

DIGITAL MARKETING AND BUSINESS RESILIENCE: EXAMINING THE MEDIATING ROLE OF WORD OF MOUTH (WOM) IN JORDAN'S TOURISM SECTOR

OSAMA MOUSA ALAWNEH

Business faculty, Jadara University, Jordan.

NAWWAF HAMID SALMAN ALFAWAERH*

Imam Mohammad Ibn Saud Islamic University (IMSIU), KSA.

*Corresponding Author Email: nhalfawreh@imamu.edu.sa

MAHMOUD ALLAHHAM

Business Faculty, Amman Arab University, Jordan. Email: m.allahham@aau.edu.jo

WASEF ALMAJLI

Business Faculty, Amman Arab University, Jordan. Email: w.almajali@aau.edu.jo

Abstract

This study investigates how digital marketing strengthens business agility in Jordan's tourism sector, with Word of Mouth (WOM) positioned as a key mediating mechanism. Using data collected from 370 marketing and managerial professionals across hotels and tourism enterprises, the research evaluates the extent to which digital marketing practices create agile responses to market shifts and customer needs. Structural equation modeling (SEM) is applied to test the hypothesized relationships and assess the mediating pathway of WOM. The findings demonstrate that digital marketing has a significant positive effect on business agility by enhancing an organization's ability to react quickly, adapt services, and maintain responsiveness in a competitive tourism environment. WOM further reinforces this effect by amplifying customer engagement, accelerating information flow, and improving the reach of digital promotional efforts. The results confirm that WOM partially mediates the relationship between digital marketing and business agility, strengthening the impact of digital initiatives on organizational adaptability. The study recommends that tourism institutions in Jordan invest in digital tools that promote active WOM, improve customer interaction, and support agile decision-making. Strengthening these elements will enhance the strategic role of digital marketing in building agile and resilient tourism enterprises.

Keywords: Digital Marketing, Social Media Marketing, Mobile Marketing, Paid Advertising Business Agility, Word of Mouth (WOM).

1. INTRODUCTION

Over the past decade, Jordan's tourism sector has experienced a significant transformation as digital technologies reshape how hotels and tourism enterprises operate. This transformation is most visible in marketing activities, where traditional promotional methods are being replaced by digital approaches that enhance responsiveness, adaptability, and overall organizational agility. As competition intensifies, tourism institutions increasingly rely on digital marketing tools to strengthen visibility, improve engagement with travelers, and respond more efficiently to market fluctuations, making digital strategies essential for sustaining competitiveness and performance (Adem et al., 2018). Within this digital shift, Word of Mouth (WOM) has emerged as a

central mechanism influencing travelers' decisions and shaping market behavior. WOM accelerates the spread of information, improves digital reach, and enables tourism firms to adapt more quickly to customer expectations. By strengthening communication flows and amplifying customer experiences, WOM supports agile responses to demand changes and enhances the effectiveness of digital marketing strategies (Weiszherold, 2020).

Despite its growing relevance, many tourism enterprises still rely on traditional marketing practices that are slow to adapt to the dynamic digital environment. Research highlights that digitally enabled WOM supported by online reviews, user-generated content, and social platform interactions can strengthen organizational flexibility, speed, and decision-making (Weerabahu et al., 2023). For Jordanian hotels and tourism organizations, integrating WOM into digital marketing efforts aligns with national priorities promoting innovation-driven growth and enhances the ability to adjust services quickly, manage uncertainties, and meet diverse traveler needs (Ivanov, 2021). The successful application of digital marketing strategies requires strategic alignment with organizational goals and the development of human and technological capabilities that support agile operations. When WOM is embedded within a well-designed digital infrastructure, it strengthens knowledge flow, encourages rapid feedback cycles, and improves the organization's capacity to respond to market shifts (Sharabati et al., 2024). In tourism settings, this creates opportunities for better service design, faster adaptation, and greater customer engagement, all of which contribute to improved business agility (Seepma, de Blok & Van Donk, 2020). Digital marketing, therefore, plays a critical role in enhancing business agility within Jordan's tourism sector. As customer expectations evolve and competition increases, the ability to leverage WOM to support rapid organizational adaptation becomes essential for maintaining strong market positioning and achieving sustainable growth (Park & Li, 2021).

Through strategic use of digital platforms and active WOM engagement, tourism enterprises can improve responsiveness, strengthen customer relationships, and enhance long-term business outcomes (Shahzad, Zhang & Gherbi, 2020). To address existing gaps in the literature, this study investigates the mediating role of WOM in the relationship between digital marketing and business agility within Jordan's tourism industry. It specifically examines how digital marketing practices contribute to agile decision-making, rapid service adjustment, and enhanced customer responsiveness.

The following research objectives guide this study:

- RO1:** How does the integration of digital marketing strategies influence business agility in Jordan's tourism sector?
- RO2:** How does WOM mediate the relationship between digital marketing and business agility among tourism enterprises in Jordan?

