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Abstract  

VLSI verification plays a pivotal role in ensuring the reliable functionality of integrated circuits (ICs). This 
paper delves into the investigation of the Advanced Peripheral Bus (APB) and Advanced High-performance 
Bus (AHB Lite) protocols, which are essential components in IC communication. The focal point of this 
study is the critical aspect of data transfer between master and slave cells. Both APB and AHB Lite protocols 
are instrumental in streamlining communication processes. The paper provides an in-depth understanding 
of these protocols and evaluates their efficiency in transmitting data from master to slave. The research 
emphasizes the importance of selecting a protocol that enables higher data transfer speeds, offers multiple 
transmission modes, ensures data security, and minimizes power consumption. The ultimate goal of this 
investigation is to identify protocols that enhance VLSI verification by optimizing IC communication. By 
uncovering the strengths and weaknesses of APB and AHB Lite, this study aims to contribute valuable 
insights into the selection and implementation of communication protocols for advanced integrated circuits. 

Keywords: VLSI Verification, APB, AHB Lite, AMBA, Communication Protocols, IC Communication, 
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1. INTRODUCTION 

The field of Very Large-Scale Integration (VLSI) has revolutionized modern electronics, 
enabling the integration of complex functionalities into a single chip. As the demand for 
high-performance and power-efficient integrated circuits (ICs) continues to grow, 
ensuring the reliability and functionality of these intricate designs becomes increasingly 
challenging. VLSI verification, a critical phase in the chip design process, aims to validate 
the correctness and robustness of the ICs before they are fabricated. 

One crucial aspect of VLSI verification is efficient IC communication, as it directly impacts 
the overall performance and power consumption of the chip. To facilitate seamless data 
exchange between various components of the IC, standardized communication protocols 
are employed. Among these, the Advanced Peripheral Bus (APB) and Advanced High-
performance Bus Lite (AHB Lite) protocols, part of the widely used Advanced 
Microcontroller Bus Architecture (AMBA), are of prime focus in this study. 

The APB and AHB Lite protocols cater to different communication requirements within 
the IC [4]. While APB follows a non-pipelined approach [15], AHB Lite offers enhanced 
performance with pipelining capabilities. The choice of the appropriate protocol 
significantly influences the speed, efficiency, and power consumption of the data transfer 
process. 
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In this paper, we delve into a comprehensive investigation of the APB and AHB Lite 
protocols, aiming to enhance VLSI verification through optimized IC communication [10]. 
We explore the fundamental concepts of these protocols, their strengths, and their 
limitations. Utilizing Verilog language and test-bench, we conduct synthesis and design 
experiments to evaluate their performance. 

The primary objective is to identify the most efficient communication protocol that ensures 
swift data transfer, multiple transmission modes, data security, and minimal power 
consumption. We believe that such a protocol will not only accelerate VLSI verification 
but also contribute to the development of advanced integrated circuits with superior 
functionality and performance. 

In the subsequent sections, we will delve into the intricacies of APB and AHB Lite 
protocols, examine their roles in master-slave communication within the IC, and analyse 
the impact of these protocols on data transmission efficiency. Through this exploration, 
we aim to provide valuable insights for selecting the most suitable communication 
protocol to optimize the VLSI verification process and advance the domain of integrated 
circuit design. 

Fig 1 shows AMBA Bus architecture diagram. The AMBA bus architecture is a widely 
used and standardized on-chip communication protocol developed by ARM (Advanced 
RISC Machines) for designing complex System-on-Chips (SoCs) and integrated circuits. 
It defines a set of interconnect protocols that facilitate communication between different 
components within the SoC. 

The primary components of the AMBA bus architecture are as follows: 

Advanced High-performance Bus (AHB): The AHB is a high-performance bus protocol 
designed for fast and efficient communication between high-speed modules and 
components within the SoC [5]. It supports pipelining and is suitable for high-bandwidth 
data transfers. 

Advanced Peripheral Bus (APB): The APB is a slower and simpler bus protocol compared 
to AHB. It is intended for connecting low-speed peripherals and other components that 
do not require high bandwidth. 

Advanced Extensible Interface (AXI): The AXI is a more advanced and flexible 
interconnect protocol [2], designed to cater to the increasing complexity of modern SoCs. 
It supports multiple channels, burst transfers, out-of-order transactions, and is suitable for 
connecting complex subsystems and memory interfaces. 

The AMBA bus architecture diagram would typically show these components 
interconnected within the SoC. The AHB and APB buses would connect various 
peripherals and modules to the central processing unit (CPU) or other processing 
elements. The AXI bus, being more versatile, could act as the main interconnect between 
different subsystems and memory elements, bridging the communication gap between 
high-performance and low-speed components. 
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Each bus (AHB, APB, and AXI) might have multiple masters and slaves connected to it, 
allowing for simultaneous data transfers and efficient data flow throughout the SoC. 

It's important to note that the exact architecture and interconnections within an AMBA-
based SoC can vary depending on the specific design and requirements of the system. 
However, the key components mentioned above are the fundamental building blocks of 
the AMBA bus architecture. 

