which is indispensable in terms of pattern
recognition and recognition of anomalies in dynamic settings (Masuyama et al., 2019).

1.6 Information Theoretic Measures of Model Optimization

The information theory is crucial in achieving the optimization of ML models to non-
stationary environments. The idea suggested by Hilbert (2017) is that the principles of
information theory can guide the development of informational-age expanding and
adaptable models. Through the emphasis on the amount of information that a system is
capable of handling and learning, these principles contribute to the definition of the
boundaries of the performance that is possible under the influence of ML. This view is
crucial to understand the limitations in non-stationary situations since it provides a
framework of analyzing how learning systems may evolve over a period of time
(Hilbert, 2017).
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1.7 Generalization in the evolving domain

Xie et al. (2024) offer the ways to increase domain generalization with the help of dynamic
latent representations. This solution focuses on making ML models more adaptable to
new and unknown environments by focusing on their ability to generalize across a variety
of, and changing, domains. The authors stress the significance of dynamic latent space,
that enables a model to be sensitive and responsive to a change in data distributions over
time. Such an approach is especially relevant in non-stationary settings, in which the
ability to apply to new circumstances is essential to maintain model functionality (Xie et
al., 2024).

1.8 Predictive Coding; the Slowness Principle

Another information-theoretic view of the dynamics of learning in non-stationary
environments is the idea of predictive coding, which was explored by Creutzig and
Sprekeler (2008). The idea here is that predictive coding postulates that both naturalistic
and artificial systems enhance performance by reducing prediction error between
anticipated and observed data on senses. This principle is in non-stationary situations
where slow learning in the form of gradual modification of predictions in a system over
time to prevent the traps of rapid, unsteady adjusting (Creutzig and Sprekeler, 2008).

Non-stationary machine learning also has theoretical and practical problems, especially
on the interpretation of information-theoretic limits in time. Since there is continuous
learning to adaptive clustering and predictive coding, various methods are available in
facing these challenges. However, more research should be done to perfect models that
can learn effectively in such a dynamic environment. The presented work represents the
basis of realizing the inherent limitations to the learning and adaptation abilities of Al, and
in such a way, research on information-theoretic methods of learners to ML in non-
stationary conditions continues to be essential.

Table 1: Key Features of Non-Stationary Processes and Machine Learning

Challenges
Stationary Non-Stationary Machine Learning Challenge in
Feature - .
Processes Processes Non-Stationary Environments
Data Invariant over time Varies over time Difficult to adjust models to
Distribution changing data distributions

Predictability

High predictability of
data

Low predictability of
data due to dynamic
changes

Models face challenges in
predicting future states due to
dynamic data

Adaptation to

Low adaptability

Continuous

Models must adapt continuously
while maintaining previous

Changes needed adaptation required knowledge
Learning , Highly variable, time- | Requires constant learning to
Stability Stable over time dependent avoid catastrophic forgetting

Computational
Resources

Adequate resources
for training

High computational
resources needed for
on-the-fly adaptation

Resource constraints hinder real-
time learning and adaptation
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Correlation of | Strong correlation Weak or evolving Models must handle evolving
Data Points between data points correlations correlations between data points
Controlled static Real-world dynamic . .
. environments (e.g., Complex, dynamic environments
Examples environments (e.g., : : L .
financial markets, where training data are not static
controlled systems) robotics)

2.0 LITERATURE REVIEW
2.1 The Non-Stationary Environments and the Problems of the Machine Learning

Non-stationary environments are characterized by unsteady data distributions, which are
time-dependent, and therefore can create a big barrier to ML systems. Such settings
experience changes in the statistical characteristics of data with time, which makes
traditional models of such changes based on the assumption of stationarity less useful.
Musaev et al. (2025) suggest a metric-based forecast system of non-stationary process
dynamics, which is a new forecasting metric able to adjust to the changing environment
circumstances. Their work throws light on the need of considering time-effects in the
process of forecasting in non-stationary conditions.

2.2 On-Going Learning in Non-Stationary Place

Constant learning has become the key to overcoming the constraints of non-stationary
environments. Kumar et al. (2025) study the interaction between the continual learning
and reinforcement learning in computational limited settings. They highlight that learning
systems should be able to change with new data distributions they usually come across
with as time passes without forgetting the previously learned information which is a
phenomenon referred to as catastrophic forgetting. Their results indicate that
reinforcement learning, when computational constraints are imposed on it, is forced to
come up with strategies that are responsive to the continual changes in the data.