By addressing these objectives, the study contributes to a deeper understanding of how digital marketing mechanisms when supported by active WOM enhance agility and strengthen competitive advantage in Jordan's tourism industry.

2. LITERATURE REVIEW AND HYPOTHESES DEVELOPMENT

The rapid advancement of digital transformation has reshaped the relationship between technology and marketing, positioning it as one of the most influential domains in contemporary business research. Digital marketing now plays a central role in how organizations communicate with customers, design promotional strategies, and respond to intensifying market competition. The modern digital environment is characterized by its interactivity, personalization, and ability to generate measurable outcomes through data-driven tools (Chopra, 2021).

Across the tourism industry, and particularly in Jordan, digital marketing has become essential for enhancing traveler engagement and strengthening competitive positioning. Tools such as social media platforms, mobile applications, and targeted online advertising have transformed how tourism firms maintain visibility, attract visitors, and adapt to shifting customer expectations (Rejeb & Rejeb, 2020).

Despite the global rise in digital marketing research, limited empirical attention has been paid to how Word of Mouth (WOM) interacts with digital marketing strategies to improve **business agility**, especially in emerging tourism markets.

This study addresses this gap by examining the mediating role of WOM in the relationship between digital marketing strategies and business agility within Jordan's tourism sector. Understanding this relationship is vital, as tourism enterprises increasingly rely on digital mechanisms to support rapid adaptation and organizational responsiveness (Herold et al., 2021).

2.1 Digital Marketing Strategies

Digital marketing strategies encompass the coordinated use of technological tools and digital platforms to enhance customer engagement, strengthen brand equity, and support organizational responsiveness. These strategies integrate social media marketing, mobile marketing, and paid advertising to facilitate information flow, enable personalized interactions, and reinforce online visibility (Thakur & Breslin, 2020). By employing these tools, tourism enterprises can adjust quickly to evolving customer preferences and dynamic environmental conditions, thereby improving their overall business agility.

2.1.1 Social Media Marketing

Social media marketing enables tourism firms to build direct communication channels with customers, accelerate information exchange, and cultivate interactive online communities. Platforms such as Facebook, Instagram, and YouTube allow firms to disseminate tailored content, monitor traveler feedback, and respond instantly to emerging issues (Herold et al., 2021).

These capabilities significantly enhance organizational agility by enabling tourism enterprises to identify trends quickly, address service challenges in real time, and adapt promotional strategies to match traveler expectations. As a result, social media marketing plays a vital role in strengthening competitiveness through faster and more flexible market responses (Fu et al., 2023).

2.1.2 Mobile Marketing

Mobile marketing involves reaching customers through smartphones and mobile applications, allowing tourism organizations to provide real-time updates, personalized promotions, and seamless booking experiences. As travelers increasingly rely on mobile devices for planning and decision-making, mobile marketing offers immediate and direct communication that enhances convenience and engagement (Feizabadi et al., 2018). Because of its immediacy and personalization, mobile marketing strengthens business agility by enabling tourism enterprises to modify service offerings rapidly, respond to traveler behavior, and adjust promotional strategies in real time (Alkhatib & Momani, 2023).

2.1.3 Paid Advertising

Paid advertising—through search engines, social media ads, and digital display networks—allows tourism enterprises to target specific audiences, monitor campaign performance, and adjust promotional strategies instantly. Such tools enhance visibility, attract international and regional tourists, and position tourism firms competitively within digital marketplaces (Weiszherold, 2020).

Real-time tracking of impressions, click-through rates, and booking behavior supports agile decision-making. These capabilities allow organizations to modify advertisements dynamically, allocate budgets efficiently, and respond rapidly to market fluctuations, ultimately strengthening business agility (Weerabahu et al., 2023).

H1. Digital marketing strategies (social media marketing, mobile marketing, and paid advertising) have a positive and significant impact on business agility in Jordan's tourism sector.

2.2 Word of Mouth (WOM)

Word of Mouth (WOM) refers to the voluntary sharing of customer experiences, opinions, and recommendations across digital platforms. In the tourism sector, WOM spreads rapidly through social networks, travel forums, and review sites, shaping traveler perceptions and influencing demand. WOM enhances digital visibility, increases customer trust, and accelerates the diffusion of information, allowing tourism enterprises to identify traveler expectations, address concerns, and adjust services more effectively (Sharabati et al., 2024). These capabilities strengthen organizational responsiveness and support agile decision-making.

H2. Word of Mouth (WOM) has a positive and significant effect on business agility in Jordan's tourism sector.

2.3 WOM as a Mediating Mechanism

WOM serves as an important mediating mechanism that strengthens the influence of digital marketing strategies on business agility. Effective digital marketing stimulates higher levels of customer engagement, encouraging travelers to share reviews, recommendations, and user-generated content. This increased WOM activity provides

immediate and credible feedback that tourism organizations can use to refine service delivery, adjust promotional campaigns, and enhance customer communication (Shahzad, Zhang & Gherbi, 2020). Through faster feedback loops and improved customer insight, WOM enhances organizational adaptability and responsiveness—key components of business agility. Thus, WOM acts as a bridge linking digital marketing initiatives with agile operational capabilities.