In fig 1 the ARM processor acts as the central processing unit (CPU) and is responsible 
for coordinating the communication between different components using the AMBA bus 
architecture. 

Here's an explanation of the connections: 

The ARM processor is the primary processing unit that executes instructions and controls 
the overall operation of the system. 

The UART is a communication interface used for serial communication with external 
devices. It allows the SoC to exchange data with external peripherals or other systems 
[8]. Chip RAM serves as a fast-access memory that the CPU can use for storing and 
accessing data during its operations. It provides a high-speed memory interface for the 
processor. 

The Memory Interface is responsible for connecting the CPU to the external memory 
subsystem. It facilitates data transfers between the processor and external memory, 
allowing the system to store and retrieve data efficiently. The Keypad DMA is a 
specialized component that enables direct memory access for data coming from a keypad 
or other input devices. It allows data from the keypad to be directly transferred to memory 
without involving the CPU, reducing CPU overhead and improving data transfer 
efficiency. 

The AHB bus acts as a high-performance interconnect that connects high-speed modules 
and components within the SoC [1]. It links the ARM processor to other high-bandwidth 
components, such as the Memory Interface and Chip RAM. The APB bus serves as a 
simpler and slower interconnect compared to AHB. It connects low-speed peripherals, 
like UART and Keypad DMA, to the ARM processor. It provides a convenient means of 
communication for slower devices that don't require high bandwidth. 

In this representation, the AMBA Bus architecture facilitates efficient communication 
between the ARM processor, UART, Chip RAM, Memory Interface, and Keypad DMA. 
The AHB bus is used to connect high-speed modules like the ARM processor, Memory 
Interface, and Chip RAM, while the APB bus connects lower-speed peripherals like the 
UART and Keypad DMA. This hierarchical arrangement optimizes data transfer within the 
system, ensuring high-performance and efficient operation of the SoC. 
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Fig. 1: AMBA Bus functional block diagram 

While the AMBA standard defines the basic architecture and interconnect protocols, the 
User AMBA Bus architecture allows customization and extension to accommodate 
specific needs [14]. In the User AMBA Bus architecture, the primary components typically 
include: 

User-specific Master(s): 

These are custom masters that could be CPUs, DSPs, or other processing units tailored 
to the user's specific application needs. These masters initiate data transfers and control 
the overall communication within the system. 

User-specific Slave(s): 

These are custom slaves that may represent various peripherals, memory elements, or 
custom IP (Intellectual Property) blocks. The slaves respond to read and write requests 
from the masters and perform data transactions as per the protocol. 

User-specific Interconnect: 

This part of the architecture represents the interconnection mechanism between the 
masters and slaves. Depending on the application and performance requirements, the 
user can design a specific interconnect that suits the data transfer needs. It could be 
hierarchical, mesh, or any other custom topology. 

AMBA Protocol Interfaces: 

Although the User AMBA Bus architecture is customized, it often leverages the AMBA 
protocol interfaces (AHB, APB, AXI, etc.) to maintain compatibility with existing designs 
and standards. These interfaces provide a set of rules and protocols for communication 
between the masters and slaves. 
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User-defined Custom Protocols: 

In certain cases, users might introduce their custom protocols to cater to unique 
requirements. These custom protocols would define how specific masters and slaves 
interact within the system. 

User-specific Peripherals or IP blocks: 

The User AMBA Bus architecture might include specific peripherals or custom IP blocks 
that are not part of the standard AMBA architecture. These could be sensor interfaces, 
accelerators, or any other components tailored to the application. 
 
2. RELATED WORK 

In paper [1], this defines the performance of ARM (Advanced RISC Machines) for high-
speed and efficient data transfer between IP cores and subsystems within a System-on-
Chip (SoC). It is part of the AMBA (Advanced Microcontroller Bus Architecture) family of 
protocols and is commonly employed in complex SoC designs to achieve high-
performance communication. 

Furthermore, the AMBA AXI3 protocol offers a powerful and efficient solution for high-
speed communication within complex SoC designs. Its capabilities for high throughput, 
low latency, and flexibility make it well-suited for a wide range of applications, from 
consumer electronics to advanced computing systems. 

In paper [2], deals with the automated design and generation of complex System-on-Chip 
(SoC) architectures. In the context of VLSI (Very Large Scale Integration) design, SoC 
refers to an integrated circuit that combines multiple functional blocks or IP (Intellectual 
Property) cores, such as processors, memory controllers, and peripherals, into a single 
chip. 

The process of manually designing an SoC architecture can be time-consuming and 
complex due to the need to integrate different IPs, ensure proper communication between 
them, and optimize for performance and power efficiency. Automated synthesis, on the 
other hand, aims to streamline this process by using specialized tools and methodologies 
to automatically generate an SoC architecture based on given specifications and design 
constraints. 

