
Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 55 Issue: 10:2022
DOI10.17605/OSF.IO/F3ZCE

Oct 2022 | 30

FAULT LOCALIZATION MODEL FOR EVALUATING THE CAPABILITIES

OF AUTOMATIC PROGRAM REPAIR WITH CHECKPOINTS

T. MAMATHA
Research Scholar, Dept. of CSE, JNTUA University, Anantapuramu, Andhra Pradesh, India.
Email: mamathat7@gmail.com

B. RAMA SUBBA REDDY
Professor, Dept. of CSE, Anantha Lakshmi Institute of Technology and Sciences, Anantapuramu, AP, India.
Email: rsreddyphd@gmail.com

C SHOBA BINDU
Professor, Dept. of CSE, JNTUA University, Anantapuramu, Andhra Pradesh India.
Email: shobabindhu@gmail.com

Abstract

Fault localization is a key phase in the automatic repair of programs because correct identification of
program areas that are most closely linked with a fault significantly influences the efficiency of the patching.
Most Automated Program Repair (APR) tools use common fault location methods, which are not integrated
tightly into the overall program repair process and hence provide only a poor efficiency. Each year, software
businesses spend several hours debugging and correcting faults for developers. Automated program repair
can decrease debugging expenses. Existing automated repair solutions, such as Genprog, TSP Repair,
and Sketch Fix, are highly promising but cannot repair all defects. We analyzed fault localization on
automatic repair techniques with fault reduction techniques. The main challenges are to discover code
semantically comparable to defective code and integrate it into the faulty program. By extending the time
needed to discover a possible remedy, APR performance will be degraded. Furthermore, the correctness
of the program repair will be compromised since APR will update fault-free declarations that have a higher
repair priority than a real incorrect declaration. In this research, an Effective Model for Fault Localization
using Checkpoints for Automatic Program Repair (EMFLC-APR) is proposed that improves the
performance of the system and the time for spending faults can also be reduced. The proposed technique
provides a feedback loop between the operations for identifying the sources of the issue and the work to
generate and evaluate possible remedies. The feedback loop allows partial assessment findings of potential
remedies to be used to more correctly discover errors and ultimately lead to processes with enhanced
efficiency and effectiveness. The proposed model exhibits better efficiency in fault localization for automatic
program repair.

Keywords: Fault Localization, Automatic Program Repair, Debug, Error Correction Time, Faulty Code.

1. Introduction

A debugging process includes finding and fixing software bugs. Program repair using
automated processes is known as Automated Program Repair (APR), and it promises to
reduce debugging costs significantly [1]. Fault location (FL) is used in APR techniques to
guide a repair tool and divides the code into code segments with a higher probability of
error. When using an APR tool [2], the code that is most likely to have errors can be

mailto:mamathat7@gmail.com
mailto:rsreddyphd@gmail.com

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 55 Issue: 10:2022
DOI10.17605/OSF.IO/F3ZCE

Oct 2022 | 31

changed. Using FL techniques, a suspiciousness rating is calculated for each statement
to indicate the probability of an error. The calculated suspicion will be used to build an
ordered list of discrete statements by the repair tool [3]. An APR's efficiency, performance,
and repair accuracy can all be impacted by the FL technology [4] that is used to execute
the repair. APR effectiveness is a problem-solving capacity, whereas efficiency is the time
or sequence of operations required to discover a viable repair [5], and repair accuracy
reflects the retention of functional requirements by a potentially repaired program [6].

Fault location techniques that are ineffective may lead to incorrect repair decisions by
failing to find declarations where faults wait, giving a poor score to the true problem
statement, or identifying an excessive number of statements that may contain faults. APR
efficiency will be reduced if there are no incorrect statements. Because the APR alters
numerous fault-free statements inefficiently before reaching a problematic statement [7],
assigning low values to a defective statement has no effect on APR efficiency, but it
affects APR competence [8] and causes erroneous repairs. Too many reports, on the
other hand, could improve APR efficiency by increasing the likelihood of discovering an
available repair [9], but the repair will almost certainly be subpar and wrong. Using a fault
locating technique in the worst-case scenario can cause APR's performance to drop
because it will mark all assessment focuses as potentially incorrect. The process of fault
localization and bug fixing is shown in Figure 1.