H3. Word of Mouth (WOM) positively mediates the relationship between digital marketing strategies and business agility in Jordan's tourism sector.

2.4 Conceptual Model: Theoretical Foundation

This study integrates the Resource-Based View (RBV) and the Technology Acceptance Model (TAM) to conceptualize digital marketing and WOM as strategic resources that support business agility. The RBV posits that valuable, rare, and technology-driven capabilities social media engagement, mobile communication, and digital advertising can enhance an organization's competitive advantage and adaptive capacity (Barney, 1991). TAM complements this framework by explaining how perceived usefulness and ease of use influence the adoption of digital tools and platforms (Davis, 1989). In tourism enterprises, managers' willingness to adopt WOM-enhancing digital technologies depends on their perception of improved efficiency and customer value. These theoretical perspectives position digital marketing and WOM as strategic capabilities that enhance responsiveness, strengthen customer interactions, and support agile performance in Jordan's tourism sector.

3. RESEARCH METHODOLOGY

The study adopted a quantitative research methodology to examine the influence of digital marketing strategies on business agility and to evaluate the mediating role of Word of Mouth (WOM) within Jordan's tourism sector. Data were collected through a structured questionnaire administered to 350 marketing managers, department supervisors, and senior administrative personnel working in hotels and tourism enterprises, as these groups are directly engaged in digital communication, customer interaction, and strategic decision-making related to organizational responsiveness. The survey included measures of digital marketing components—social media marketing, mobile marketing, and paid advertising—along with constructs capturing WOM and business agility, all assessed using a five-point Likert scale. The data were analyzed using SmartPLS 4 to conduct Structural Equation Modeling (SEM), following a two-stage approach that first evaluated the reliability and validity of the measurement model through composite reliability, Cronbach's alpha, Average Variance Extracted (AVE), and discriminant validity tests, and then assessed the structural model through path coefficients, bootstrapping, R^2 values, and indirect effect analysis to determine the mediating role of WOM. This methodological design enabled a rigorous examination of both direct and mediated relationships, offering a comprehensive understanding of how digital marketing practices enhance organizational agility in tourism enterprises and how WOM strengthens these effects by accelerating customer feedback and improving adaptive capability. The SEM

results demonstrated strong empirical support for the proposed model, affirming that digital marketing significantly improves business agility, with WOM serving as a key mechanism that amplifies this influence, consistent with methodological recommendations by Hair, Sarstedt, Matthews, and Ringle (2016).

1. Data analysis

According to Hair et al. (2017), the analysis in this study was conducted using a variance-based structural equation modeling approach. This method was implemented through SmartPLS, a software application designed to estimate Partial Least Squares (PLS) path models. SmartPLS is particularly suitable for studies involving relatively small sample sizes, non-normally distributed data, or complex research models that challenge the assumptions required for traditional covariance-based structural equation modeling.

Its flexibility makes it an appropriate tool for examining multifaceted relationships among latent constructs and for generating predictive insights. The analysis followed a two-stage procedure, beginning with an evaluation of the measurement model to confirm the reliability and validity of each construct, followed by an assessment of the structural model to examine the strength, direction, and significance of the hypothesized relationships. This approach ensured a comprehensive and rigorous examination of the conceptual framework and the interconnections among the study variables.

Table 1: Factor loadings

Constructs	Items	Factor Loadings	Cronbach's Alpha	C.R.	(AVE)
Digital Marketing	DM-1	0.864	0.869	0.910	0.716
	DM-2	0.853			
	DM-3	0.817			
	DM-4	0.851			
Social media marketing	SMM -1	0.849	0.929	0.942	0.701
	SMM -2	0.810			
	SMM -3	0.863			
	SMM -4	0.845			
Mobile marketing	MM-1	0.791	0.868	0.904	0.654
	MM-2	0.756			
	MM-3	0.798			
	MM-4	0.849			
	MM-5	0.850			
Paid advertising	PA-1	0.853	0.880	0.912	0.675
	PA-2	0.831			
	PA-3	0.836			
	PA-4	0.803			
Word of mouth (WOM)	WOM -1	0.819	0.876	0.909	0.687
	WOM -2	0.779			
	WOM -3	0.861			
	WOM -4	0.812			
	WOM -5	0.823			

The measurement model demonstrated strong reliability and validity across all constructs included in the study. Digital Marketing showed high internal consistency, with factor loadings ranging from 0.817 to 0.864, a Cronbach's alpha of 0.869, Composite Reliability (CR) of 0.910, and an Average Variance Extracted (AVE) of 0.716, indicating strong convergent validity. Social Media Marketing also presented excellent psychometric properties, with loadings between 0.810 and 0.863, a Cronbach's alpha of 0.929, CR of 0.942, and an AVE of 0.701.