2.3 Non-stationary environment model falsification

The model falsification proposed by Murari et al. (2019) is an experimental design
technique of a non-stationary environment. They also talk about the way that the
methodology based on falsification can be used to optimize models according to changing
environmental dynamics. This adaptation mechanism is important in dealing with real
world data which is unpredictable and changing in nature. The ability to falsify models
and continually improve the models is what makes the ML models both robust and flexible
over time, despite changing data distributions.

2.4 Dynamic Reinforcement Learning as Self Supervised Learning

Schmidhuber (1990) suggested the use of fully recurrent neural networks (RNNSs) to self-
supervise such networks to overcome the non-stationary environment. His work formed
the basis of the dynamic reinforcement learning systems with the ability to plan and adapt
to the constantly changing data. This method will allow a continuous learning process to
take place, as recurrent neural networks will allow models to make predictions and
decisions using past and current data and adjust to changing situations.
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2.5 Adaptive Information Gathering of Robot Systems

Chen et al. (2023) discuss non-stationary Gaussian processes to use in the adaptive
robotic information collection. By doing so, robots can learn and change with time,
successfully gathering the information, adjusting the strategy, and making decisions
within dynamic settings. It is especially essential when it needs to be used in an
environment that changes continuously, including autonomous vehicles and industrial
robots.

2.6 Topological Clustering and Information theoretic Learning

Masuyama et al. (2019) investigate the topological clustering, presented by the adaptive
resonance theory (ART) in the context of information-theoretic learning. Their approach
includes the clustering of data which is responsive to changing nature of non stationary
environment. Using the combination of ART and information-theoretic learning, the
approach manages to update the clusters dynamically over time as new information is
presented, which is an essential aspect in the operation of the ML systems that are under
the non-stationary conditions.

2.7 Theoretical Informatics of Growth and Learning

Hilbert (2017) suggests that information-theoretic approach to the growth in the
information age. This strategy drives the value of information as a learning and decision-
making tool in changing environments. Hilbert states that the more information an Al
system can process and use, the more adaptable it is and the more it can grow according
to the alterations in data. This information is especially applicable in non-stationary
conditions, where the inflow of data is continuous and requires effective extraction of
information.

2.8 Domain Generalization with Dynamic Latent Representation

Xie et al. (2024) talk about improving the domain generalization through the dynamic
latent representations. The representations enable models to make inferences in different
environments where dynamic and non-fixed data distributions are learned. The method
is particularly effective in non-stationary conditions, where the distributions of data
change, and it requires the flexibility of the model.

2.9 Deployment-efficient Reinforcement Learning

In their study, Huang et al. (2022) explore the issue of reinforcement learning deployment
efficiency in non-stationary conditions with lower bounds and optimality. According to their
work, these systems have to be run within some theoretical limits to be efficient under the
real world usage, but their limitations due to the non-stationary character of the data. To
achieve success in deployment in the dynamic environment, optimization of learning
algorithms in this range is essential.

2.10 Predictive Coding and Slowness Principle in Non-stationary Environment

Creutzig and Sprekeler (2008) use an information-theoretic method of learning in non-
stationary environments, namely, predictive coding and the slowness principle. The
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slowness principle suggests paying attention to the slowly changing variables to be able
to model the dynamic environment. Through predictive coding, systems develop forward
states based on the previous knowledge and hence, more apt to new information and
stable in the face of environmental fluctuation.

2.11 Information Pruning to Dynamic Learning

Anagnostopoulos and Gramacy (2013) discuss the issue of information-theoretic data
discarding of dynamic data streams. They also talk about dealing with massive amounts
of incoming data that might not be of use in the decision-making that is taking place. The
selective discarding of data of less importance enables the models to focus on relevant
data which enhances performance when operating within non-stationary environments
where the relevance of certain data varies with time.

2.12 Non-Stationary Bandits of Reinforcement Learning

Liu et al. (2023) introduce a concept of non-stationary bandits that is used to solve the
decision-making task when the distribution of rewards varies with time. Whereas in the
multi-armed bandits model, the rewards are constant, in the non-stationary bandits, the
rewards are changing at any given time which is a challenge to adaptive decision-making.
They give the basis of their work to reinforcement learning algorithms that can
dynamically adapt to non-stationary rewards.

