
Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 584

THE FUTURE IS FREESTYLE: RETHINKING SOFTWARE ENGINEERING

THROUGH THE LENS OF VIBE CODING

TAHER MUHAMMAD MAHDEE
Department of Computer Science and Engineering, Bangladesh Army University of Science and
Technology, Saidpur Cantonment, Nilphamari, Bangladesh.

MD. AL-HASAN*
Department of Computer Science and Engineering, Bangladesh Army University of Science and
Technology, Saidpur Cantonment, Nilphamari, Bangladesh.
*Corresponding Author Email: al-hasan@baust.edu.bd

Abstract

As software development evolves in response to increasingly dynamic and creative demands, a new
paradigm is emerging—vibe coding—characterized by intuition-driven, expressive, and improvisational
coding practices. Unlike traditional engineering methodologies that prioritize rigid structure, formalism, and
long-term planning, vibe coding thrives on fluidity, rapid feedback, and aesthetic decision-making. Rooted
in live coding, design thinking, and agile experimentation, this approach reflects a broader shift in developer
culture where flow, feel, and personal expression are embraced as essential components of the software
creation process. This paper explores the conceptual foundations of vibe coding, proposes a vibe coding
framework, does the comparative analysis of different software development paradigm, addresses the key
challenges and ethical concerns. By framing vibe coding not as a fringe practice but as an emerging
response to the needs of fast-paced, human-centered development, we argue for a rethinking of how
software engineering frameworks can better support creativity, emotional intelligence, and developer
experience in the future of work.

Keywords: Vibe Coding; Freestyle Software Development; Emotion-Aware Programming; AI-Assisted
Coding Environments; Future of Software Development.

1. INTRODUCTION

In recent years, software development has experienced a shift from strictly formalized
engineering methodologies toward more flexible, creative, and developer-centered
approaches. While traditional paradigms like the Waterfall Model and even structured
Agile frameworks emphasize planning, standardization, and repeatability, developers
increasingly operate in fast-paced environments where intuition, rapid prototyping, and
creative exploration are essential [1,5].

Within this context, an emergent practice informally referred to as "vibe coding" has
gained attention in developer communities, particularly in startups, prototyping teams,
and open-source environments.

Vibe coding can be broadly defined as an intuition-driven approach to programming,
where developers prioritize flow, feel, and immediate feedback over strict adherence to
architectural or coding standards. Rather than planning every detail upfront, vibe coders
“feel their way” through design problems, making decisions based on instinct, aesthetic
sensibilities, or personal preference [2,7].

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 585

While such behavior has long existed informally in solo or creative coding environments,
it is now being observed in broader contexts such as low-code/no- code platforms, agile
rapid development, and UX-driven design-first coding. The conceptual view of vibe coding
process is depicted in Fig. 1.

Fig 1: Vibe Coding Process

With the implementation of vibe coding, developers are alleviated from the burdens of
manual coding tasks. They are able to assume a more dynamic role, wherein they guide
the artificial intelligence, evaluate its outputs, and enhance the code produced.

This approach not only optimizes the development process but also makes coding more
accessible to novices who may have previously found traditional programming daunting.
For seasoned developers, it serves as a significant productivity enhancement, allowing
for greater allocation of time towards innovation and creative endeavors [3].

The origins of vibe coding are partly rooted in the evolution of programming culture itself.
As tools have become more supportive of experimentation — through features like live
reloading, sandbox environments, and real-time previews — developers are able to
iterate quickly without traditional compilers or deployment delays [6, 9].

Platforms like React, Flutter, and Jupyter notebooks encourage this kind of immediate-
feedback workflow, which complements a more expressive, improvisational coding style.
Moreover, vibe coding intersects with principles of creativity and improvisation, previously
explored in fields like live coding for music and art, where the act of coding is itself a
creative, often performative, expression [4]. Similarly, in UI/UX-focused projects,
developers often write code to match an aesthetic “vibe” or emotional tone, aligning with
the goals of human-centered design [8].

Although vibe coding has gained prominence in online discussions, tutorials, and
presentations among developers, it has not been subjected to comprehensive
examination as a formal practice within the realm of software engineering research.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 586

The main contributions of this paper include:

• Delineate, contextualize, and investigate vibe coding as a practice within software
development.

• Propose a comprehensive vibe coding framework in software engineering.

• Do comparative analysis of vibe coding strategy, uses and growth compared to other
strategies.

• Investigate the key challenges and ethical concerns with necessary future
guidelines.

2. BACKGROUND STUDY

A. Traditional Software Engineering Paradigms

For decades, software engineering has been grounded in structured development models
such as the Waterfall model, Agile methodologies [10], and DevOps practices. These
models emphasize predictability, modularity, testability, and scalability. While effective for
large-scale systems, such approaches often enforce rigidity, limiting the creative
autonomy of developers [11]. Recent research on developer productivity and well-being
[12] highlights growing dissatisfaction with overly prescriptive workflows.

B. Creative and Expressive Dimensions of Programming

Programming is increasingly being recognized not just as an engineering task but as a
creative and expressive activity [13]. Fields such as creative coding, live coding, and
aesthetic programming position the developer as an artist or performer. Tools like
Processing, Sonic Pi, and Hydra allow for improvisational, real-time feedback loops where
code is driven by "feeling" or "flow" rather than static requirements [14].

This notion overlaps with the emerging idea of “vibe coding” — an informal,
improvisational, emotionally intuitive style of writing software. While not yet formally
defined in academic literature, vibe coding reflects a developer’s personal mood,
aesthetic sense, or the collaborative energy of a team, blending intuition, exploration, and
play into the development process.