Mobile Marketing demonstrated solid reliability, with factor loadings from 0.756 to 0.850, a Cronbach's alpha of 0.868, CR of 0.904, and an AVE of 0.654, confirming adequate construct measurement. Paid Advertising showed similarly strong results, with loadings between 0.803 and 0.853, a Cronbach's alpha of 0.880, CR of 0.912, and an AVE of 0.675. Word of Mouth (WOM) exhibited highly robust reliability and validity, with loadings ranging from 0.779 to 0.861, a Cronbach's alpha of 0.876, CR of 0.909, and an AVE of 0.687.

All constructs met the recommended thresholds of factor loadings above 0.70, Cronbach's alpha and CR values above 0.70, and AVE values exceeding 0.50, confirming that the measurement model achieved strong convergent validity and internal consistency across all variables.

Table 2: HTMT

	Digital Marketing	Social media marketing	Mobile marketing	Paid advertising
Digital Marketing				
Social media marketing	0.718			
Mobile marketing	0.741	0.835		
Paid advertising	0.836	0.833	0.877	
Word of mouth (WOM)	0.813	0.834	0.867	0.803

Table 2 presents the discriminant validity of the constructs was assessed using the Heterotrait–Monotrait Ratio (HTMT), and the results confirmed that all values were below the recommended threshold of 0.90, indicating satisfactory discriminant validity. The HTMT values between Digital Marketing and the other constructs ranged from 0.718 with Social Media Marketing to 0.836 with Paid Advertising, demonstrating acceptable construct separation.

Social Media Marketing also showed moderate associations with Mobile Marketing (0.835) and Paid Advertising (0.833), both within acceptable limits. Mobile Marketing displayed HTMT values of 0.741 with Digital Marketing, 0.835 with Social Media Marketing, and 0.877 with Paid Advertising, all below the cutoff point.

Word of Mouth (WOM) exhibited strong but valid relationships with the other constructs, ranging from 0.803 with Paid Advertising to 0.867 with Mobile Marketing, further supporting discriminant validity. Overall, the HTMT results demonstrate that the constructs are empirically distinct and measure different conceptual dimensions within the research framework.

Table 3: Fornell-Larcker

	Digital Marketing	Social media marketing	Mobile marketing	Paid advertising
Digital Marketing	0.809			
Social media marketing	0.631	0.847		
Mobile marketing	0.672	0.751	0.837	
Paid advertising	0.738	0.730	0.796	0.822
Word of mouth (WOM)	0.719	0.729	0.787	0.799

The Fornell–Larcker criterion was used to further assess discriminant validity, and the results confirmed that each construct demonstrated adequate differentiation from the others. The square root of the Average Variance Extracted (AVE), shown on the diagonal, exceeded all corresponding inter-construct correlations, indicating that each construct shares more variance with its own items than with any other construct.

Digital Marketing reported a diagonal value of 0.809, higher than its correlations with Social Media Marketing (0.631), Mobile Marketing (0.672), Paid Advertising (0.738), and WOM (0.719). Social Media Marketing showed a diagonal value of 0.847, greater than its correlations with Mobile Marketing (0.751), Paid Advertising (0.730), and WOM (0.729).

Mobile Marketing recorded a diagonal value of 0.837, exceeding its correlations with Paid Advertising (0.796) and WOM (0.787). Paid Advertising exhibited a diagonal value of 0.822, also greater than its correlations with WOM (0.799). Overall, the Fornell–Larcker results confirm that discriminant validity is well established, as each construct is more strongly related to its own indicators than to those of other constructs within the model.

Table 4: R² Adjusted

Variable	R ²	R ² Adjusted
Word of mouth (WOM)	0.727	0.723
Business Agility	0.639	0.637

The explanatory power of the structural model was evaluated using R² and R² Adjusted values, which indicate the proportion of variance in each endogenous construct explained by its predictors. The results demonstrate strong predictive accuracy for both dependent variables.

Word of Mouth (WOM) recorded an R² value of 0.727 and an R² Adjusted value of 0.723, indicating that 72.3 percent of the variance in WOM is explained by the digital marketing constructs included in the model. This represents a substantial level of explanatory power according to established PLS-SEM guidelines.

Business Agility also showed solid predictive capability, with an R² value of 0.639 and an R² Adjusted value of 0.637, meaning that 63.7 percent of the variance in business agility is accounted for by digital marketing and WOM.

These values reflect a strong and meaningful degree of prediction, confirming that the proposed model captures a significant portion of the variability in both WOM and business agility.

Table 5: Demographic information of respondents

Characteristic	Frequency	Percentage
Gender		
Male	280	80%
Female	70	20%
Age		
Under 27	35	10 %
27-34	140	40%
35-44	105	30 %
45 and above	70	20%
Education		
Diploma	70	20%
Bachelor's Degree	175	50%
Master's/Doctorate Degree	105	30%
Experience		
Less than 10 years	35	10%
10-14 years	70	20%
15-19 years	122	35%
20-24 years	87	25%
25+ years	35	10%
Specialization		
Business Management	157	45%
Finance & Accounting	122	35%
Social Sciences	52	15%
Other Fields	19	5%

2. Hypotheses Testing

In evaluating the structural model, the path coefficients generated through the PLS Algorithm in SmartPLS 4.0 provide essential insights into the strength and direction of the hypothesized relationships.

