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Abstract   

Classical learning theory is predominantly formulated under stationarity assumptions, wherein observations 
are drawn from a fixed probability measure. In many practical settings, however, the data-generating 
process evolves over time, inducing non-stationarity that fundamentally alters the limits of learnability. This 
paper presents an information-theoretic review of machine learning under non-stationary conditions, 
examining how temporal variation in the underlying distribution constrains achievable performance. We 
consider stochastic processes with time-indexed probability measures and analyse learning objectives in 
terms of excess risk, dynamic regret, and stability under distributional drift. Existing results are synthesised 
using information-theoretic quantities - including entropy rate, mutual information, and Kullback–Leibler 
divergence - to characterise how rates of change in the source process bound adaptation speed and 
generalisation accuracy. Across supervised learning, bandit models, and reinforcement learning, we 
highlight common structural dependencies between drift magnitude, information availability, and attainable 
error guarantees. Rather than introducing new bounds, the paper consolidates theoretical insights that 
reveal why persistent non-stationarity imposes irreducible performance degradation. This formulation 
provides a unified mathematical perspective on learning in time-varying environments and motivates the 
development of adaptive algorithms whose guarantees are explicitly parameterised by information-theoretic 
measures of change. 

Keywords: Machine Learning, Non- Stationary Environments, Information Theory, Continual Learning, 
Reinforcement Learning, Dynamic Forecasting, Adaptive Systems, Topological Clustering, Model 
Falsification, Predictive Coding.   

 
1.0 INTRODUCTION   

Machine learning (ML) has revolutionized many fields by making systems able to identify 
trends in data, come up with predictions and adapt to new conditions. However, in the 
face of non-stationary settings, where distributions of data, or system dynamics, change 
over time, more traditional models based on ML face significant difficulties. The 
information theory provides an effective paradigm of capturing the core constraints of 
what can be absorbed and what cannot be absorbed by ML in such dynamic 
environments. This introduction looks at the information-theoretic restrictions that can be 
applied to ML in non-stationary conditions, the constraints that are caused by dynamical 
changes, the complications of constant learning, and solutions that can be used to 
overcome the complications.   

1.1 The Problem of Non-stationary Environment  

The non-static nature of the environment is characteristic of the dynamic nature of the 
data, i. e. a relationship between variables varies. This continues to change, bringing 
several complexities during the process of applying ML models. With changing 
environment, the models developed using historic data could be outdated which will 
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prevent generalization and the ability to adapt to new trends. Musaev et al. (2025) 
emphasize the significance of using metrics-based forecasting in non-stationary 
environments, which presupposes the use of complex metrics to trace dynamic changes 
in system dynamics. The rationale under the method is that models that can dynamically 
adapt to changing conditions are required without depending on past data alone which is 
an uphill task in predicting non-stationary processes (Musaev et al., 2025).  

Graph 1: Non-Stationary vs. Stationary Processes 

 

As shown in the graph above, stationary processes maintain a consistent distribution over 
time, while non-stationary processes experience significant variations in data distribution, 
making prediction and adaptation more challenging." 

1.2 Never-Ending Learning and Constrained Computation   

The main difficulty of non-stationary settings is lifelong learning whereby models need to 
keep changing with time without forgetting what has already been learned. According to 
Kumar et al, (2025), there is a correlation between continual learning and computationally 
constrained reinforcement learning. The authors state that the learning systems should 
retain the possibility to refresh their knowledge with new information without losing their 
efficiency in the resource-constrained environments. This poses a computational 
problem, in that models have to trade off between model complexity, computational need, 
and real time adaptation. The approaches of lifelong learning, like those examined by 
Kumar et al. (2025) are the strategies to deal with this problem, focusing on the 
reinforcement learning algorithms that are capable of handling non-stationary conditions 
and reduce catastrophic forgetting.   
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1.3 Falsehood and Experimental Design  

In non-stationary learning Model falsification is a vital aspect of learning in which models 
are evaluated and validated by locating scenarios that give rise to inaccurate predictions. 
Murari et al. (2019) uses model falsification to the experimental design in non-stationary 
settings. They suggest that model validation based on systematic testing on real-world 
data can detect and use corrections on model assumptions to improve predictive 
behaviour. The methodology is required in applications where the models are robust 
enough to change dynamically with the behavior of the systems, especially in robotics 
and autonomous systems (Murari et al., 2019).   