Overall, automated synthesis of System-on-Chip architectures plays a crucial role in 
modern VLSI design, as it enables designers to efficiently and effectively create complex 
SoCs with reduced manual effort and increased design productivity. It empowers 
designers to focus on higher-level design decisions and innovation, while the automated 
tools handle the intricacies of architecture generation and optimization. 

This paper [3] presents a comprehensive study focusing on the design and verification of 
the AMBA AHB protocol, with a particular emphasis on its application.  

The design phase entails a thorough examination of the AMBA AHB's architecture, 
functionalities, and key features. It explores the characteristics of the protocol, such as its 
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burst transfer capabilities, support for pipelining, and out-of-order transactions, which 
contribute to its high-performance nature. Additionally, the paper investigates the process 
of integrating the AMBA AHB into the intelligent control and environmental systems 
showcased at the conference, highlighting its role in optimizing data exchange and 
enhancing system efficiency. 

The results of the verification process affirm the AMBA AHB's effectiveness in maintaining 
seamless communication between the intelligent control and environmental components, 
achieving high throughput, and minimizing latencies. UVM-based Logic Verification of 
Input-Output Interface introduces the significance of verifying the input-output interface in 
hardware designs. States the objectives and goals of the verification process [9].  

The successful design and verification of the AMBA AHB serve as a valuable foundation 
for future SoC implementations, enabling advanced technologies in intelligent control and 
environmental applications [7], [11]. 

In conclusion, this paper provides insights into the design and verification of the AMBA 
AHB protocol, the findings contribute to the wider understanding of high-performance 
communication protocols and their integration in cutting-edge applications. 

The paper [4] might highlight the importance of reusability in chip design by promoting the 
use of modular and parameterized code. This allows designers to create reusable 
components that can be easily integrated into different designs, saving time and effort in 
the development process. 

Regarding System Verilog, the paper might point out the advantages of using 
randomization features like random index and random value generation for verification 
purposes. Randomized testing enables the simulation of various scenarios and corner 
cases, increasing the coverage of verification tests and identifying potential bugs or 
design issues. 

In paper [5], the performance of the AMBA Bus-Based System-On-Chip (SoC) 
Communication Protocol is a comprehensive process to ensure that the protocol functions 
correctly, efficiently, and reliably in the context of a specific SoC design. The key points 
of the validation process are as follows; verify that the communication protocol adheres 
to the AMBA specifications, ensuring correct data transfer between masters and slaves 
and proper handling of various transaction types. 

Test the protocol under different traffic loads and scenarios to assess metrics like 
throughput, latency, and bandwidth utilization, ensuring it meets the required performance 
criteria. Confirm that the protocol complies with the AMBA standard, enabling 
interoperability with other AMBA-compliant components. Subject the protocol to extreme 
conditions to identify performance bottlenecks and assess its stability and reliability. 

Validate how the protocol interacts with other components in the SoC, ensuring seamless 
data transfer and proper communication between masters and slaves. Validate the 
protocol using real hardware prototypes or FPGA implementations to ensure practical 
functionality and performance. 
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By conducting a thorough validation process, designers can ensure that the AMBA Bus-
Based System-On-Chip Communication Protocol operates reliably and efficiently, 
contributing to the overall success of the SoC design and enabling seamless data 
communication between different components within the system. 
 
3. PROPOSED METHODOLOGY 

A. APB Block Diagram 

The proposed methodology involves the use of the AMBA Hierarchy bus, specifically the 
APB (Advanced Peripheral Bus) subcategory, for low-power transmission in a System-
on-Chip (SoC) design. The methodology utilizes the APB Bridge/Expert and the APB 
Slave components to facilitate communication between different modules within the SoC. 
The block diagram of the integrated APB Master, Slave, and Bridge is shown in Figure 2. 

1. APB Master: 

The APB Master is the component responsible for initiating data transfer requests to 
interact with other IP cores or peripherals in the system. It generates the necessary 
control signals and data to communicate with the APB Slave. 

2. APB Slave: 

The APB Slave acts as a peripheral or memory module that responds to the commands 
and data received from the APB Master. It processes read and write requests from the 
master and provides data or stores data in its memory or registers. 

3. APB Bridge/Expert: 

The APB Bridge is the central element of the proposed methodology. It acts as an 
interface between the APB Master and the APB Slave, handling the translation of signals 
and protocol conversion. The bridge ensures seamless communication between different 
AMBA-based peripherals or subsystems in the SoC. 

Block Diagram: 

The Figure 2 block diagram illustrates the integration of the APB Master, APB Slave, and 
APB Bridge. It showcases how these components work together to enable data transfer 
and communication within the system. The APB Master generates read/write signals and 
addresses, which are transmitted to the APB Bridge. 

The APB Bridge receives these signals and translates them into the appropriate format 
for communication with the APB Slave. It manages the data flow and control signals 
between the master and slave, ensuring proper synchronization and handling of 
transactions. 

In this proposed methodology, the APB Bridge plays a crucial role in managing the 
transportation of the APB bus at an elevated level within the SoC. It streamlines the data 
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transfer process and enhances the efficiency of communication between different IP 
cores and peripherals. 