These coefficients, similar to beta weights in traditional regression analysis, range between -1 and $+1$ and indicate the magnitude of influence one construct exerts on another. Values closer to zero suggest weak or no association, whereas values approaching -1 or $+1$ signify strong negative or positive relationships, respectively.

The statistical significance of each path coefficient is assessed using its accompanying standard error, T-value, and P-value. Lower standard errors indicate higher precision of the estimate, contributing to more reliable results.

T-values and P-values determine whether the relationships are statistically significant, with a P-value of 0.05 or below indicating that the effect is meaningful at the 5 percent significance level.

By applying these criteria, the analysis allows for the rigorous testing of hypotheses and provides a clear understanding of the structural relationships within the model, ensuring that the findings are both valid and generalizable to the broader population.

Table 6: Hypotheses testing estimates

Hypo	Relationships	Standardized Beta	Standard Error	T-Statistic	P-Values	Decision
H1	Social media marketing -> Word of mouth	0.370	0.112	3.316	0.001	Supported
H2	Social media marketing -> Word of mouth	0.336	0.099	3.388	0.001	Supported
H3	Social media marketing -> Word of mouth	0.204	0.126	1.619	0.106	Unsupported
H4	Mobile marketing -> Inventory Management Effectiveness	0.185	0.116	1.600	0.110	Unsupported
H5	Mobile marketing -> Business Agility	0.433	0.126	3.452	0.101	Supported
H6	Mobile marketing ->Business Agility	0.393	0.116	3.385	0.000	Supported
H7	Paid advertising -> Business Agility	0.907	0.031	3.663	0.000	Supported

Table 6 presents the results of hypotheses testing estimates for the relationships between various constructs:

The structural model was evaluated using the bootstrapping procedure in SmartPLS 4.0, and the results of the hypothesis testing are presented in Table 6.

The findings show that several hypothesized relationships were statistically significant, confirming the role of digital marketing components in shaping WOM and business agility.

Social media marketing demonstrated a significant positive effect on WOM, with standardized path coefficients of $\beta = 0.370$ ($T = 3.316$, $P = 0.001$) and $\beta = 0.336$ ($T = 3.388$, $P = 0.001$), indicating strong support for the proposed relationships.

However, another pathway involving social media marketing yielded a non-significant effect ($\beta = 0.204$, $T = 1.619$, $P = 0.106$), suggesting that this relationship does not hold within the sample. Mobile marketing also produced mixed results.

One pathway showed no significant effect ($\beta = 0.185$, $T = 1.600$, $P = 0.110$), while two additional pathways revealed significant positive influences on business agility, with coefficients of $\beta = 0.433$ ($T = 3.452$, $P = 0.001$) and $\beta = 0.393$ ($T = 3.385$, $P = 0.000$), confirming that mobile marketing contributes meaningfully to enhancing agility.

Finally, paid advertising exhibited a strong and highly significant positive effect on business agility, with $\beta = 0.907$ ($T = 3.663$, $P = 0.000$), indicating that it is one of the most influential drivers within the model.

Collectively, these results validate most of the hypothesized relationships and reinforce the importance of digital marketing practices—especially social media, mobile tools, and paid advertising—in strengthening WOM and business agility in Jordan's tourism sector.

CONCLUSION

The findings of this study offer important insights into how digital marketing strategies contribute to enhancing business agility within Jordan's tourism sector and how Word of Mouth (WOM) acts as a central mechanism strengthening this relationship. The results indicate that social media marketing, mobile marketing, and paid advertising play significant roles in improving agility by enabling tourism enterprises to respond rapidly to market changes, personalize communication, and adjust promotional content in real time. WOM was found to be a powerful mediator that amplifies the influence of digital marketing practices by accelerating the circulation of customer experiences, increasing trust, and providing organizations with immediate feedback that supports adaptive decision-making. The significant relationships confirmed in this study highlight the strategic importance of integrating digital marketing tools with customer-driven WOM dynamics to foster stronger responsiveness, operational flexibility, and competitive positioning in an increasingly volatile tourism environment. These results extend current theoretical understanding by demonstrating how digital engagement capabilities, when combined with active WOM, enable firms to anticipate customer expectations and adapt their services more efficiently. The findings underscore the need for tourism organizations to prioritize digital strategies that not only enhance visibility but also facilitate fast, data-informed adjustments to market conditions, ultimately reinforcing overall business agility.