Fig 1: Fault Localization Process and Bug Fixing

The number of variants formed by an APR technique to discover various repair outcomes
is reduced when using a fault location technique that finds fewer statements or places a
problematic assertion at the head of the list of potentially faulty statements (LPFS) [10].
Reducing danger of changing non-fault statements while improving repair accuracy are
only two advantages to use APR [11]. It's only been recently that academics have begun

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 55 Issue: 10:2022
DOI10.17605/OSF.IO/F3ZCE

Oct 2022 | 32

to look into how different technologies, expectations, and modifications to fault localization
approaches, as well as validation methodologies for patching, effect APR tool
performance.

To identify over-fitted modifications based on their source code attributes, machine
learning models make use of contemporary patch validation methodologies [12]. By
leveraging information gleaned from software components in a natural language [13], the
proposed method aims to improve auto repair procedures. By strengthening the limits
placed on potential repairs throughout the repairing and validation steps, the increased
fault location should allow APR tools [14] to develop patches for suitable fault locations,
resulting in better patch quality.

Retrospective fault placement, as well as localization, are proposed in this model as novel
locations for faults that improve precision while also boosting effectiveness and
integrating closely with regular automatic program repair methods [15]. Retrospective
fault location increases the search space for feasible repairs by giving a more fault
location technique. To improve the accuracy of fault localization [16], retroactive fault
location makes use of mutation-based fault location. Due to the notoriously long time, it
takes to carry out mutation-based fault localization, it's critical to do so as a step in the
program's normal repair process. In other words, the retrospective fault localization
creates a feedback loop that re-uses the candidate instead of just dismissing them, such
that the validation fails [17] to improve the accuracy of the fault location [18]. To improve
fault location for future analogous updates, candidate fixes that pass particular tests that
fail the originating program that is utilized.

2. Literature Survey

The three automated software repair methods are fault localization, patch creation, and
patch validation. Fault localization procedures are used immediately after receiving a bug
report to pinpoint the wrong code section analyzed by Gay et al. [1]. The modification of
a problematic code fragment following repair criteria based on adaptive computation or
code-based collaborations might create numerous potential patches. When evaluating
the validity of a candidate patch, regression testing is frequently employed, which includes
negative test cases and positive instances suggested by Liu et al. [4]. Until a patch is
found, this method can be used indefinitely. If a patch passes all of these tests, it is
considered authentic. Recent studies have centered on automated techniques of repair.

A new study area in broadly automated program repair has opened up because of
GenProg's use of genetic programming to mend programs with no specifications. This
topic has been studied before, however, as evidenced by the existence of earlier calls for
contracts to be met for the pre-and post-conditions analyzed by Goffi et al. [6]. There
hasn't been any real-world testing of the effectiveness of the JAFF model, which utilizes

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 55 Issue: 10:2022
DOI10.17605/OSF.IO/F3ZCE

Oct 2022 | 33

an evolutionary approach to correct broken java programs. HTML production mistakes in
PHP applications can be automatically resolved with PHP Repair.

Although many faults in real-world Java applications have been fixed successfully with
Par proposed by Sergey Mechtaev et al. [18], it is unknown if Sem Fix [27], which employs
symbolic execution to correct flawed C programs, scales adequately to large-scale
applications. Fixed templates generated from human-written remedies indicate that
semantic analysis might be costly. Gene-based algorithms are used in genetic
programming to find software programs that are specifically built to accomplish a given
task. To evolve populations and find more effective solutions in genetic programming,
similar to traditional genetic algorithms, genetic operations such as selection, crossover,
and mutation are used.