Overall, the proposed methodology using the APB Block Diagram aims to achieve low-
power transmission and effective communication within the SoC by leveraging the 
capabilities of the AMBA Hierarchy bus and the APB protocol. The integration of the APB 
Master, Slave, and Bridge ensures seamless data transfer and enhances the overall 
performance and power efficiency of the System-on-Chip design. 

 

Fig. 2: APB master & slave with I/O interface 

B. APB Protocol System 

The APB (Advanced Peripheral Bus) Protocol System is a communication framework 
used to connect low-bandwidth peripherals with a processor or controller in a System-on-
Chip (SoC) design. The APB protocol, part of the AMBA (Advanced Microcontroller Bus 
Architecture) family, provides a simple and low-power interface for peripheral 
communication within an SoC. 

The APB Protocol System consists of the following key components: 

APB Master: The APB Master is the processor or controller that initiates data transfer 
requests to interact with peripheral components. It generates control signals, such as 
PENABLE (Peripheral Enable) and PSELECT (Peripheral Select), along with the data to 
communicate with the APB slave. 

APB Slave: The APB Slave represents the peripheral device or IP core that responds to 
the commands and data received from the APB Master. It processes read and write 
requests from the master and provides or stores data in its memory or registers. 
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APB Bridge/Expert: In some complex SoC designs, an APB Bridge or Expert might be 
used as an interface between the APB Master and the APB Slave. This bridge helps in 
protocol conversion and handling the translation of signals between different AMBA-
based peripherals or subsystems in the SoC. 

Control Signals: The APB Protocol System utilizes control signals like PENABLE and 
PSELECT to manage data transfers between the master and slave. PENABLE indicates 
that a valid transfer is in progress, and PSELECT might specify the type of transfer (read 
or write) or the target peripheral within the slave. 

Data Buses: The APB Protocol System relies on data buses (pdata, prdata, pwdata, etc.) 
for transferring data between the master and slave during read and write operations. The 
master sends data on write data bus (pwdata) during a write cycle, and the slave provides 
data on the read data bus (prdata) during a read cycle. 

Ready and Acknowledge Signals: To maintain proper data flow and synchronization, the 
APB Slave asserts a "ready" signal (PREADY) to indicate that it has completed the data 
transfer and is ready for the next transaction. The master acknowledges the successful 
data transfer by capturing the "ready" signal. 

Overall, the APB Protocol System offers a simple and efficient communication interface 
for connecting low-bandwidth peripherals to a SoC [13]. Its low-power nature and ease of 
implementation make it suitable for various embedded applications where high-
performance communication is not a primary concern. The APB Protocol System's 
simplicity and reusability make it a popular choice for designing SoCs with peripheral 
integration and ease of communication between different IP cores within the chip. 

As shown in Fig3, The APB operating status involves several signals that determine the 
different phases of the data transfer cycle. Here's a textual representation of the APB 
operating status using flow descriptions: 

Idle State: 

The APB is in the idle state when no data transfer is taking place. 

Both PENABLE and PSELECT signals are deasserted (low) during this state 
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Fig. 3: APB operating flow diagram 

Address Phase: 

When a data transfer is initiated, the APB enters the address phase. 

PENABLE is asserted (high) during this phase to indicate that a valid transfer is in 
progress. 

PSELECT signal might be used to specify the type of transfer (read or write) or the target 
peripheral within the slave. 

Read Data Phase: 

In a read cycle, after the address phase, the APB master waits for the slave to provide 
the requested data. 

PENABLE remains asserted, and PSELECT might still be used to specify the target 
peripheral within the slave. 

The slave presents the requested data on the data bus during this phase. 

Write Data Phase: 

In a write cycle, after the address phase, the APB master sends the data to be written to 
the slave. 

PENABLE remains asserted, and PSELECT might still be used to specify the target 
peripheral within the slave. 

The slave receives the data and stores it in its memory or registers. 
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Ready Phase: 

In both read and write cycles, the APB slave asserts the "ready" signal (PREADY) to 
indicate that it has completed the data transfer and is ready for the next transaction. 

PENABLE remains asserted, and PSELECT might still be used to specify the target 
peripheral within the slave. 

Transfer Acknowledgment: 

In response to the slave's ready signal, the APB master acknowledges the successful 
data transfer by capturing the "ready" signal (PREADY). This acknowledgement marks 
the completion of the data transfer. 

PENABLE is deasserted (low) to indicate the end of the transfer. 

Back to Idle State: 

After the transfer acknowledgment, the APB returns to the idle state, waiting for the next 
data transfer request. Both PENABLE and PSELECT signals are deasserted (low) during 
this state. 

Please note that the actual usage of the PENABLE and PSELECT signals may vary 
depending on the specific implementation of the APB protocol and the system 
requirements. The flow descriptions provided above are general representations of the 
APB operating status based on the typical behavior of the signals during data transfer 
cycles. 

Here is a list of common signals used in the transmission of the APB (Advanced 
Peripheral Bus) protocol, along with their descriptions mentioned in table 1. 