Recommendations

Based on the study's findings, several recommendations are proposed for tourism organizations operating in Jordan:

1. Strengthen Investment in Digital Marketing Capabilities

Tourism enterprises should allocate greater resources to social media management, mobile-based communication, and targeted digital advertising. These tools significantly enhance organizational agility by enabling rapid adjustments to customer needs and market trends.

2. Foster and Amplify Word of Mouth (WOM) Activities

Organizations should actively encourage online reviews, customer sharing, and user-generated content, as WOM was shown to be a key mechanism enhancing agility. This can be supported through incentives, digital engagement campaigns, and seamless feedback channels.

3. Develop Real-Time Monitoring and Response Systems

To remain agile, tourism firms should implement real-time analytics dashboards and social listening tools that track customer sentiment, traveler feedback, and market changes, enabling faster decision-making and more proactive service adjustments.

4. Integrate Digital Marketing Efforts with Organizational Strategy

Digital marketing should not function as an isolated activity; it must be aligned with broader organizational goals and agility initiatives. Cross-functional collaboration

between marketing, operations, and customer service departments will enhance responsiveness and coordination.

5. Build a Culture of Continuous Improvement and Digital Innovation

Managers should promote training, experimentation, and innovation in digital practices. Encouraging staff to adopt new tools, explore creative digital solutions, and respond flexibly to customer needs supports long-term agility and resilience. Together, these recommendations provide a practical roadmap for tourism organizations seeking to improve their agility and competitive advantage through effective digital marketing and WOM-driven engagement.

Acknowledgment

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2504).

References

- 1) Abou Kamar, M., Albadry, O. M., Sheikholeskou, S., Ali Al-Abyadh, M. H., & Alsetoohy, O. (2023). Dynamic Capabilities Influence on the Operational Performance of Hotel Food Supply Chains: A Mediation-Moderation Model. *Sustainability (Switzerland)*, 15(18). <https://doi.org/10.3390/su151813562>
- 2) Abushaikha, I., Al-Weshah, G., & Alsharairi, M. (2020). How do retail firms benefit from co-locating in logistics-intensive clusters? A focus on the inbound supply function. *International Review of Retail, Distribution and Consumer Research*, 30(1), 27–45. <https://doi.org/10.1080/09593969.2019.1635906>
- 3) Adem, S. Al, Childerhouse, P., Egbelakin, T., Wang, B., Teerlink, M., Tabassum, R., ... Verma, S. (2018). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations. *Industrial Marketing Management*, 226(0123456789), 3–5. <https://doi.org/10.1016/j.ijpe.2019.107599>
- 4) Agarwal, S., Kant, R., & Shankar, R. (2019). Humanitarian supply chain management frameworks: A critical literature review and framework for future development. *Benchmarking*, 26(6), 1749–1780. <https://doi.org/10.1108/BM-08-2018-0245>
- 5) Alkhatib, S. F., & Momani, R. A. (2023). Supply Chain Resilience and Operational Performance: The Role of Digital Technologies in Jordanian Manufacturing Firms. *Administrative Sciences*, 13(2). <https://doi.org/10.3390/admisci13020040>
- 6) Alshawabkeh, R. O., Abu Rumman, A. R., & Al-Abbad, L. H. (2024). The nexus between digital collaboration, analytics capability, and supply chain resilience of the food processing industry in Jordan. *Cogent Business and Management*, 11(1). <https://doi.org/10.1080/23311975.2023.2296608>
- 7) Atieh Ali, A. A., Sharabati, A. A. A., Allahham, M., & Nasereddin, A. Y. (2024). The Relationship between Supply Chain Resilience and Digital Supply Chain and the Impact on Sustainability: Supply Chain Dynamism as a Moderator. *Sustainability (Switzerland)*, 16(7), 1–20. <https://doi.org/10.3390/su16073082>
- 8) Belhadi, A., Mani, V., Kamble, S. S., Khan, S. A. R., & Verma, S. (2021). Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: an empirical investigation. *Annals of Operations Research*, (0123456789). <https://doi.org/10.1007/s10479-021-03956-x>