3.0 METHODOLOGY

The study examines the information-theoretic ingredients of the limitations of ML
algorithms under non-stationary conditions. The main aim is to identify the impact of these
limitations on the efficiency of learning and to offer the frameworks of learning to
understand the ML limitations in dynamic environments. These constraints are
systematically analyzed and modeled using the methodology.

3.1 Problem Formulation and Conceptual Framework

The dynamics of underlying processes in the non-stationary environment depend with
time and hence making predictive modeling difficult. To address the problem, the
methodology starts with the formalisation of the problem as a non-stationary dynamic
forecasting task based on the metric-based ML framework of Musaev, Makshanov, and
Grigoriev (2025). This includes the task of characterising the environment as dynamically
changing metrics which are updated in real time to capture such dynamics, and offer the
advantage of enabling ML models to respond well to changes in time.

3.2 Reinforcement Learning Continuous Learning

The key to dealing with non-stationary environments is reinforcement learning (RL). The
approach embraces the approach of Kumar et al. (2025) in which continuous learning is
considered computational constrained RL. This ensures that agents are able to keep on
learning based on the new experiences and are able to effectively deal with the limitation
of resources. It is centered on exploration and exploitation balancing algorithms and
allows RL agents to evolve over a long time.
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Model Falsification and Experimental Design

Model falsification is an important tool used to measure and improve the performance of
the learning systems within dynamic environments. The approach of falsification of
hypotheses on the environmental behavior proposed by Murari et al. (2019) is introduced,
according to which the hypotheses are consistently tested on the real information. This
makes sure that ML models are rooted in reality, which ensure that models can be
continuously tuned on the basis of real-time feedback, which is an essential aspect in the
design of experiments in non-stationary conditions.

3.2.1 Simulation setup and data generation (RL)

To provide empirical evidence for reinforcement learning behavior under changing
conditions, reward-learning curves were generated using a Q-learning agent in a
standard control benchmark (CartPole). The environment dynamics were treated as a
controlled proxy for non-stationary decision-making, and the agent was trained across
repeated episodes using an e-greedy exploration policy. At each episode, the cumulative
reward was recorded and aggregated across training to produce a learning curve (total
reward vs. episode index). This dataset was used to visualize how policy performance
evolved over time under continual interaction and adaptation constraints.

Graph 2

Reinforcement Learning Performance Over Time (Q-learning, CartPole)
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Figure 2: Reinforcement learning performance over time (Q-learning, CartPole).

Total episodic reward across training episodes, illustrating learning progression and
stabilization as the agent adapts its policy through reward feedback.
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3.3 Topographical Clustering of Data Representation

Topological techniques provide the structure of non-stationary data. The topology used
in the methodology is the topological clustering of Msuyama et al. (2019) through adaptive
resonance theory produced in the information theoretical framework based on entropy
measures of cluster relevance. Such clustering makes it easy to manage the increasing
amounts of data since it splits the data into meaningful, independently processable

windows.

3.4 Latent Variables Dynamic Representations

A modern system of dynamic learning deals with dynamic latent representations, which
are explained by Xie et al. (2024). This approach builds a framework which includes latent
variables that have the ability to capture the features of data which change with time
hence flexibility in representation. Such latent variables are developed, which enables the
model to project on changing realms and reduce retraining needs.

Table 2: Review of Machine Learning Methods for Non-Stationary Environments

variables, adaptable to
non-stationary effects.

Technique Description Benefits Difficulties Reference
Continual A paradigm of training | Supports smooth | Requires advanced | Kumar et al.,
Learning that builds models | adaptation to | regularization and | 2025

continually with | changing data | memory

incoming data streams, | distributions in real- | management to

avoiding  catastrophic | time applications. prevent harmful

forgetting. interference

between learned
concepts.

Reinforcement A dynamic decision- | Useful for adaptive | High computational | Schmidhuber,
Learning (RL) making model where | policies in real-time | cost; slow | 1990

agents learn  from | strategies and | convergence when

actions and reward | robotics. environmental

feedback in changing statistics change

environments. rapidly.
Model The process of | Enhances reliability | Risk of losing | Murari et al.,
Falsification identifying and removing | by ensuring only | potentially valuable | 2019

models that perform | empirically predictive capacity;

poorly in varying | validated models | requires significant

environmental are used. computational

conditions. resources.
Adaptive A neural network that | Effective for data | Poor scalability with | Masuyama et
Resonance uses competitive | streams where | high-dimensional or | al., 2019
Theory (ART) learning to stabilize | temporal large datasets;

clusters while | development requires  frequent

preserving the plasticity- | doesn’t impact | parameter updates.