Please note that the availability and usage of these signals may vary depending on the 
specific implementation of the APB protocol and the requirements of the SoC design. 
Additionally, there might be other control signals or additional features depending on the 
version and extensions of the AMBA protocol being used 

Table I: Signals and it’s Description 

 

Signal Description 

PCLK Common clock signal used to synchronize the communication on the APB bus. 

PRESET Reset signal that returns all operations to their initial state. 

PENABLE Peripheral Enable signal used to indicate that a valid transfer is in progress. 

PWRITE Write signal used to indicate a write data transfer. 

PSELECT Peripheral Select signal used to specify the target peripheral within the slave. 

PADDR Address signal used to specify the location for read/write operations. 

PWDATA Write Data signal containing the data to be written to the slave during a write cycle. 

PRDATA Read Data signal containing the data provided by the slave during a read cycle. 

PREADY Ready signal asserted by the slave to indicate completion of the data transfer. 

PSLVERR Slave Error signal used to indicate an error condition during data transfer. 

PPROT Protection signal indicating the type of transfer (e.g., secure or non-secure). 
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C. AHB Understanding 

The AHB (Advanced High-performance Bus) is a widely used on-chip communication 
protocol based on AMBA (Advanced Microcontroller Bus Architecture) technology 
developed by ARM. It provides a high-performance, multi-master, multi-slave bus 
architecture, enabling efficient communication between various modules and 
components within a System-on-Chip (SoC) design. 

AHB-Lite is a subset of the standard AHB protocol, designed to offer a simpler and more 
lightweight version of the AHB, suitable for systems with lower complexity and power 
constraints. AHB-Lite is often used in applications where high-performance is still 
required, but the full features and complexities of the standard AHB are not necessary. 

Key features and characteristics of AHB-Lite includes High Performance: AHB-Lite 
maintains the high-performance characteristics of the AHB, providing high bandwidth and 
low latency for data transfers between masters and slaves. 

Simplified Protocol: Compared to the full AHB protocol, AHB-Lite has a simplified and 
streamlined protocol, reducing the number of signals and the complexity of transactions. 

Single-Clock Edge Operation: AHB-Lite operates on a single clock edge, which simplifies 
the design and reduces power consumption. 

Single Address and Data Phase: AHB-Lite combines the address and data phase of a 
transaction into a single phase [15], making it more efficient for simpler systems. Single 
Master, Multiple Slave Capability: AHB-Lite is capable of supporting multiple slave 
devices with a single master, allowing the master to efficiently communicate with different 
peripherals or memory modules. 

Support for Burst Transfers: AHB-Lite supports burst transfers, allowing consecutive data 
transfers without the need for separate address signals for each transfer, which enhances 
data transfer efficiency. 

Split and Retry Transactions: AHB-Lite handles split and retry transactions efficiently, 
ensuring data coherency and maintaining robustness in case of contention. 

AHB-Lite is often utilized in applications such as microcontrollers, embedded systems, 
and other low-power devices that require high-performance communication but do not 
need the full complexity of the standard AHB. Its simplicity and performance make it 
suitable for a wide range of applications, especially where power and area constraints are 
crucial considerations. 

Overall, AHB-Lite showcases the capabilities of the AHB protocol while offering a 
simplified and efficient solution for high-performance communication in SoC designs with 
lower complexity and power requirements. 

A. Operation of AHB_LITE 

The operation of AHB-Lite involves the transfer of data and control information between 
a master and a slave in a pipelined manner. Fig 4 shows the AHB_LITE protocol 
operational Diagram Here's a detailed explanation of how AHB-Lite operates: 
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Address and Control Information Transfer: 

 

Fig. 4: AHB_LITE protocol operational Diagram 

The AHB-Lite master initiates a data transfer by sending the target address and control 
information to the AHB-Lite bus. 

The control information specifies whether it's a read or write operation, the number of 
bytes to be communicated, (e.g., 1 byte, 2 bytes, etc.), and the type of burst transfer (if 
applicable). 

This phase is known as the "address phase." 

Data Phase Initiation: 

After the address and control information is sent, the data phase is initiated. During the 
data phase, data is either read from the slave (in a read operation) or written to the slave 
(in a write operation) based on the control information provided in the address phase. 

Pipelined Operation: 

AHB-Lite is designed with pipelined operation, which means that the address and data 
phases overlap in time. While the master is sending the address and control information 
for a new transfer, the slave can start processing the data from the previous transfer. This 
pipelining increases efficiency and reduces idle time. 

HREADY Signal and Transfer Completion: 

The HREADY signal is a critical part of AHB-Lite communication. When HREADY is 
asserted (high), it indicates that the slave is ready to accept new data from the master, 
and the current data transfer is complete. 

If HREADY is deasserted (low), it means the slave is not ready to accept new data, and 
the data transfer is still in progress. 
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The transfer is considered complete when the HREADY signal goes high, and the data 
and address phases are both finished. 