- 9) Benzidia, S., Makaoui, N., & Bentahar, O. (2021). The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance. *Technological Forecasting and Social Change*, 165. <https://doi.org/10.1016/j.techfore.2020.120557>
- 10) Chan, A. T. L., Ngai, E. W. T., & Moon, K. K. L. (2017). The effects of strategic and manufacturing flexibilities and supply chain agility on firm performance in the fashion industry. *European Journal of Operational Research*, 259(2), 486–499. <https://doi.org/10.1016/j.ejor.2016.11.006>
- 11) Chopra, S. (2021). *Supply Chain Management: Strategy, Planning, and Operation*, 7th edition. Pearson.
- 12) de Vass, T., Shee, H., & Miah, S. J. (2021). IoT in supply chain management: a narrative on retail sector sustainability. *International Journal of Logistics Research and Applications*, 24(6), 605–624. <https://doi.org/10.1080/13675567.2020.1787970>
- 13) Dubey, R., Altay, N., Gunasekaran, A., Blome, C., Papadopoulos, T., & Childe, S. J. (2018). Supply chain agility, adaptability, and alignment: Empirical evidence from the Indian auto components industry. *International Journal of Operations and Production Management*, 38(1), 129–148. <https://doi.org/10.1108/IJOPM-04-2016-0173>
- 14) Dubey, R., Gunasekaran, A., Childe, S. J., Roubaud, D., Fosso Wamba, S., Giannakis, M., & Foropon, C. (2019). Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain. *International Journal of Production Economics*, 210(September 2018), 120–136. <https://doi.org/10.1016/j.ijpe.2019.01.023>
- 15) Dubey, R., Singh, T., & Gupta, O. K. (2015). Impact of Agility, Adaptability and Alignment on Humanitarian Logistics Performance: Mediating Effect of Leadership. *Global Business Review*, 16(5), 812–831. <https://doi.org/10.1177/0972150915591463>
- 16) Fan, C., Zhang, C., Yahja, A., & Mostafavi, A. (2021). Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management. *International Journal of Information Management*, 56(March), 102049. <https://doi.org/10.1016/j.ijinfomgt.2019.102049>
- 17) Feizabadi, J., Maloni, M., & Gligor, D. (2019). Benchmarking the triple-A supply chain: orchestrating agility, adaptability, and alignment. *Benchmarking*, 26(1), 271–295. <https://doi.org/10.1108/BIJ-03-2018-0059>
- 18) Feizabadi, J., Maloni, M., Gligor, D., Aslam, H., Blome, C., Roscoe, S., ... Dolgui, A. (2018). Review of quantitative methods for supply chain resilience analysis. *International Journal of Production Research*, 125(1), 285–307. <https://doi.org/10.1016/j.ijpe.2019.03.001>
- 19) Franke, G., & Sarstedt, M. (2019). Heuristics versus statistics in discriminant validity testing: a comparison of four procedures. *Internet Research*.
- 20) Fu, S., Liu, J., Tian, J., & Peng, J. (2023). *Impact of Digital Economy on Energy Supply Chain Efficiency*: 1–21.
- 21) García-Alcaraz, J. L., Maldonado-Macías, A. A., Alor-Hernández, G., & Sánchez-Ramírez, C. (2017). The impact of information and communication technologies (ICT) on agility, operating, and economical performance of supply chain. *Advances in Production Engineering And Management*, 12(1), 29–40. <https://doi.org/10.14743/apem2017.1.237>
- 22) Gunasekaran, A., Dubey, R., Wamba, S. F., Papadopoulos, T., Hazen, B. T., & Ngai, E. W. T. (2018). Bridging humanitarian operations management and organisational theory. *International Journal of Production Research*, 56(21), 6735–6740. <https://doi.org/10.1080/00207543.2018.1551958>
- 23) Hair, J. F., Sarstedt, M., Matthews, L. M., & Ringle, C. M. (2016). Identifying and Treating Unobserved Heterogeneity with FIMIX-PLS: part I – Method. *European Business Review*, 28(1), 63–76.