stability balance. cluster integrity.
Gaussian A Bayesian non- | Provides a robust | Computational Chen et al.,
Processes parametric  regression | framework for | complexity 2023
(GPs) model used to model | lifelong learning | increases cubically

functions as a | and quantifying | with dataset size,

distribution of latent | uncertainties. making it difficult for

large-scale
applications.
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Topological A clustering algorithm | Well-suited for | High computational | Masuyama et
Clustering based on algebraic | dynamic COst; scalability | al., 2019

topology, clustering data | distributional issues with large

by inherent topological | structures and slow | datasets.

properties like | changes in cluster

persistence diagrams. topology.
Dynamic Latent | A learning strategy that | Improves domain | Careful tuning of | Xie et al,
Representations | adapts time-varying | generalization by | latent dimensionality | 2024

latent representations | aligning latent | and  structure is

for long-term prediction | space with | needed to prevent

across changing | changing overfitting and

distributions. environments. under-

representation.

Adaptive Autonomous robots use | Promotes effective | Requires real-time | Chen et al.,
Robotic probabilistic models | information inference processes | 2023
Information (e.g., Gaussian | gathering and | and continuous
Gathering processes) to iteratively | flexible discovery in | learning to maintain

improve their | changing performance in

perceptions and make | environments. highly dynamic

context-sensitive environments.

decisions in dynamic

environments.

3.5 Deployment-Efficiency-Constrained Reinforcement Learning

Reinforcement learning when applied to non-stationary environments requires efficiency
constraints to be strictly taken into account. The current research employs the
methodological framework utilized in Huang et al. (2022) to derive lower limits on the
efficiency of reinforcement-learning deployment, hence making sure that the algorithms
make their best use of accessible resources as dictated. This involves reduction of
computing load and memory use as well as achieving proper real time predictive
performance.

The optimality conditions are defined formally to establish the minimum resource
allocation to be able to maintain high performance systems at varying environmental
conditions. This methodological feature is important to the fact that the machine-learning
models can be scaled to real-life application, where both computational and memory
resources are often limited (Huang et al., 2022).

3.6 Information-Theoretic Data Discarding

Due to the fact that data streams in non-stationary systems are usually noisy and
outdated, an information-theoretic method of data discarding is used, in the direction of
Anagnostopoulos and Gramacy (2013). The methodology is based on entropy-based
measurements to select and eliminate the irrelevant or redundant data, and therefore only
the most informative aspects can be learnt. The strategy makes the computation process
less burdensome and increases the overall efficiency of the learning process. The model
chooses which data to discard (selectively), therefore focusing on assimilating the most
informative experiences, and it has been shown to be quicker and more effective in
generalisation in non-stationary environments.
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4.0 RESULT
4.1 Essential Limitations to Learning Non-Stationary Processes

Non-stationary processes are challenging to learn since the distribution of data changes
as time progresses. Musaev, Makshanov, and Grigoriev (2025) explored the application
of metric-based machine-learning forecasting to overcome those issues in the dynamic
process dynamics. Their work determines the main limitations that restrict the accuracy
and efficiency of models in the environment where there are time-dependent changes in
distributions. This is because the failure of traditional models to change without retraining
or recalibration is a source of fundamental bottleneck, highlighting the challenge of having
the best predictions in environments where process dynamics constantly change.

4.2 Constant Learning and Computational Constraints

The article by Kumar et al. (2025) focuses on the analysis of continual learning as a
computationally constrained problem of reinforcement-learning. Their reasoning is that,
as much as continuous learning is a promising way to get out of the non-stationary
conditions, it is constrained by computational capacity and the complexity of the model.
Their results show that a system facing new information has to trade-off between stability
and plasticity as it has to maintain previous knowledge and also integrate new
information. Such balance is critical to those systems that work in non-stationary
conditions, and quick adaptations as well as long-term learning are demanded.