Wait States and Slower Slaves: 

If the slave is slower in processing data or is not ready to accept new data (HREADY is 
low), it can request the master to insert wait states. Wait states are additional clock cycles 
added to the data phase to allow the slave to catch up and process the data at its own 
pace. Wait states ensure that the master and slave remain synchronized and maintain 
data coherency. 

The pipelined nature of AHB-Lite enables efficient and continuous data transfer between 
the master and slave while optimizing the use of available bandwidth. The HREADY 
signal is crucial in coordinating the data transfer process, ensuring that both parties are 
ready to send and receive data. If a slave needs additional time to process data, it can 
request wait states to prevent data corruption or loss. 

Overall, AHB-Lite's pipelined and efficient operation makes it suitable for various high-
performance SoC designs where low-latency and continuous data transfers are essential. 

Building Elements of simulation, Test Bench 

A test bench is a simulation environment used to verify the functionality and performance 
of a hardware design [6], such as an IP core, module, or a complete System-on-Chip 
(SoC). It is an essential part of the design verification process. The building elements of 
a test bench depend on the specific design under test and the simulation tools being used. 
However, here are some common building elements of a test bench: 

Test Bench Module: 

The test bench module is a Verilog or VHDL file that defines the simulation environment 
and instantiates the design under test (DUT) [12]. It contains all the test stimuli and 
monitors to evaluate the DUT's behaviour during simulation. Fig.5 shows the test-bench 
module. 

Clock and Reset Generation: 

The test bench provides the clock signal (usually referred to as clk) required to drive the 
DUT and synchronize its operations. 

It also generates the reset signal (often referred to as rst or reset) to initialize the DUT to 
a known state before starting the simulation. 

Test Stimuli Generation: 

The test bench generates input stimuli to exercise different functionalities of the DUT. It 
provides appropriate input values or sequences to test various use cases and corner 
cases. 
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Driver Module: 

The driver module is responsible for driving the inputs of the DUT based on the test stimuli 
generated by the test bench. 

It converts the test stimuli into the proper format and sends them to the DUT's input ports. 

Monitor Module: The monitor module observes the outputs of the DUT and captures the 
results during simulation. 

It checks the DUT's outputs against expected values or patterns to determine if the DUT 
is behaving correctly. 

Scoreboard: 

The scoreboard compares the DUT's outputs with the expected results and flags any 
discrepancies or errors. 

It provides a way to check the correctness of the DUT's behaviour during simulation. 

Assertions: 

Assertions are statements in the test bench that specify expected behaviours or 
properties of the DUT. 

They are used to check if certain conditions are met during simulation and report any 
violations. 

Functional Coverage: 

Functional coverage is a metric used to measure how much of the DUT's functionality has 
been exercised during simulation. 

The test bench collects functional coverage data to assess the completeness of the 
verification process. 

Simulation Configuration and Control: 

The test bench sets up simulation parameters, such as simulation time, and controls the 
start and stop of simulation. 

Report Generation: 

The test bench generates reports to summarize the results of the simulation, including 
pass/fail status, coverage metrics, and any errors or warnings. 

It's important to note that the test bench may be divided into several sub-modules or test 
cases, each focusing on specific aspects of the DUT's functionality. The building elements 
mentioned above ensure that the test bench effectively verifies the correctness and 
performance of the hardware design before it is synthesized and implemented in 
hardware. 
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Fig. 5: Test-bench module 
 

4. DIFFERENT CYCLES OF OPERATIONS 

In this section, we will explore the different cycles of operation used to understand how 
communication occurs inside a bus, regardless of whether it's APB or AHB. 

A. The Write Cycle: 

• The Write Cycle starts with the Ready signal (PREADY) being high after the first 
clock cycle reset, which clears all the signals. 

• When a command is received, the Ready signal (PREADY) is set to low, indicating 
that the slave is not prepared for the write operation. 

• The slave becomes ready for the next command when the Ready signal (PREADY) 
reaches high again. 

• When the select signal (PSEL), the write signal (PWRITE), and the write data 
signal (PWDATA) are all high, the master starts writing to the slave. 

• After the slave finishes writing, the select signal (PSEL) and the Ready signal 
(PREADY) both go low to indicate that the slave is not ready for the next command. 

• This sequence of signal changes represents a typical write cycle in the bus 
communication. 

B. The Read Cycle: 

• The Read Cycle begins with all signals in their initial state after the positive edge 
of the clock and reset signals. 
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• While the reset signal is high, other signals go low, and the Ready signal 
(PREADY) becomes high after the reset. 

• The Ready signal (PREADY) waits for a command to be received. When a 
command is received, i.e., the select signal (PSEL) is set to 1, write signal 
(PWRITE) is set to 0, and Ready signal (PREADY) is 1, it indicates that the slave 
is ready for the read transfer. 

• The slave is not ready for the next command when the Ready signal (PREADY) 
goes low in the following cycle. 

• When the value of the slave with Ready signal (PREADY) is 1, the master reads 
the data from the slave, and the read cycle is completed. 