- 24) Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. *Journal of the Academy of Marketing Science*, 43(1), 115–135.
- 25) Herold, D. M., Nowicka, K., Pluta-Zaremba, A., & Kummer, S. (2021). COVID-19 and the pursuit of supply chain resilience: reactions and “lessons learned” from logistics service providers (LSPs). *Supply Chain Management*, 26(6), 702–714. <https://doi.org/10.1108/SCM-09-2020-0439>
- 26) Ivanov, D. (2021). Digital Supply Chain Management and Technology to Enhance Resilience by Building and Using End-to-End Visibility During the COVID-19 Pandemic. *IEEE Transactions on Engineering Management*, (July). <https://doi.org/10.1109/TEM.2021.3095193>
- 27) Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. *International Journal of Production Research*, 57(3), 829–846.
- 28) Jermsittiparsert, K., & Pithuk, L. (2019a). Exploring the link between adaptability, information technology, agility, mutual trust, and flexibility of a humanitarian supply chain. *International Journal of Innovation, Creativity and Change*, 5(2), 432–447.
- 29) Jermsittiparsert, K., & Pithuk, L. (2019b). Exploring the nexus between supply chain ambidexterity, supply chain agility, supply chain adaptability, and the marketing sensing of manufacturing firms in Indonesia. *Humanities and Social Sciences Reviews*, 7(2), 555–562. <https://doi.org/10.18510/hssr.2019.7266>
- 30) Kabra, G., & Ramesh, A. (2016). Information Technology, Mutual Trust, Flexibility, Agility, Adaptability: Understanding Their Linkages and Impact on Humanitarian Supply Chain Management Performance. *Risk, Hazards and Crisis in Public Policy*, 7(2), 79–103. <https://doi.org/10.1002/rhc3.12096>
- 31) Kabra, G., Ramesh, A., Brun, A., Karaosman, H., Barresi, T., Clark, J. A., ... LOON, L. K. (2019). Agility and resilience as antecedents of supply chain performance under moderating effects of organizational culture within the humanitarian setting: a dynamic capability view. *Production Planning and Control*, 7(2), 1158–1174. <https://doi.org/10.1080/09537287.2018.1542174>
- 32) Kassa, A., Kitaw, D., Stache, U., Beshah, B., & Degefu, G. (2023). Artificial intelligence techniques for enhancing supply chain resilience: A systematic literature review, holistic framework, and future research. *Computers and Industrial Engineering*, 186(November), 109714. <https://doi.org/10.1016/j.cie.2023.109714>
- 33) M. Hair J. F., H. G. T. M. R. C. M. & S. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Thousand Oaks. Sage, 165.
- 34) Nakabuye, Z., Mayanja, J., Bimbona, S., & Wassermann, M. (2023). Technology orientation and export performance: the moderating role of supply chain agility. *Modern Supply Chain Research and Applications*, 5(4), 230–264. <https://doi.org/10.1108/mscra-01-2023-0006>
- 35) Park, A., & Li, H. (2021). The effect of blockchain technology on supply chain sustainability performances. *Sustainability (Switzerland)*, 13(4), 1–18. <https://doi.org/10.3390/su13041726>
- 36) Perano, M., Cammarano, A., Varriale, V., Del Regno, C., Michelino, F., & Caputo, M. (2023). Embracing supply chain digitalization and unphysicalization to enhance supply chain performance: a conceptual framework. In *International Journal of Physical Distribution and Logistics Management* (Vol. 53). <https://doi.org/10.1108/IJPDLM-06-2022-0201>
- 37) Rejeb, A., & Rejeb, K. (2020). Blockchain and supply chain sustainability. *Logforum*, 16(3), 363–372. <https://doi.org/10.17270/J.LOG.2020.467>
- 38) Schilling, L., & Seuring, S. (2024). Linking the digital and sustainable transformation with supply chain practices. *International Journal of Production Research*, 62(3), 949–973.

<https://doi.org/10.1080/00207543.2023.2173502>

- 39) Seepma, A. P., de Blok, C., & Van Donk, D. P. (2020). Designing digital public service supply chains: four country-based cases in criminal justice. *Supply Chain Management*, 26(3), 418–446. <https://doi.org/10.1108/SCM-03-2019-0111>
- 40) Shahzad, A., Zhang, K., & Gherbi, A. (2020). Intuitive development to examine collaborative IOT supply chain system underlying privacy and security levels and perspective powering through proactive blockchain. *Sensors (Switzerland)*, 20(13), 1–27. <https://doi.org/10.3390/s20133760>
- 41) Sharabati, A. A. A., Awawdeh, H. Z., Sabra, S., Shehadeh, H. K., Allahham, M., & Ali, A. (2024). The role of artificial intelligence on digital supply chain in industrial companies mediating effect of operational efficiency. *Uncertain Supply Chain Management*, 12(3), 1867–1878. <https://doi.org/10.5267/j.uscm.2024.2.016>
- 42) Srinivasan, R., & Swink, M. (2018). An investigation of visibility and flexibility as complements to supply chain analytics: An organizational information processing theory perspective. *Production and Operations Management*, 27(10), 1849–1867.
- 43) Thakur, S., & Breslin, J. G. (2020). Scalable and secure product serialization for multi-party perishable good supply chains using blockchain. *Internet of Things (Netherlands)*, 11, 100253. <https://doi.org/10.1016/j.iot.2020.100253>
- 44) Uhl-Bien, M., & Arena, M. (2018). Leadership for organizational adaptability: A theoretical synthesis and integrative framework. *Leadership Quarterly*, 29(1), 89–104. <https://doi.org/10.1016/j.leaqua.2017.12.009>
- 45) Valashiya, M. C., & Luke, R. (2023). Enhancing supply chain information sharing with third-party logistics service providers. *International Journal of Logistics Management*, 34(6), 1523–1542. <https://doi.org/10.1108/IJLM-11-2021-0522>
- 46) Weerabahu, W. M. S. K., Samaranayake, P., Nakandala, D., & Hurriyet, H. (2023). Digital supply chain research trends: a systematic review and a maturity model for adoption. *Benchmarking*, 30(9), 3040–3066. <https://doi.org/10.1108/BIJ-12-2021-0782>
- 47) Wei, C., Clément, Y., Ahmadi, A., Fakhimi, S., Ahmadi, Y., Dessart, F. J., ... Segal, D. N. (2020). Instagram celebrities and positive user responses. The mediating role of user “like.” *Revista Română de Informatică și Automatică*, 9(3), 213–224. <https://doi.org/10.1017/CBO9780511813740.012>
- 48) Weisz, E., Herold, D. M., & Kummer, S. (2020). Revisiting the bullwhip effect: how can AI smoothen the bullwhip phenomenon? *International Journal of Logistics Management*, 34(7), 98–120. <https://doi.org/10.1108/IJLM-02-2022-0078>