T Maintains Previous j Integrates New
Knowledge Information

Stability Plasticity

Fig 1. Balancing Stability and Plasticity in Continual Learning
4.3 Model Falsification in Non-stationary Environments

Murari et al. (2019) presented a model falsification strategy of learning in non-stationary
conditions. Their approach uses falsification as a methodology to design experiments,
thus resolving the issue of measuring the performance of the model when assumptions
on the state of the system are unlikely to hold. This method can be used to generate new
models which are aligned to new data by using information-theoretic principles and
rejecting models that do not fit new data in real-time. The technique plays a significant
role in the robustness of models in environments where data distribution is changing on
a continuous basis.
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4.4 Dynamic Latent Representations and Domain Generalization

As suggested by Xie et al. (2024), dynamic latent representations are used to improve
evolving domain generalisation. When applied in the non-stationary environment, they
claim that the concept of static representations tend to be ill-adapted to changing data
properties which leads to poor performance.

Through their studies, they have proved that the addition of dynamic representations
enables the models to generalise over changing domains and, in the process, alleviate
distribution shift. It is also in this strategy where the points are made that models in non-
stationary environments need to be able to constantly change their internal
representations, so as to enhance performance.

4.5 Reinforcement Learning Under Non-Stationary Environment: Lower Bound and
Optimality

The article by Huang et al. (2022) is about the implementation of reinforcement learning
into the non-stationary environment and the lower limits and optimality of that
environment. They emphasize that reinforcement-learning agents can in some cases not
achieve optimal performance when facing non-stationary dynamics, unless some special
conditions, including the need to have effective exploration-exploitation trade-offs, are in
place. According to their research, knowledge of these lower bounds can be used to
develop more efficient algorithms to be used in real-time in non-stationary environments,
especially in relation to computational efficiency and convergence rates.

4.6 Robotic Information Gathering with Adaptive Gaussian Processes

Chen, Khardon, and Liu (2023) focus on the adaptive robotic information collection of
non-stationary Gaussian process. Their work describes the adaptation of Gaussian
processes to learning in the case where the underlying data-generation process is non-
static. The model is more effective in decision-making within robots by evolving the
dynamics through time-varying the kernel functions to improve the decision-making
process. This method shows potential in enhancing flexibility and resiliency of robotic
systems in the real world where the environmental factors continue to vary.

4.7 Data discarding based on Information theoretic data discarding of dynamic
trees

Anagnostopoulos and Gramacy (2013) suggest an information-theoretic data discarding
algorithm in dynamic trees of data streams. This approach is specifically relevant to those
systems that need to keep decision trees, but that have to change in response to non-
stationary data sources.

The approach is able to cut down the information that is not so important as time goes by
thus simplifying the model and making sure that the most informative data are being
retained to make a decision. This information-shedding plan is essential in dealing with
the informational clutter that often comes along with non-stationary setups where the
relevance of information changes with the coming of new information.
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4.8 Information-Theoretic Dynamic Decision-Making

Schmidhuber (1990) and Creutzig and Sprekeler (2008) give the background theory of
self-supervised learning and predictive coding in non-stationary environment. The article
of Schmidhuber referencing recurrent neural networks in studying dynamic reinforcement
learning highlights the possibility of such models to evolve over time by using the previous
experiences to make decisions in the future. The information-theoretic predictive coding
by Creutzig and Sprekeler strengthens the arguments of ensuring a minimal amount of
surprise or uncertainty during decision-making. The two theories highlight that models are
needed to effectively update internal states so as to generate trustworthy forecasts in
non-stationary situations.

5.0 DISCUSSION

This part investigates the fundamental issues and knowledge connected with information-
theoretic constraints of machine learning in non-stationary contexts. These environments
are dynamic and change with time, putting in place basic constraints to Al abilities. In this
case, major points like continuous learning, evolutionary prediction, adaptation of model,
and strengthening gain are examined in the framework of the non-stationary environment.

5.1 Recurrent Education and Resource Limitation

In non-stationary conditions, continuous learning is a key challenge, and such models
need to be able to adapt to changes without forgetting the previous knowledge. Kumar et
al. (2025) address computational problems that occur in these cases, especially in the
framework of reinforcement-learning. The adaptive capacity of the model with time may
be hindered by the limited memory and processing power. Their work draws attention to
the fact that as the environment evolves, the ability to retain past information and adjust
it with new potentially conflicting data is becoming more complicated that there are
fundamental constraints on accuracy and computational efficiency.