To automatically and comprehensively patch software maintenance flaws, GenProg is a
potential automated program repair solution suggested by Qi Xin et al. [20]. An algorithm
in GenProg, which uses genetic programming to create patches, directs the patch
generation process. Geng must first implement two crucial components, according to
YingfeiXionget al. [15]: a recognition of the resolution and a definition of fitness. The
patched program's AST is used by GenProg to illustrate the presentation problem.
GenProg's fitness function picks patches with high fitness that pass a large number of
test cases based on the results of test cases used to evaluate each patch. These patches
will be put to good use in the evolutionary process that moves forward. The only way to
know if a patch is good enough is to put it through a series of tests. FL methods produce
a suspiciousness score for each expression in the source code, indicating the likelihood
that the statement contains a bug. After that, statements are categorized based on how
much suspicion they arouse in the listener.

Developers can use the suspiciousness score to prioritize their investigation efforts.
However, Spectrum-Based Fault Localization (SBFL) is commonly used in software to
compare the behavior of successful execution to an unsuccessful one when it comes to
FL. SBFL keeps track of the dynamic characteristics of program execution for each test
in the suite. A suspiciousness score is calculated for each statement using SBFL methods
based on how many tests pass or fail. Statements that are executed more frequently in
the program have a higher suspiciousness score because they are more likely to include
errors during a failure run. According to Martin Monperrus et al. [25], many strategies
have been proposed to compute proposition suspicion ratings. CURE is a new NMT-
based APR technique with three major novelties. First, CURE pre-trains a programming
language (PL) model on a large software codebase to learn developer-like source code
before the APR task. Second, CURE designs a new code-aware search strategy that
finds more correct fixes by focusing on compilable patches and patches that are close in
length to the buggy code. Finally, CURE uses a sub word tokenization technique to
generate a smaller search space that contains more correct fixes.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 55 Issue: 10:2022
DOI10.17605/OSF.IO/F3ZCE

Oct 2022 | 34

3. Fault Localization Model with Checkpoints

For a long time, fault localization and automatic program repair have been integrated.
Traditionally, given a flaw in the software, fault localization recommends locations inside
the program that may be the source of the bug. Automatic Program Repair then tries to
alter those questionable areas to get rid of the issue [19]. Bad fault localization may result
in the omission of potential repairs if restrictive, or in the creation of unnecessary work if
it is too permissive [20]. According to studies, incorrect fault localizations occur frequently
in practice for test-based repair. This identifies the requirement for fault localization [21],
which can limit the space of alternatives while still ensuring that plausible causes for an
issue are not overlooked.

Let's consider an Input. JP is a Java program made up of classes, and TC is the test case
for JP. The tests for JP are classified into two groups: those who pass (TP) and those
who fail (TF). It's safe to expect that TP will just feature tests that show how much stronger
the program is after doing strength training. Using Fault Localization, pinpointing can be
done exactly where in a program an error occurred. Using algorithms based on dynamic
and static metrics, each screenshot is given a suspiciousness value. The more suspicious
a screenshot appears to be, the higher its score will be.

The suspiciousness levels are calculated from the program code as

Th
TPTC

TFTP
SL

N
i i

)max()max(

)max()(1
2

 (1)

Here δ is the count of faults that need not to be considered. This is the threshold value
considered that is dynamic based on the lines of code.

Fix Generation produces several enhancements to the input program JP for each step in
ascending order of suspiciousness. To prevent the suspicious limit condition, the
improvements aim to alter JP's behavior. Fix generation generates a list of potential fixes
that must be tested before being implemented. Fix Validation looks at each potential
repair to determine whether it genuinely fixes the fault that T uncovered. Using fix
validation, which has been utilized in traditional automated program repair, all available
tests T are performed against the other fix candidate, and only fix candidates that transfer
all tests graded according to the unreliability of the snapshots from which they were
derived are produced.

The similarity difference between the fixed and non-fixed bugs are calculated as

)(

1

TFTP

TSLN
i hN

 (2)

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 55 Issue: 10:2022
DOI10.17605/OSF.IO/F3ZCE

Oct 2022 | 35

To provide retroactive fault localization, the EMFLC-APR Fix Validation method of bug fix
validation is used. To successfully uncover changes in behavior in some stages, partial
fix verification uses only a subset of the currently available tests TC to operate on program
JP under fix. The bug fixing process is depicted in Figure 2.