1.4 Adaptability in Information Gathering in Robotics 

In robotic tasks, adaptive information collection can be taken as a fundamental learning 
approach to non-stationary settings. Along with non-stationary Gaussian processes, 
Chen et al. (2023) present a framework of an adaptive robotic information gathering. This 
form of methodology will allow the robots to revise their informational models based on 
the varying environmental conditions thus increasing flexibility and effectiveness in 
activities like exploration and decision-making in unpredictable environments. With the 
help of the Gaussian processes, robots can be used to model the uncertainty in the 
environment and constantly update the strategy as they receive new information (Chen 
et al., 2023).   

1.5 The Information Theory and Topological Clustering Role  

Topological clustering is another strategy, which has the capability of tackling the 
challenge of non-stationary data. Masuyama et al. (2019) explore the field of topological 
clustering based on the principles of adaptive resonance theory (ART) and information-
theoretic learning. Their results are used to show how this approach can adapt 
dynamically to changes in the distribution of data over time, and therefore address 
concept drift. Combining ART with information-theoretic learning, this method provides a 
potent process of grouping time-varying data, which is indispensable in terms of pattern 
recognition and recognition of anomalies in dynamic settings (Masuyama et al., 2019).   

1.6 Information Theoretic Measures of Model Optimization 

The information theory is crucial in achieving the optimization of ML models to non-
stationary environments. The idea suggested by Hilbert (2017) is that the principles of 
information theory can guide the development of informational-age expanding and 
adaptable models. Through the emphasis on the amount of information that a system is 
capable of handling and learning, these principles contribute to the definition of the 
boundaries of the performance that is possible under the influence of ML. This view is 
crucial to understand the limitations in non-stationary situations since it provides a 
framework of analyzing how learning systems may evolve over a period of time 
(Hilbert, 2017).   
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1.7 Generalization in the evolving domain   

Xie et al. (2024) offer the ways to increase domain generalization with the help of dynamic 
latent representations. This solution focuses on making ML models more adaptable to 
new and unknown environments by focusing on their ability to generalize across a variety 
of, and changing, domains. The authors stress the significance of dynamic latent space, 
that enables a model to be sensitive and responsive to a change in data distributions over 
time. Such an approach is especially relevant in non-stationary settings, in which the 
ability to apply to new circumstances is essential to maintain model functionality (Xie et 
al., 2024).   

1.8 Predictive Coding; the Slowness Principle  

Another information-theoretic view of the dynamics of learning in non-stationary 
environments is the idea of predictive coding, which was explored by Creutzig and 
Sprekeler (2008). The idea here is that predictive coding postulates that both naturalistic 
and artificial systems enhance performance by reducing prediction error between 
anticipated and observed data on senses. This principle is in non-stationary situations 
where slow learning in the form of gradual modification of predictions in a system over 
time to prevent the traps of rapid, unsteady adjusting (Creutzig and Sprekeler, 2008).   

Non-stationary machine learning also has theoretical and practical problems, especially 
on the interpretation of information-theoretic limits in time. Since there is continuous 
learning to adaptive clustering and predictive coding, various methods are available in 
facing these challenges. However, more research should be done to perfect models that 
can learn effectively in such a dynamic environment. The presented work represents the 
basis of realizing the inherent limitations to the learning and adaptation abilities of AI, and 
in such a way, research on information-theoretic methods of learners to ML in non-
stationary conditions continues to be essential.   

Table 1: Key Features of Non-Stationary Processes and Machine Learning 
Challenges 

Feature 
Stationary 
Processes 

Non-Stationary 
Processes 

Machine Learning Challenge in 
Non-Stationary Environments 

Data 
Distribution 

Invariant over time Varies over time 
Difficult to adjust models to 
changing data distributions 

Predictability 
High predictability of 
data 

Low predictability of 
data due to dynamic 
changes 

Models face challenges in 
predicting future states due to 
dynamic data 

Adaptation to 
Changes 

Low adaptability 
needed 

Continuous 
adaptation required 

Models must adapt continuously 
while maintaining previous 
knowledge 

Learning 
Stability 

Stable over time 
Highly variable, time-
dependent 

Requires constant learning to 
avoid catastrophic forgetting 

Computational 
Resources 

Adequate resources 
for training 

High computational 
resources needed for 
on-the-fly adaptation 

Resource constraints hinder real-
time learning and adaptation 
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Correlation of 
Data Points 

Strong correlation 
between data points 

Weak or evolving 
correlations 

Models must handle evolving 
correlations between data points 

Examples 
Controlled static 
environments (e.g., 
controlled systems) 

Real-world dynamic 
environments (e.g., 
financial markets, 
robotics) 

Complex, dynamic environments 
where training data are not static 

 
2.0 LITERATURE REVIEW   

2.1 The Non-Stationary Environments and the Problems of the Machine Learning  

Non-stationary environments are characterized by unsteady data distributions, which are 
time-dependent, and therefore can create a big barrier to ML systems. Such settings 
experience changes in the statistical characteristics of data with time, which makes 
traditional models of such changes based on the assumption of stationarity less useful. 
Musaev et al. (2025) suggest a metric-based forecast system of non-stationary process 
dynamics, which is a new forecasting metric able to adjust to the changing environment 
circumstances. Their work throws light on the need of considering time-effects in the 
process of forecasting in non-stationary conditions.   