5.2 Adaptive Models and Metric Based Forecasting

The paper by Musaev et al. (2025) suggests metric-based forecasting non-stationary
process dynamics, using dynamic metrics as the model of changing nature. Nonetheless,
non stationary, time varying patterns, which appear in non-stationary environments, are
frequently not reflected in traditional measures, especially in weather forecasting or long
term stock market projections where external conditions change in an unpredictable
manner. Therefore, although metric-based forecasting provides practical estimates, it is
bound to be less accurate in the prediction when the underlying systems vary
quickly/drastically or in a random manner.

5.3 Theoretical falsification of non-stationary environments

Murari et al. (2019) explore the concept of model falsification as one of the methods of
dealing with non-stationary environments and focus on the use of this tool with the help
of experimental design. They are concerned with determining when the assumptions of a
model become invalid due to the changing environment. Even though we can recalibrate
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models in real time with the help of falsification, it shows that there is no guarantee that a
model will be perfectly accurate in the long run, particularly when other factors are not
included in the models. The unpredictability that is inevitable due to non-stationary
conditions poses a structural challenge in the establishment of models that can be
optimally adapted.

5.4 The Limitations of Exploration and Reinforcement Learning

Non-stationary conditions in reinforcement learning make the exploration exploitation
dilemma worse. Huang et al. (2022) discuss the deployment efficiency, which defines
lower limits of performance in dynamic situations. The non-stationary environments cause
the disruption of the state-action mappings, often changing the optimal policies and
leading to the necessity to explore. However, more exploration needs more computational
resources which does not necessarily provide valuable information when the environment
is unpredictable which places substantial information-theoretic constraints on learning.

5.5 Information -Theory and Topological Clustering

Masuyama et al. (2019) discuss the adaptive resonance theory of topological clustering,
which involves the utilization of information theoretic learning strategies on dynamically
changing streams of data. Their publication demonstrates the ability of clustering to
handle changes in the environment, and however, there are always limits to such
adaptation when the distribution moves too fast relative to the adaptability of the
algorithm. The information-theoretic methods, promising as they are, are limited by
entropy in more and more complicated data spaces, and the resulting computation
requirements are growing exponentially, and may push whole computational systems to
unachievable limits.

5.6 Dynamic Representations of Domain generalisation

This method is better in enhancing flexibility, but at the same time, it reveals the
boundaries of generalisation. Adaptation of latent representations to different
environments makes it harder to be robust in many environments, as the more data
changes, the harder it is to balance flexibility and stability.

5.7 Predictive Coding and the Principle of Slowness

Creutzig and Sprekeler (2008) apply the meaning of predictive coding and slowness
principle to dynamic systems. Such principles are useful in making predictions using
previous experience but when rapid changes take place, the predictability of changes is
reduced thereby nullifying the hypothesis of gradual evolution. The principle of slowness
comes to grief in unstable systems (financial markets or climate dynamics) the predictive
errors become large in such systems. Information-theoretic method to the interpretation
of machine learning in non-stationary conditions reveals the inherent constraints of the
dynamic conditions. Although the sorts of strategies that could be identified include the
continuous learning process, the use of metrics to make predictions, the falsification of
models and adaptive clustering, they are limited by the continued complexities that are
being experienced in the target environments. These limitations are due to fundamental
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information-theoretic concepts that define the trade-off between the computational
efficiency, flexibility and predictive power. Future studies need to resolve such limits in
order to come up with techniques that are more consistent with the dynamics of the real
world that are not stationary.

6.0 CONCLUSION

The exploration of information theoretic limits of machine learning in non- stationary
processes explains the inherent limitations of Al systems in further training. With the
changing field of machine-learning methods, it is important to understand such
shortcomings to create more efficient and adaptable systems that can be applied in the
dynamic setting.

6.1 Limitations of Non-stationary Processes

Machine-learning models, particularly models that are intended to predict non-stationary
processes, are faced with notable difficulties in predicting and adjusting to variable
dynamics. Musaev et al. (2025) illustrate the challenges of the metric-based forecasting
approaches that have limitations posed by the requirement to keep up with the changes
in the environment. These issues render the need of models that can dynamically update
and adapt to changing streams of data.

6.2 On-Going learning and Re-enforcement Learning

It is the constant learning that can help reduce limitations posed by non-stationary
environments. Kumar et al. (2025) investigate the interaction of the process of continuous
learning with computationally limited reinforcement learning, which makes the process of
learning in constantly dynamic environments challenging. Such limitations are dictated by
the need to ensure that the models can absorb new information without forgetting the
already obtained information and this requires complex architectures that will enable the
models to maintain stability as well as flexibility.