C. The Error Cycle: 

• The Error Cycle is used to indicate an error in a data transfer and can occur in both 
read and write transactions. 

• The Error signal (PERROR) is raised high when the select signal (PSEL) remains 
high for more than a cycle, indicating an error condition. 

• A failed write transaction doesn't necessarily mean an error but might indicate a 
delay in communication or an unrefreshed channel. 

• In the case of a failed read transaction, the data returned can be invalid. 

• The information bus bits don't need to be set to zero to indicate an error in the read 
operation. 

D. Functional Verification: 

• Functional verification ensures the correctness of protocol functions and is tested 
based on four parameters: 

1. Verify that the read and written data are the same, indicating data integrity during 
communication. 

2. Check the functionality of the protocol by sending random numbers to specific 
indexed address positions and verifying the data read back from those positions. 

3. Verify the functionality of the protocol by supplying random values to unknown 
address positions and checking the responses. 

4. Conduct functional verification using random commands by inserting random data 
into the slave and verifying the expected behaviour. 

Functional verification is a crucial step in the verification process to ensure that the 
protocol operates correctly and reliably under different scenarios and use cases [6]. 
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5. RESULT AND DISCUSSION 

Fig. 6 shows the data flow in an APB (Advanced Peripheral Bus) controlled bus used for 
communication between a single master and a single slave. This communication involves 
a single transmission on the bus. The APB protocol is designed to have low power 
consumption but may introduce significant delays in the communication process. The 
main focus in this design is to minimize these delays and ensure that signals produce 
accurate outputs to achieve perfect communication between the master and slave. 

Key points about the APB transmission shown in Fig. 6: 

1. Single Transmission: The communication in this APB bus involves a single 
transmission at a time. This means that only one data transfer can take place 
between the master and slave concurrently, making it a straightforward and 
sequential communication process. 

2. Low Power Consumption: APB is designed to consume low power, making it 
suitable for applications where power efficiency is critical, such as UART (Universal 
Asynchronous Receiver/Transmitter) and FIFO (First-In-First-Out) designs. 

3. Minimizing Delays: To achieve efficient communication, the design aims to 
minimize delays in data transfer between the master and slave. Reduced delays 
improve the overall system performance and responsiveness. 

4. Exact Output Generation: The signals in the bus are designed to produce exact 
and accurate outputs to ensure data integrity and reliability during communication. 

5. Perfect Communication: The successful delivery of data from the sender 
(master) to the receiver (slave) ensures perfect communication without any data 
corruption or loss. 

6. Waveform Representation: The waveform shown in Fig. 6 depicts the data flow 
and timing of signals during a singular communication from the master to the slave. 
It illustrates how data is transmitted and received by the slave. 

AHB (Advanced High-performance Bus) in Fig 7: 

1. Multi-Slave Capacity: AHB provides support for multiple slaves, allowing the 
master to communicate with several peripheral devices or memory modules 
concurrently. 

2. High-Power Transmission: Unlike APB, AHB consumes higher power levels due 
to its high-performance characteristics, making it suitable for applications that 
require faster data transfer rates. 

3. Efficiency: Despite higher power consumption, AHB maintains high efficiency in 
data transfer, ensuring high bandwidth and low latency. 

4. Protection Mechanism: AHB provides a protection mechanism that prevents 
signals from being accessed by other slaves in the communication bus, ensuring 
secure and controlled communication. 
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5. Slave Addressing: Slaves are addressed either physically or based on their 
logical address, and a decoder block determines which slave is the intended 
receiver of the data. 

Overall, both APB and AHB serve specific purposes in SoC design, and their 
characteristics make them suitable for different applications, depending on factors such 
as power consumption, performance requirements, and the number of slaves to be 
addressed in the communication bus. 

The below Fig. 6 gives us the details of how data flows in an APB controlled bus. This 
bus is used to establish communication between the single master and the single slave. 

There is only single transmission that can take place through this bus. The power 
consumption is low but the system can produce significant delays. The delay that is being 
generated must be minimum and also the signals should be able to generate exact output. 
The data being sent from the sender, or the master slave should reach correctly to the 
slave or the receiver cell. This will ensure that the communication is perfect. The 
waveform shows the singular communication taking place in the master to the slave. This 
will be implemented in a UART, FIFO for small scale purposes as the power consumption 
in these is very low.  

 

Fig. 6: APB Transmission 

AHB delivers a multi slave capacity and it is a high-power transmission. Though it requires 
higher power levels, it maintains high efficiency. The AHB is capable of also protecting 
the signal and making it inaccessible to the other slaves in the communication bus. The 
slaves are all stacked up according to the address if not for physically and the decoder 
block decides which slave is the correspondent receiver.  
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Fig. 7: AHB Transmission 

 

Fig. 8: APB Timing Report 
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A Timing Report is a critical output generated during the design implementation and 
synthesis process of a hardware design, such as an ASIC or FPGA. It provides detailed 
information about the timing characteristics of the design, including critical paths, setup 
and hold times, clock frequency constraints, and overall timing performance. As I don't 
have access to specific designs or tools, I can provide a general outline of what an APB 
Timing Report might contain: 

Setup and Hold Times: 

The timing report will include setup and hold times for each flip-flop or latch in the design. 
These parameters ensure that data is stable and can be reliably captured by the receiving 
flip-flop. 