2.2 On-Going Learning in Non-Stationary Place   

Constant learning has become the key to overcoming the constraints of non-stationary 
environments. Kumar et al. (2025) study the interaction between the continual learning 
and reinforcement learning in computational limited settings. They highlight that learning 
systems should be able to change with new data distributions they usually come across 
with as time passes without forgetting the previously learned information which is a 
phenomenon referred to as catastrophic forgetting. Their results indicate that 
reinforcement learning, when computational constraints are imposed on it, is forced to 
come up with strategies that are responsive to the continual changes in the data.   

2.3 Non-stationary environment model falsification  

The model falsification proposed by Murari et al. (2019) is an experimental design 
technique of a non-stationary environment. They also talk about the way that the 
methodology based on falsification can be used to optimize models according to changing 
environmental dynamics. This adaptation mechanism is important in dealing with real 
world data which is unpredictable and changing in nature. The ability to falsify models 
and continually improve the models is what makes the ML models both robust and flexible 
over time, despite changing data distributions.   

2.4 Dynamic Reinforcement Learning as Self Supervised Learning  

Schmidhuber (1990) suggested the use of fully recurrent neural networks (RNNs) to self-
supervise such networks to overcome the non-stationary environment. His work formed 
the basis of the dynamic reinforcement learning systems with the ability to plan and adapt 
to the constantly changing data. This method will allow a continuous learning process to 
take place, as recurrent neural networks will allow models to make predictions and 
decisions using past and current data and adjust to changing situations.   
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2.5 Adaptive Information Gathering of Robot Systems  

Chen et al. (2023) discuss non-stationary Gaussian processes to use in the adaptive 
robotic information collection. By doing so, robots can learn and change with time, 
successfully gathering the information, adjusting the strategy, and making decisions 
within dynamic settings. It is especially essential when it needs to be used in an 
environment that changes continuously, including autonomous vehicles and industrial 
robots.   

2.6 Topological Clustering and Information theoretic Learning  

Masuyama et al. (2019) investigate the topological clustering, presented by the adaptive 
resonance theory (ART) in the context of information-theoretic learning. Their approach 
includes the clustering of data which is responsive to changing nature of non stationary 
environment. Using the combination of ART and information-theoretic learning, the 
approach manages to update the clusters dynamically over time as new information is 
presented, which is an essential aspect in the operation of the ML systems that are under 
the non-stationary conditions.   

2.7 Theoretical Informatics of Growth and Learning   

Hilbert (2017) suggests that information-theoretic approach to the growth in the 
information age. This strategy drives the value of information as a learning and decision-
making tool in changing environments. Hilbert states that the more information an AI 
system can process and use, the more adaptable it is and the more it can grow according 
to the alterations in data. This information is especially applicable in non-stationary 
conditions, where the inflow of data is continuous and requires effective extraction of 
information.   

2.8 Domain Generalization with Dynamic Latent Representation   

Xie et al. (2024) talk about improving the domain generalization through the dynamic 
latent representations. The representations enable models to make inferences in different 
environments where dynamic and non-fixed data distributions are learned. The method 
is particularly effective in non-stationary conditions, where the distributions of data 
change, and it requires the flexibility of the model.   

2.9 Deployment-efficient Reinforcement Learning   

In their study, Huang et al. (2022) explore the issue of reinforcement learning deployment 
efficiency in non-stationary conditions with lower bounds and optimality. According to their 
work, these systems have to be run within some theoretical limits to be efficient under the 
real world usage, but their limitations due to the non-stationary character of the data. To 
achieve success in deployment in the dynamic environment, optimization of learning 
algorithms in this range is essential.   

2.10 Predictive Coding and Slowness Principle in Non-stationary Environment  

Creutzig and Sprekeler (2008) use an information-theoretic method of learning in non-
stationary environments, namely, predictive coding and the slowness principle. The 
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slowness principle suggests paying attention to the slowly changing variables to be able 
to model the dynamic environment. Through predictive coding, systems develop forward 
states based on the previous knowledge and hence, more apt to new information and 
stable in the face of environmental fluctuation.   