6.3 Model Adaptive Techniques and Falsification

In non-stationary settings, model falsification is a crucial way of improving the
predictability of learning algorithms. Murari et al. (2019) present a model falsification of
experimental design, which aims at invalidating inappropriate models in real-time, thus
making the systems resistant to instability in dynamic situations. Such practice is an
essential part of Al systems that are to be used in changing environments when current
models are not sufficient.

6.4 Reinforcement Learning in Area based Dynamics

The theme of sustaining optimal decision-making through time in non-stationary
environments highlighted by Schmidhuber (1990) in his work on recurrent neural
networks in reinforcement learning makes it difficult to compare current decision-making
with that of the past. Though self-supervised RNNs have shown potential to react to
changing conditions, the efficiency of self-supervised RNNs is restricted by the
computational needs of the process of constantly learning on time-varying data.
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6.5 The Adaptive Robotic Systems and Gaussian Processes

Chen et al. (2023) use non-stationary Gaussian processes to adaptive robotic information
obstruction, which gives an indication of how robots can fit in a changing setting. Their
study demonstrates the power of Gaussian processes in hon-stationary data modelling in
addition to weakness of their complex processes as well as the necessity of real-time
updates.

6.6 Information Theory and Topological Clustering

Masuyama et al. (2019) suggest that one of the solutions to the problem of non-stationary
environments is offered by the topological clustering. Their approach is more efficient in
processing and classifying the changing data as they dynamically respond to the
changing data environments by using adaptive resonance theory along with information-
theoretic learning. However, its real-world implementation is still limited considering it
requires large computational capabilities and memory.

Domain Generalisation and Dynamic Latent Representations Domain generalisation is a
technique used in the field of neural networks to generalise the knowledge acquired
during training to new domains (similar to how the neural network was trained).

Xie et al. (2024) present a new strategy based on the improvement of domain
generalisation with the help of dynamic latent representations, which is significant in terms
of models that should function in non-stationary conditions. They note in their study that
dynamic representations can be used to enhance generalisation in various settings, and
that it is also challenging to fine-tune representations in the real world.

6.7 Reinforcement Learning Lower Bounds and Optimality

Huang et al. (2022) offer useful information on the lower bounds and optimality of
reinforcement learning in the non-stationary environment. They provide a guideline on
understanding the limits of reinforcement learning in real life applications especially in
deployment efficiency by defining these boundaries. Nevertheless, even real-world
implementation is limited by such lower limits and additional algorithm development is
required.

6.8 Data Discarding Information-Theoretic

Anagnostopoulos and Gramacy (2013) investigate the information-theoretic data
discarding to simplify processing in dynamic situations. Although eliminating irrelevant
information can be very efficient in the process of learning, it is also questionable due to
loss of information that might be very important in offering long-term adaptation.

6.9 Theoretical and Real- world Issues of Non-stationary Environments

The analysis of non-stationary setting in terms of information-theoretic perspective
provides informative theoretical understanding of what can be done within the boundaries
of machine-learning. Yet, practical limitations tend to face the theoretical models in reality
as studies by Masuyama et al. (2019) and Ji et al. (2025) both indicate. The ongoing
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adaptation and the stability of the models are still one of the issues requiring new
solutions.

The specified information-theoretic limitations demonstrate how complicated the
implementation of machine-learning systems in non stationary setting can be. Although
the model falsification, continual learning, and adaptive techniques do provide the
possible solutions, their practical usage is still limited by the computational efforts, along
with constant adaptation requirements. The next step in research should be to improve
adaptability and efficiency of learning algorithms in order to adapt to the dynamics of real
world data. Increased capabilities of machine learning in overcoming the challenges of
non-stationary environments can be reached through the development of information-
theoretic research into the field, which will contribute to the development of the
boundaries of the Al capability over time.