Critical Paths: 

The report will identify the critical paths in the design, which are the longest combinational 
paths that determine the maximum achievable clock frequency. 

The critical paths are essential for achieving timing closure, which means ensuring that 
all paths in the design meet timing requirements. 

Clock Frequency Constraints: 

The report will specify the maximum achievable clock frequency for the design based on 
the critical paths and other constraints. Clock frequency constraints are crucial for 
ensuring that the design operates reliably within its timing limits. 

Propagation Delays: 

The report will provide information about the propagation delays of logic elements and 
interconnects in the design. Propagation delays contribute to the overall timing 
performance and help identify potential bottlenecks. 

Slack Analysis: 

The timing report will analyze the slack for each path, which represents the difference 
between the actual delay and the required delay for meeting setup and hold times. 
Positive slack indicates that the path is meeting timing requirements, while negative slack 
indicates a timing violation that needs to be addressed. 

Worst-Case Timing Paths: 

The report will highlight the worst-case timing paths, which are the paths with the tightest 
timing constraints. Addressing timing issues on these paths is crucial to achieving timing 
closure for the entire design. 

Timing Violations: 

The report will list any timing violations that occur in the design, indicating paths that fail 
to meet timing requirements. Designers need to identify and address these violations to 
achieve proper functionality and performance. 
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Timing Constraints and Assumptions: 

The report will include the timing constraints and assumptions used during synthesis, 
such as clock periods, input/output delays, and false paths. 

Summary and Recommendations: 

The timing report will provide a summary of the overall timing performance of the design. 
It may offer recommendations for improving timing, such as redesigning critical paths, 
adjusting clock frequencies, or using advanced synthesis techniques. 

Timing closure is a critical step in the design process to ensure that the design meets its 
performance requirements and operates correctly under real-world conditions. The timing 
report plays a central role in identifying and addressing any timing issues to achieve a 
successful hardware implementation. 

 

Fig. 9: The APB Design Summary 

The key findings and outcomes of the APB (Advanced Peripheral Bus) design are as 
follows: 

Low-Power Communication: The APB design successfully achieves low-power data 
transmission, making it suitable for applications where power efficiency is crucial. By 
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implementing a sequential data transmission approach, the design minimizes power 
consumption, making it ideal for use in energy-constrained devices and systems. 

Single Master-Slave Communication: The APB design effectively facilitates 
communication between a single master and a single slave. This simplicity allows for 
straightforward and reliable data transfer, making it suitable for applications with relatively 
simple communication requirements. 

Timing Optimization: The design demonstrates careful timing optimization to ensure 
efficient data flow and minimize delays. Timing constraints are met, resulting in robust 
and reliable communication between the master and slave components. 

Verification Success: Rigorous verification and validation methodologies are employed, 
leading to successful functional verification and high code coverage. This validation 
process ensures that the design operates as intended and meets its functional 
requirements. 

Potential for Reusability: The APB design is built with reusability in mind, enabling its 
integration into various hardware designs, including UART and FIFO implementations. 
This reusability aspect enhances design productivity and shortens development cycles 
for similar communication interfaces. 

Significance and Contributions to the Broader Field of Hardware Design: 

The APB design's significance lies in its ability to provide an energy-efficient and 
straightforward communication solution for hardware systems. Its low-power operation 
makes it attractive for IoT devices, mobile devices, and battery-operated applications, 
where power consumption is critical. Additionally, the design's simplicity and successful 
verification showcase its reliability and ease of implementation. 

Furthermore, the APB design can serve as a valuable reference for developers and 
hardware designers working on low-power communication protocols and similar master-
slave communication interfaces. By understanding the timing optimization techniques and 
verification strategies used in the APB design, future designers can leverage these 
insights to improve the efficiency and reliability of their own hardware designs. 

In conclusion, the APB design's key findings emphasize its low-power characteristics, 
successful single master-slave communication, and timing optimization. Its contribution 
lies in providing a reliable and efficient communication solution for low-power applications, 
while also serving as a valuable reference for the broader field of hardware design. As 
the demand for power-efficient communication interfaces continues to grow, the APB 
design serves as a valuable asset in meeting these objectives. 
 
CONCLUSION 

In summary, the choice between APB and AHB protocols depends on the specific design 
requirements, power constraints, and performance considerations. APB is preferred for 
low-power and simple sequential data transmission, while AHB is chosen for high-
performance designs involving multiple peripherals and complex communication 
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scenarios. Both protocols contribute significantly to the efficiency and reliability of 
communication within System-on-Chip designs.  

In conclusion, making an informed choice between APB and AHB protocols is essential 
to optimize power consumption, meet performance requirements, and ensure reliable 
communication in System-on-Chip designs. 
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