2.11 Information Pruning to Dynamic Learning   

Anagnostopoulos and Gramacy (2013) discuss the issue of information-theoretic data 
discarding of dynamic data streams. They also talk about dealing with massive amounts 
of incoming data that might not be of use in the decision-making that is taking place. The 
selective discarding of data of less importance enables the models to focus on relevant 
data which enhances performance when operating within non-stationary environments 
where the relevance of certain data varies with time.   

2.12 Non-Stationary Bandits of Reinforcement Learning 

Liu et al. (2023) introduce a concept of non-stationary bandits that is used to solve the 
decision-making task when the distribution of rewards varies with time. Whereas in the 
multi-armed bandits model, the rewards are constant, in the non-stationary bandits, the 
rewards are changing at any given time which is a challenge to adaptive decision-making. 
They give the basis of their work to reinforcement learning algorithms that can 
dynamically adapt to non-stationary rewards.   
 
3.0 METHODOLOGY   

The study examines the information-theoretic ingredients of the limitations of ML 
algorithms under non-stationary conditions. The main aim is to identify the impact of these 
limitations on the efficiency of learning and to offer the frameworks of learning to 
understand the ML limitations in dynamic environments. These constraints are 
systematically analyzed and modeled using the methodology.   

3.1 Problem Formulation and Conceptual Framework  

The dynamics of underlying processes in the non-stationary environment depend with 
time and hence making predictive modeling difficult. To address the problem, the 
methodology starts with the formalisation of the problem as a non-stationary dynamic 
forecasting task based on the metric-based ML framework of Musaev, Makshanov, and 
Grigoriev (2025). This includes the task of characterising the environment as dynamically 
changing metrics which are updated in real time to capture such dynamics, and offer the 
advantage of enabling ML models to respond well to changes in time.   

3.2 Reinforcement Learning Continuous Learning  

The key to dealing with non-stationary environments is reinforcement learning (RL). The 
approach embraces the approach of Kumar et al. (2025) in which continuous learning is 
considered computational constrained RL. This ensures that agents are able to keep on 
learning based on the new experiences and are able to effectively deal with the limitation 
of resources. It is centered on exploration and exploitation balancing algorithms and 
allows RL agents to evolve over a long time.   
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Model Falsification and Experimental Design  

Model falsification is an important tool used to measure and improve the performance of 
the learning systems within dynamic environments. The approach of falsification of 
hypotheses on the environmental behavior proposed by Murari et al. (2019) is introduced, 
according to which the hypotheses are consistently tested on the real information. This 
makes sure that ML models are rooted in reality, which ensure that models can be 
continuously tuned on the basis of real-time feedback, which is an essential aspect in the 
design of experiments in non-stationary conditions.   

3.2.1 Simulation setup and data generation (RL) 

To provide empirical evidence for reinforcement learning behavior under changing 
conditions, reward–learning curves were generated using a Q-learning agent in a 
standard control benchmark (CartPole). The environment dynamics were treated as a 
controlled proxy for non-stationary decision-making, and the agent was trained across 
repeated episodes using an ε-greedy exploration policy. At each episode, the cumulative 
reward was recorded and aggregated across training to produce a learning curve (total 
reward vs. episode index). This dataset was used to visualize how policy performance 
evolved over time under continual interaction and adaptation constraints. 

Graph 2 

 

Figure 2: Reinforcement learning performance over time (Q-learning, CartPole). 

Total episodic reward across training episodes, illustrating learning progression and 
stabilization as the agent adapts its policy through reward feedback. 
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3.3 Topographical Clustering of Data Representation   

Topological techniques provide the structure of non-stationary data. The topology used 
in the methodology is the topological clustering of Msuyama et al. (2019) through adaptive 
resonance theory produced in the information theoretical framework based on entropy 
measures of cluster relevance. Such clustering makes it easy to manage the increasing 
amounts of data since it splits the data into meaningful, independently processable 
windows.   

3.4 Latent Variables Dynamic Representations   

A modern system of dynamic learning deals with dynamic latent representations, which 
are explained by Xie et al. (2024). This approach builds a framework which includes latent 
variables that have the ability to capture the features of data which change with time 
hence flexibility in representation. Such latent variables are developed, which enables the 
model to project on changing realms and reduce retraining needs. 

Table 2: Review of Machine Learning Methods for Non-Stationary Environments 

Technique Description Benefits Difficulties Reference 

Continual 
Learning 

A paradigm of training 
that builds models 
continually with 
incoming data streams, 
avoiding catastrophic 
forgetting. 

Supports smooth 
adaptation to 
changing data 
distributions in real-
time applications. 

Requires advanced 
regularization and 
memory 
management to 
prevent harmful 
interference 
between learned 
concepts. 

Kumar et al., 
2025 

Reinforcement 
Learning (RL) 

A dynamic decision-
making model where 
agents learn from 
actions and reward 
feedback in changing 
environments. 