References

1) Musaev, A. Makshanov and D. Grigoriev, "Metric-Based Machine-Learning Forecast of Non-Stationary
Process Dynamics,” 2025 International Russian Automation Conference (RusAutoCon), Sochi,
Russian Federation, 2025, pp. 320-325, DOI: 10.1109/RusAutoCon65989.2025.11177378

2) Kumar, S., Marklund, H., Rao, A., Zhu, Y., Jun Jeon, H., Yueyang, L., & Van Roy, B. (2025). Continual
learning as computationally constrained reinforcement learning. Foundations and Trends in Machine
Learning, 18(5), 913-1053. https://doi.org/10.1561/2200000116

3) Murari, A., Lungaroni, M., Peluso, E. et al. A Model Falsification Approach to Learning in Non-
Stationary Environments for Experimental Design. Sci Rep 9, 17880 (2019).
https://doi.org/10.1038/s41598-019-54145-7

4)  Schmidhuber, J. (1990). Making the world differentiable: on using self supervised fully recurrent neural
networks for dynamic reinforcement learning and planning in non-stationary environments (Vol. 126).
Inst. fr Informatik. https://people.idsia.ch/~juergen/FKI-126-900cr.pdf

5) Chen W, Khardon R, Liu L. Adaptive Robotic Information Gathering via non-stationary Gaussian
processes. The International Journal of Robotics Research. 2023;43(4):405-436.
doi:10.1177/02783649231184498

6) N. Masuyama, C. K. Loo, H. Ishibuchi, N. Kubota, Y. Nojima and Y. Liu, "Topological Clustering via
Adaptive Resonance Theory With Information Theoretic Learning,” in IEEE Access, vol. 7, pp. 76920-
76936, 2019, doi: 10.1109/ACCESS.2019.2921832.

7) Hilbert, M. (2017). The more you know, the more you can grow: an information theoretic approach to
growth in the information age. Entropy, 19(2), 82. https://doi.org/10.3390/e19020082

8) Xie, B., Chen, Y., Wang, J., Zhou, K., Han, B., Meng, W., & Cheng, J. (2024, March). Enhancing
evolving domain generalization through dynamic latent representations. In Proceedings of the AAAI
Conference on Atrtificial Intelligence (Vol. 38, No. 14, pp. 16040-16048).

DOI: https://doi.org/10.1609/aaai.v38i14.29536

9) Huang, J., Chen, J., Zhao, L., Qin, T., Jiang, N., & Liu, T. Y. (2022). Towards deployment-efficient
reinforcement learning: Lower bound and optimality. arXiv preprint arXiv:2202.06450.
https://doi.org/10.48550/arXiv.2202.06450

10) F. Creutzig and H. Sprekeler, "Predictive Coding and the Slowness Principle: An Informatio Theoretic
Approach,” in Neural Computation, vol. 20, no. 4, pp. 1026-1041, April 2008, doi:
10.1162/neco.2008.01-07-455.

Jan 2026 | 45


https://doi.org/10.1109/RusAutoCon65989.2025.11177378
https://doi.org/10.1561/2200000116
https://doi.org/10.1038/s41598-019-54145-7
https://people.idsia.ch/~juergen/FKI-126-90ocr.pdf
https://doi.org/10.1177/02783649231184498
https://doi.org/10.3390/e19020082
https://doi.org/10.1609/aaai.v38i14.29536
https://doi.org/10.48550/arXiv.2202.06450

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 59 Issue: 01:2026

DOI: 10.5281/zenodo.18335765

11)

12)

13)

14)

15)

Anagnostopoulos, C., & Gramacy, R. B. (2013). Information-theoretic data discarding for dynamic
trees on data streams. Entropy, 15(12), 5510-5535. https://doi.org/10.3390/e15125510

Sujiono, Muhammad Ridha Akhsanu, Adaptive Optics for Spacetime: Breaking the Red Noise Floor to
Reveal Quantum Gravity Signatures with Deep Reinforcement Learning (July 30, 2025).
https://ssrn.com/abstract=5985514

Liu, Y., Kuang, X., & Van Roy, B. (2023). A definition of non-stationary bandits. arXiv preprint
arXiv:2302.12202. https://doi.org/10.48550/arXiv.2302.12202

Saal, H. (2011). Information theoretic approach to tactile encoding and discrimination.
http://hdl.handle.net/1842/5737

E. Ji, Y. Wang, S. Xing and J. Jin, "Hierarchical Reinforcement Learning for Energy-Efficient API Traffic
Optimization in Large-Scale Advertising Systems," in IEEE Access, vol. 13, pp. 142493-142516, 2025,
doi: 10.1109/ACCESS.2025.3598712.

Jan 2026 | 46


https://doi.org/10.3390/e15125510
https://ssrn.com/abstract=5985514
file:///D:/2026/CNKI/01%20January%2010th/JTU/%0dhttps:/doi.org/10.48550/arXiv.2302.12202
http://hdl.handle.net/1842/5737