Fig 2: Bug Fixing Process

Each patch varies depending on the software's difficulty, manual review might take
anywhere from a few minutes to several hours. Authors are also unavoidable when
comparing machine patches to human fixes, which is why the manual review approach
requires the participation of two writers at a minimum. If a patch doesn't need to be
removed, it's considered a correct patch; if it needs to be removed by all methods and no
additional investigation has been done, it's considered incorrect; and if it needs to be
removed by only one or two methods, further investigation is required. The
suspiciousness of every instruction is represented in Figure 3.

Fig 3: Suspiciousness Levels of every Instruction

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 55 Issue: 10:2022
DOI10.17605/OSF.IO/F3ZCE

Oct 2022 | 36

For each test case TC, the proposed model runs the program and records whether or not
it succeeds. Based on the frequency of successful and unsuccessful test scenarios, it
updates the suspiciousness score. The suspicious level update is performed as

SL

TP

failedtotal

TF
snesssuspicious

)(

_

)(
)(

 (3)

The bug identification and checkpoint fixing is represented in Figure4. If statement s is
suspect, the suspiciousness score will reflect that. The greater the level of suspicion, the
greater the likelihood that s is flawed. A test failure rate is represented by the number of
failed tests that are carried out. To sum it up, the total number of failed tests is equal to
the sum of all the test failures, both those that do not execute and those that do. S
represents the number of suitable testing cases that are executed.

Fig 4: Checkpoint Fixing

The checkpoints are set to the code that is not having errors. If any occurs in the program
the execution process is maintained at a previous checkpoint and then the occurred errors
are repaired. The checkpoints are fixed by using the equation

Checkpoint(SLN) =
1

LOC(JP)
∑ TP(N) + λ i,j

N
N

i=1
+ δ (4)

4. Results

In this research work, an Effective Model for Fault Localization using Checkpoints for
Automatic Program Repair (EMFLC-APR) is proposed for improving the performance
levels in APR. We evaluated the tests using the Defects4J benchmark that contains 357
defects from 5 open-source Java projects. The proposed model is compared with the

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 55 Issue: 10:2022
DOI10.17605/OSF.IO/F3ZCE

Oct 2022 | 37

existing Sketch Fix model in terms of Bug Identification Time Levels, Program Repair
Time Levels, Fault Localization Accuracy Level and Checkpoint Allocation Time Levels,
and Accuracy Levels in Automatic Program Repair.

Using an automated bug-fixing system, software issues can be repaired without the need
for human participation. Automatic patch generation, automatic bug correction, and
automatic program repair are all terms that refer to the same concept. Error, flaw, or fault
in software creates an unwanted behavior, such as producing an inaccurate or
unanticipated outcome. A program is considered buggy if it has numerous defects or if
the bugs severely impair its functionality. The bug identification time levels of the
proposed and traditional models are shown in figure 5.

Fig 5: Bug Identification Time Levels

Program repair automation has the potential to reduce these burdensome processes by
suggesting software bug fixes that are more likely to work. As an example, a program and
a statement of the accuracy criteria that the static program must meet are inputs to these
techniques. Test suites are commonly used in scientific research since failing one or more
of them indicates the existence of a bug that has to be corrected while passing one or
more tests indicates that the behavior should remain as it is. A set of software changes
that fixes the bug without disrupting other behavior is the final aim. The program repair
time levels of the proposed and traditional models are depicted in Figure 6.

Fig 6: Program Repair Time Levels

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 55 Issue: 10:2022
DOI10.17605/OSF.IO/F3ZCE

Oct 2022 | 38

Fault localization is an essential part of fault management systems since it helps pinpoint
the exact cause of network problems that have been identified. Unreachable hosts or
systems, delayed response, high utilisation, and so on are examples of fault symptoms.
The fault localization accuracy levels of the proposed and existing models are
represented in Figure 7.