Useful for adaptive 
policies in real-time 
strategies and 
robotics. 

High computational 
cost; slow 
convergence when 
environmental 
statistics change 
rapidly. 

Schmidhuber, 
1990 

Model 
Falsification 

The process of 
identifying and removing 
models that perform 
poorly in varying 
environmental 
conditions. 

Enhances reliability 
by ensuring only 
empirically 
validated models 
are used. 

Risk of losing 
potentially valuable 
predictive capacity; 
requires significant 
computational 
resources. 

Murari et al., 
2019 

Adaptive 
Resonance 
Theory (ART) 

A neural network that 
uses competitive 
learning to stabilize 
clusters while 
preserving the plasticity-
stability balance. 

Effective for data 
streams where 
temporal 
development 
doesn’t impact 
cluster integrity. 

Poor scalability with 
high-dimensional or 
large datasets; 
requires frequent 
parameter updates. 

Masuyama et 
al., 2019 

Gaussian 
Processes 
(GPs) 

A Bayesian non-
parametric regression 
model used to model 
functions as a 
distribution of latent 
variables, adaptable to 
non-stationary effects. 

Provides a robust 
framework for 
lifelong learning 
and quantifying 
uncertainties. 

Computational 
complexity 
increases cubically 
with dataset size, 
making it difficult for 
large-scale 
applications. 

Chen et al., 
2023 
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Topological 
Clustering 

A clustering algorithm 
based on algebraic 
topology, clustering data 
by inherent topological 
properties like 
persistence diagrams. 

Well-suited for 
dynamic 
distributional 
structures and slow 
changes in cluster 
topology. 

High computational 
cost; scalability 
issues with large 
datasets. 

Masuyama et 
al., 2019 

Dynamic Latent 
Representations 

A learning strategy that 
adapts time-varying 
latent representations 
for long-term prediction 
across changing 
distributions. 

Improves domain 
generalization by 
aligning latent 
space with 
changing 
environments. 

Careful tuning of 
latent dimensionality 
and structure is 
needed to prevent 
overfitting and 
under-
representation. 

Xie et al., 
2024 

Adaptive 
Robotic 
Information 
Gathering 

Autonomous robots use 
probabilistic models 
(e.g., Gaussian 
processes) to iteratively 
improve their 
perceptions and make 
context-sensitive 
decisions in dynamic 
environments. 

Promotes effective 
information 
gathering and 
flexible discovery in 
changing 
environments. 

Requires real-time 
inference processes 
and continuous 
learning to maintain 
performance in 
highly dynamic 
environments. 

Chen et al., 
2023 

3.5 Deployment-Efficiency-Constrained Reinforcement Learning 

Reinforcement learning when applied to non-stationary environments requires efficiency 
constraints to be strictly taken into account. The current research employs the 
methodological framework utilized in Huang et al. (2022) to derive lower limits on the 
efficiency of reinforcement-learning deployment, hence making sure that the algorithms 
make their best use of accessible resources as dictated. This involves reduction of 
computing load and memory use as well as achieving proper real time predictive 
performance.  

The optimality conditions are defined formally to establish the minimum resource 
allocation to be able to maintain high performance systems at varying environmental 
conditions. This methodological feature is important to the fact that the machine-learning 
models can be scaled to real-life application, where both computational and memory 
resources are often limited (Huang et al., 2022).   

3.6 Information-Theoretic Data Discarding   

Due to the fact that data streams in non-stationary systems are usually noisy and 
outdated, an information-theoretic method of data discarding is used, in the direction of 
Anagnostopoulos and Gramacy (2013). The methodology is based on entropy-based 
measurements to select and eliminate the irrelevant or redundant data, and therefore only 
the most informative aspects can be learnt. The strategy makes the computation process 
less burdensome and increases the overall efficiency of the learning process. The model 
chooses which data to discard (selectively), therefore focusing on assimilating the most 
informative experiences, and it has been shown to be quicker and more effective in 
generalisation in non-stationary environments.   
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4.0 RESULT   

4.1 Essential Limitations to Learning Non-Stationary Processes 

Non-stationary processes are challenging to learn since the distribution of data changes 
as time progresses. Musaev, Makshanov, and Grigoriev (2025) explored the application 
of metric-based machine-learning forecasting to overcome those issues in the dynamic 
process dynamics. Their work determines the main limitations that restrict the accuracy 
and efficiency of models in the environment where there are time-dependent changes in 
distributions. This is because the failure of traditional models to change without retraining 
or recalibration is a source of fundamental bottleneck, highlighting the challenge of having 
the best predictions in environments where process dynamics constantly change.   

4.2 Constant Learning and Computational Constraints 

The article by Kumar et al. (2025) focuses on the analysis of continual learning as a 
computationally constrained problem of reinforcement-learning. Their reasoning is that, 
as much as continuous learning is a promising way to get out of the non-stationary 
conditions, it is constrained by computational capacity and the complexity of the model. 
Their results show that a system facing new information has to trade-off between stability 
and plasticity as it has to maintain previous knowledge and also integrate new 
information. Such balance is critical to those systems that work in non-stationary 
conditions, and quick adaptations as well as long-term learning are demanded.   

 

Fig 1: Balancing Stability and Plasticity in Continual Learning 

4.3 Model Falsification in Non-stationary Environments  

Murari et al. (2019) presented a model falsification strategy of learning in non-stationary 
conditions. Their approach uses falsification as a methodology to design experiments, 
thus resolving the issue of measuring the performance of the model when assumptions 
on the state of the system are unlikely to hold. This method can be used to generate new 
models which are aligned to new data by using information-theoretic principles and 
rejecting models that do not fit new data in real-time. The technique plays a significant 
role in the robustness of models in environments where data distribution is changing on 
a continuous basis.   
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4.4 Dynamic Latent Representations and Domain Generalization 

As suggested by Xie et al. (2024), dynamic latent representations are used to improve 
evolving domain generalisation. When applied in the non-stationary environment, they 
claim that the concept of static representations tend to be ill-adapted to changing data 
properties which leads to poor performance.  

Through their studies, they have proved that the addition of dynamic representations 
enables the models to generalise over changing domains and, in the process, alleviate 
distribution shift. It is also in this strategy where the points are made that models in non-
stationary environments need to be able to constantly change their internal 
representations, so as to enhance performance.   

4.5 Reinforcement Learning Under Non-Stationary Environment: Lower Bound and 
Optimality 

The article by Huang et al. (2022) is about the implementation of reinforcement learning 
into the non-stationary environment and the lower limits and optimality of that 
environment. They emphasize that reinforcement-learning agents can in some cases not 
achieve optimal performance when facing non-stationary dynamics, unless some special 
conditions, including the need to have effective exploration-exploitation trade-offs, are in 
place. According to their research, knowledge of these lower bounds can be used to 
develop more efficient algorithms to be used in real-time in non-stationary environments, 
especially in relation to computational efficiency and convergence rates.   

4.6 Robotic Information Gathering with Adaptive Gaussian Processes 

Chen, Khardon, and Liu (2023) focus on the adaptive robotic information collection of 
non-stationary Gaussian process. Their work describes the adaptation of Gaussian 
processes to learning in the case where the underlying data-generation process is non-
static. The model is more effective in decision-making within robots by evolving the 
dynamics through time-varying the kernel functions to improve the decision-making 
process. This method shows potential in enhancing flexibility and resiliency of robotic 
systems in the real world where the environmental factors continue to vary.   

4.7 Data discarding based on Information theoretic data discarding of dynamic 
trees  

Anagnostopoulos and Gramacy (2013) suggest an information-theoretic data discarding 
algorithm in dynamic trees of data streams. This approach is specifically relevant to those 
systems that need to keep decision trees, but that have to change in response to non-
stationary data sources.  

The approach is able to cut down the information that is not so important as time goes by 
thus simplifying the model and making sure that the most informative data are being 
retained to make a decision. This information-shedding plan is essential in dealing with 
the informational clutter that often comes along with non-stationary setups where the 
relevance of information changes with the coming of new information.   
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4.8 Information-Theoretic Dynamic Decision-Making 

Schmidhuber (1990) and Creutzig and Sprekeler (2008) give the background theory of 
self-supervised learning and predictive coding in non-stationary environment. The article 
of Schmidhuber referencing recurrent neural networks in studying dynamic reinforcement 
learning highlights the possibility of such models to evolve over time by using the previous 
experiences to make decisions in the future. The information-theoretic predictive coding 
by Creutzig and Sprekeler strengthens the arguments of ensuring a minimal amount of 
surprise or uncertainty during decision-making. The two theories highlight that models are 
needed to effectively update internal states so as to generate trustworthy forecasts in 
non-stationary situations.   
 
5.0 DISCUSSION   

This part investigates the fundamental issues and knowledge connected with information-
theoretic constraints of machine learning in non-stationary contexts. These environments 
are dynamic and change with time, putting in place basic constraints to AI abilities. In this 
case, major points like continuous learning, evolutionary prediction, adaptation of model, 
and strengthening gain are examined in the framework of the non-stationary environment.   