Fig 7: Fault Localization Accuracy Level

There are two crucial decisions that a user must make when attempting to run a long-
running program on a cluster computer system. For the most part, on cluster systems,
the user must first decide the number of processors before the calculation begins, and
that number cannot be changed after the computation is underway. Processor allocation
is straightforward on a system without check pointing. The application should use as
many processors as possible to maximize parallelism while also minimizing execution
time. It is less apparent how many processors will be allocated when check pointing is
enabled. An application can't continue until a failed processor is fixed; otherwise, the
system will have to be restarted till it's fully functional again. The checkpoint allocation
time levels of the proposed and existing methods are shown in Figure 8.

Fig 8: Checkpoint Allocation Time Levels

The proposed model is accurate in fault localization and automatic program repair by
fixing the bugs accurately and quickly. The accuracy levels in automatic program repair
of the traditional and existing models are represented in Figure 9.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 55 Issue: 10:2022
DOI10.17605/OSF.IO/F3ZCE

Oct 2022 | 39

Fig 9: Accuracy Levels in Automatic Program Repair

5. Conclusion

Automatic Repair tools are imprecise when checked against bug benchmarks and can
only produce patches for a small subset of bug types. Repair tools need to be assessed
using a variety of bug standards and the types of issues that the procedures are designed
to solve, according to recent research. An effective fault localization model for evaluating
the capabilities of automatic program repair errors as-yet-undiscovered class of bugs
using checkpoints. As a sufficiently general methodology, retrospective fault placement
might be included in other start generating program repair methods, possibly with some
adjustments. Modern software repair techniques generate a large number of over-fitting
patches, and the automatically related test cases can be used to evaluate the accuracy
of the patch in scientific investigations. It can correct programs without no passing a bug
at all. It is also useful for designing domain-specific test generators to discard erroneous
patches, and only a small fraction of instantaneously created test possible conditions is
enough to identify incorrect bug fixes in scientific studies. One of our upcoming initiatives
is the development of a cutting-edge benchmark that includes useful defects for program
repair research. Fault clustering will be used in future work together with other recent
advances in fault localization to make fully automated program repair research even more
exciting in the years to come.

References

1) G. Gay and R. Just, “Defects4J as a challenging case for the search-based software engineering
community,” in Proceedings of the international symposium on Search-Based Software Engineering
(SSBSE), Oct. 2020.

2) K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyand´e, “Avatar: Fixingsemantic bugs with fix patterns of
static analysis violations,” in Int. Conf. on Software Analysis, Evolution, and Reengineering, 2019, pp.
1–12.

3) K. Liu, A. Koyuncu, K. Kim, D. Kim, and T. F. Bissyand´e, “LSRepair: Live search of fix ingredients for
automated program repair,” in Asia-Pacific Software Engineering Conference, 2018, pp. 658–662.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 55 Issue: 10:2022
DOI10.17605/OSF.IO/F3ZCE

Oct 2022 | 40

4) K. Liu, L. Li, A. Koyuncu, D. Kim, Z. Liu, J. Klein, and T. F. Bissyand´e,“A critical review on the
evaluation of automated program repair systems,” Journal of Systems and Software, vol. 171, p.
110817, 2020.

5) M. Motwani and Y. Brun, “Automatically generating precise oracles from structured natural language
specifications,” in Proceedings of the 41st International Conference on Software Engineering. IEEE
Press, 2019, pp. 188–199.

6) Goffi, A. Gorla, M. D. Ernst, and M. Pezz`e, “Automatic generation of oracles for exceptional
behaviors,” in International Symposium on Software Testing and Analysis (ISSTA), Saarbr¨ucken,
Germany, July 2016, pp. 213–224.

7) Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezz`e, and S. D. Castellanos, “Translating
code comments to procedure specifications,” in International Symposium on Software Testing and
Analysis (ISSTA), Amsterdam, Netherlands, 2018, pp. 242–253.

8) Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clment, Sebastian Lamelas, Thomas Durieux,
Daniel Le Berre, and Martin Monperrus. Nopol: Automatic repair of conditional statement bugs in java
programs.2016.

9) S. Mechtaev, J. Yi, and A. Roychoudhury. Angelic: Scalable multiline program patch synthesis via
symbolic analysis. In 2016 IEEE/ACM 38thInternational Conference on Software Engineering (ICSE),
2016.

10) Gulsher Laghari, Alessandro Murgia, and Serge Demeyer ANSYMO. Fine-tuning spectrum-based fault
localization with frequent method item sets. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, 2016.

11) Xuan-Bach D. Le. Towards efficient and effective automatic program repair. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, 2016.

12) Qi Xin and Steven P. Reiss. Leveraging syntax-related code for automated program repair. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2017.

13) Lushan Chen, Yu Pei, and Carlo A. Furia. Contract-based program repair without the contracts. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2017.

14) Ripon K. Saha, YingjunLyu, and Hiroaki Yoshida. Elixir: Effective object-oriented program repair. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2017.

15) Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. Identifying patch correctness
in test-based automatic program repair. In Proceedings of ICSE, 2018.

16) Ming Wen, Junjie Chen, rongxinwu, Dan Hao, and Shing-Chi Cheung. Context-aware patch generation
for better automated program repair. InProceedings of ICSE, 2018.

17) Xuan Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues. Jinru Hua, Mengshi Zhang, Kaiyuan
Wang, and Sarfraz Khurshid. Towards practical program repair with on-demand candidate
generation.In Proceedings of ICSE, 2018

18) Sergey Mechtaev, Manh-Dung Nguyen, YannicNoller, Lars Grunske, and Abhik Roychoudhury.
Semantic program repair using a reference implementation. In Proceedings of ICSE, 2018.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 55 Issue: 10:2022
DOI10.17605/OSF.IO/F3ZCE

Oct 2022 | 41

19) Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. Quixbugs: a multi-lingual
program repair benchmark set based on th equixey challenge. In Proceedings Companion of the 2017
ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications:
Software for Humanity Pages 55-56., 2017.

20) Qi Xin. Towards addressing the patch overfitting problem. In Software Engineering Companion (ICSE),
2017 IEEE/ACM 39th International Conference on, 2017.

21) Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. Better test cases for better automated
program repair. In In Proceedings of 2017 11th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Paderborn, Germany, September 48, 2017 (ESEC/FSE17),11 pages, 2017.

22) Qi Xin and Steven P. Reiss. Identifying test-suite-overfitted patches through test case generation. In
ISSTA, 2017.

23) Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin Monperrus. Test case
generation for program repair: A study of feasibility and effectiveness. CoRR, abs/1703.00198, 2017.

24) Github repository of our study is available online.https://github.com/KTH/quixbugs-experiment, 2018.

25) Martin Monperrus. Automatic software repair: A bibliography. ACM Comput. Surv., 51(1):17:1–17:24,
January 2018.

26) Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman. An empirical study on
mutation, statement, and branch coverage fault revelation avoid the unreliable clean program
assumption. In Proceedings of the 39th International Conference on Software Engineering pages 597–
608. IEEE Press, 2017.

27) Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. S3: Syntax- and
semantic-guided repair synthesis via programming by examples. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017, 2017.

28) Xuan Bach D Le, David Lo, and Claire Le Goues. History driven program repair. In Software Analysis,
Evolution, and Reengineering (SANER), 2016 IEEE 23rd International Conference on, volume 1,
pages213–224. IEEE, 2016.

29) M. Wen, R. Wu, and S.-C. Cheung, “Locus: Locating bugs from software changes,” in IEEE/ACM
International Conference on Automated Software Engineering, Singapore, 2016, pp. 262–273.

30) Koyuncu, T. F. Bissyand´e, D. Kim, K. Liu, J. Klein, M. Monperrus, and Y. L. Traon, “D&C: A divide-
and-conquer approach to IR-based bug localization,” ArXiv, vol. abs/1902.02703, 2019.