5.1 Recurrent Education and Resource Limitation 

In non-stationary conditions, continuous learning is a key challenge, and such models 
need to be able to adapt to changes without forgetting the previous knowledge. Kumar et 
al. (2025) address computational problems that occur in these cases, especially in the 
framework of reinforcement-learning. The adaptive capacity of the model with time may 
be hindered by the limited memory and processing power. Their work draws attention to 
the fact that as the environment evolves, the ability to retain past information and adjust 
it with new potentially conflicting data is becoming more complicated that there are 
fundamental constraints on accuracy and computational efficiency.   

5.2 Adaptive Models and Metric Based Forecasting   

The paper by Musaev et al. (2025) suggests metric-based forecasting non-stationary 
process dynamics, using dynamic metrics as the model of changing nature. Nonetheless, 
non stationary, time varying patterns, which appear in non-stationary environments, are 
frequently not reflected in traditional measures, especially in weather forecasting or long 
term stock market projections where external conditions change in an unpredictable 
manner. Therefore, although metric-based forecasting provides practical estimates, it is 
bound to be less accurate in the prediction when the underlying systems vary 
quickly/drastically or in a random manner.   

5.3 Theoretical falsification of non-stationary environments 

Murari et al. (2019) explore the concept of model falsification as one of the methods of 
dealing with non-stationary environments and focus on the use of this tool with the help 
of experimental design. They are concerned with determining when the assumptions of a 
model become invalid due to the changing environment. Even though we can recalibrate 
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models in real time with the help of falsification, it shows that there is no guarantee that a 
model will be perfectly accurate in the long run, particularly when other factors are not 
included in the models. The unpredictability that is inevitable due to non-stationary 
conditions poses a structural challenge in the establishment of models that can be 
optimally adapted.   

5.4 The Limitations of Exploration and Reinforcement Learning 

Non-stationary conditions in reinforcement learning make the exploration exploitation 
dilemma worse. Huang et al. (2022) discuss the deployment efficiency, which defines 
lower limits of performance in dynamic situations. The non-stationary environments cause 
the disruption of the state-action mappings, often changing the optimal policies and 
leading to the necessity to explore. However, more exploration needs more computational 
resources which does not necessarily provide valuable information when the environment 
is unpredictable which places substantial information-theoretic constraints on learning.   

5.5 Information -Theory and Topological Clustering  

Masuyama et al. (2019) discuss the adaptive resonance theory of topological clustering, 
which involves the utilization of information theoretic learning strategies on dynamically 
changing streams of data. Their publication demonstrates the ability of clustering to 
handle changes in the environment, and however, there are always limits to such 
adaptation when the distribution moves too fast relative to the adaptability of the 
algorithm. The information-theoretic methods, promising as they are, are limited by 
entropy in more and more complicated data spaces, and the resulting computation 
requirements are growing exponentially, and may push whole computational systems to 
unachievable limits.   

5.6 Dynamic Representations of Domain generalisation 

This method is better in enhancing flexibility, but at the same time, it reveals the 
boundaries of generalisation. Adaptation of latent representations to different 
environments makes it harder to be robust in many environments, as the more data 
changes, the harder it is to balance flexibility and stability.   

5.7 Predictive Coding and the Principle of Slowness   

Creutzig and Sprekeler (2008) apply the meaning of predictive coding and slowness 
principle to dynamic systems. Such principles are useful in making predictions using 
previous experience but when rapid changes take place, the predictability of changes is 
reduced thereby nullifying the hypothesis of gradual evolution. The principle of slowness 
comes to grief in unstable systems (financial markets or climate dynamics) the predictive 
errors become large in such systems.  Information-theoretic method to the interpretation 
of machine learning in non-stationary conditions reveals the inherent constraints of the 
dynamic conditions. Although the sorts of strategies that could be identified include the 
continuous learning process, the use of metrics to make predictions, the falsification of 
models and adaptive clustering, they are limited by the continued complexities that are 
being experienced in the target environments. These limitations are due to fundamental 
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information-theoretic concepts that define the trade-off between the computational 
efficiency, flexibility and predictive power. Future studies need to resolve such limits in 
order to come up with techniques that are more consistent with the dynamics of the real 
world that are not stationary.   
 
6.0 CONCLUSION   

The exploration of information theoretic limits of machine learning in non- stationary 
processes explains the inherent limitations of AI systems in further training. With the 
changing field of machine-learning methods, it is important to understand such 
shortcomings to create more efficient and adaptable systems that can be applied in the 
dynamic setting.   

6.1 Limitations of Non-stationary Processes  

Machine-learning models, particularly models that are intended to predict non-stationary 
processes, are faced with notable difficulties in predicting and adjusting to variable 
dynamics. Musaev et al. (2025) illustrate the challenges of the metric-based forecasting 
approaches that have limitations posed by the requirement to keep up with the changes 
in the environment. These issues render the need of models that can dynamically update 
and adapt to changing streams of data.   

6.2 On-Going learning and Re-enforcement Learning   

It is the constant learning that can help reduce limitations posed by non-stationary 
environments. Kumar et al. (2025) investigate the interaction of the process of continuous 
learning with computationally limited reinforcement learning, which makes the process of 
learning in constantly dynamic environments challenging. Such limitations are dictated by 
the need to ensure that the models can absorb new information without forgetting the 
already obtained information and this requires complex architectures that will enable the 
models to maintain stability as well as flexibility.   

6.3 Model Adaptive Techniques and Falsification   

In non-stationary settings, model falsification is a crucial way of improving the 
predictability of learning algorithms. Murari et al. (2019) present a model falsification of 
experimental design, which aims at invalidating inappropriate models in real-time, thus 
making the systems resistant to instability in dynamic situations. Such practice is an 
essential part of AI systems that are to be used in changing environments when current 
models are not sufficient.   

6.4 Reinforcement Learning in Area based Dynamics   

The theme of sustaining optimal decision-making through time in non-stationary 
environments highlighted by Schmidhuber (1990) in his work on recurrent neural 
networks in reinforcement learning makes it difficult to compare current decision-making 
with that of the past. Though self-supervised RNNs have shown potential to react to 
changing conditions, the efficiency of self-supervised RNNs is restricted by the 
computational needs of the process of constantly learning on time-varying data.   
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6.5 The Adaptive Robotic Systems and Gaussian Processes 

Chen et al. (2023) use non-stationary Gaussian processes to adaptive robotic information 
obstruction, which gives an indication of how robots can fit in a changing setting. Their 
study demonstrates the power of Gaussian processes in non-stationary data modelling in 
addition to weakness of their complex processes as well as the necessity of real-time 
updates.   

6.6 Information Theory and Topological Clustering  

Masuyama et al. (2019) suggest that one of the solutions to the problem of non-stationary 
environments is offered by the topological clustering. Their approach is more efficient in 
processing and classifying the changing data as they dynamically respond to the 
changing data environments by using adaptive resonance theory along with information-
theoretic learning. However, its real-world implementation is still limited considering it 
requires large computational capabilities and memory.   

Domain Generalisation and Dynamic Latent Representations Domain generalisation is a 
technique used in the field of neural networks to generalise the knowledge acquired 
during training to new domains (similar to how the neural network was trained).   

Xie et al. (2024) present a new strategy based on the improvement of domain 
generalisation with the help of dynamic latent representations, which is significant in terms 
of models that should function in non-stationary conditions. They note in their study that 
dynamic representations can be used to enhance generalisation in various settings, and 
that it is also challenging to fine-tune representations in the real world.   

6.7 Reinforcement Learning Lower Bounds and Optimality  

Huang et al. (2022) offer useful information on the lower bounds and optimality of 
reinforcement learning in the non-stationary environment. They provide a guideline on 
understanding the limits of reinforcement learning in real life applications especially in 
deployment efficiency by defining these boundaries. Nevertheless, even real-world 
implementation is limited by such lower limits and additional algorithm development is 
required.   

6.8 Data Discarding Information-Theoretic  

Anagnostopoulos and Gramacy (2013) investigate the information-theoretic data 
discarding to simplify processing in dynamic situations. Although eliminating irrelevant 
information can be very efficient in the process of learning, it is also questionable due to 
loss of information that might be very important in offering long-term adaptation.   

6.9 Theoretical and Real- world Issues of Non-stationary Environments 

The analysis of non-stationary setting in terms of information-theoretic perspective 
provides informative theoretical understanding of what can be done within the boundaries 
of machine-learning. Yet, practical limitations tend to face the theoretical models in reality 
as studies by Masuyama et al. (2019) and Ji et al. (2025) both indicate. The ongoing 
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adaptation and the stability of the models are still one of the issues requiring new 
solutions.   

The specified information-theoretic limitations demonstrate how complicated the 
implementation of machine-learning systems in non stationary setting can be. Although 
the model falsification, continual learning, and adaptive techniques do provide the 
possible solutions, their practical usage is still limited by the computational efforts, along 
with constant adaptation requirements. The next step in research should be to improve 
adaptability and efficiency of learning algorithms in order to adapt to the dynamics of real 
world data. Increased capabilities of machine learning in overcoming the challenges of 
non-stationary environments can be reached through the development of information-
theoretic research into the field, which will contribute to the development of the 
boundaries of the AI capability over time. 
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