C. Vibe Coding and Developer Experience (DevX)

Recent studies have highlighted the importance of developer experience (DevX) as a
critical factor in software quality and team productivity [15]. Frameworks like React,
Tailwind CSS, and tools like GitHub Copilot or ChatGPT foster a sense of “flow” where
developers code with intuition rather than strict mental modeling.

This intuitive mode of work, characterized by rapid feedback, fluid syntax, and dynamic
collaboration, underpins the freestyle coding experience many modern developers are
gravitating toward.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 587

D. Challenges to Formalism in Software Engineering

The dominant culture in software engineering often prioritizes rigor, formal proofs, and
reproducibility. However, there's growing critique around the over-formalization of
programming [16]. Exploratory coding, tinkering, and bottom-up problem solving—central
to vibe coding—are often marginalized in traditional engineering education and practice.

E. Tooling for Vibe-Based Development

The rise of low-code/no-code platforms, AI-assisted coding, and domain-specific
languages (DSLs) reflect a broader shift toward fluid, intuitive coding environments. Tools
like Replit [17] Ghostwriter [18], Observable [19], and Framer [20] demonstrate that
developers want to build through experimentation and real-time interaction rather than
formal documentation and rigid planning.

Vibe coding thrives in these ecosystems where prototyping, play, and improvisation are
core design principles. This movement also resonates with the broader trend of
“developer-first” culture, where tools are designed to amplify individual creativity rather
than enforce institutional control.

F. Toward a Freestyle Software Engineering Future

The emergence of vibe coding challenges software engineering to evolve beyond its
industrial roots and embrace its humanistic, improvisational potential. By acknowledging
emotion, intuition, and personal expression as valid elements of software creation, we
may redefine what it means to be a software engineer in the 21st century.
This evolving paradigm aligns with trends in AI-assisted creativity, remote collaboration,
and developer-centric culture, suggesting that future methodologies may need to
accommodate both rigor and rhythm—not just logic but also vibe.

3. PORPOSED MODEL OR FRAMEWORK

The VIBE-CODE methodology is a flexible, mood-driven, and flow-oriented software
development approach that treats coding as a creative, improvisational act rather than a
rigid, predefined process. It emphasizes emotional alignment, immediate feedback, and
lightweight intent planning. This paper proposes a framework shown in TABLE I where
each stage is based on the acronym V.I.B.E-C.O.D.E.

Table I: Proposed Framework

Stage Name Description

V Vibe Check
Developers self-assess their emotional state to align task type (e.g.,
creative, refactoring) with mood.

I Intent Sketching
Define a loose creative goal, not a rigid spec (e.g., “build a playful UI for
this module”).

B Build Freestyle
Code in a flow state using live tools, rapid iteration, and minimal
interruptions. Focus on exploration, not perfection.

E Emerge Patterns
Let modular design patterns or reusable components naturally emerge
during the process. Don’t force structure early.

C Capture Creativity Log thoughts, visuals, screenshots, and code snippets that reflect the

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 588

creative journey.

O Organize Outcome
Refactor the output for clarity and reusability without disrupting the
creative codebase.

D Demo or Discard
Present the outcome (demo, push, or share), or archive/discard if it's a
failed sketch. Failure is part of the creative loop.

E Evolve
Return to the process with refined intent, remix ideas, or start a new
creative loop.

The overall architecture of the Vibe Coding Environment is illustrated in Fig. 2.

Fig 2: Overall Architecture of Vibe-Coding Environment

The Vibe Coding Environment integrates a layered system starting with a Frontend UI
featuring live coding, visual flow editing, and emotional feedback. The Intelligent
Middleware Layer powers creativity with AI copilots, flow-state detection, and prompt
generation. Below that, the Developer Context Engine manages code history, emotional
context, and dynamic project intent.

The Execution & Feedback Layer ensures real-time compiling, visualization, and
feedback. A Storage & Sync Layer enables cloud sync, AI-enhanced version control, and
real-time collaboration. Together, these layers form an adaptive, emotion-aware, and AI-
assisted software development ecosystem.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 589

A. Framework Structure

Step 1: Set the Vibe

• Select a mental mode: Exploratory, Technical, Design-focused, Debug

Step 2: Define Freestyle Intent

• What would you like to build today?

Step 3: Start the Vibe Session

• Timebox (e.g., 25–90 mins)

• Code with improvisation

• Use live editors, AI copilots, or generative tools to reduce friction

Step 4: Capture the Flow

• After coding, log what worked, what felt off, and what patterns emerged

• Take screenshots, doodles, snippets if helpful

Step 5: Refactor or Publish

• Turn the developer’s vibe-driven output into more structured modules

• Publish to repo, share with collaborators, or archive as an "idea sketch"

Step 6: Community Remix (Optional)

• Other’s remix or extend of the freestyle module

• Acknowledge creative influence and flow patterns (like GitHub’s “inspired by”)

4. COMPARATIVE ANALYSIS

The comparison across conventional, AI-driven, and vibe coding approaches reveals
significant shifts in the philosophy, tooling, and human experience of software
development. Use of latest trend in software development strategies is not cutting the
connection to the conventional technologies. It should be considered as the advancement
on the traditional technologies and approaches. Each approach addresses different
priorities, structure vs. automation vs. expression as shown in TABLE II and serves
distinct developer communities and project types.

Table II: Comparative Study of Software Development Strategies

Aspect
Conventional Software

Development
AI-Driven Software

Development
Vibe Coding Software

Development

Methodology
Structured (Waterfall,
Agile, DevOps)

Semi-structured with AI-
assisted automation

Unstructured / Improvisational

Developer Role
Follows plans, writes
logic manually

Guides and reviews AI
suggestions

Expresses ideas creatively,
codes intuitively

Creativity Level
Limited by specs and
processes

Moderate (within AI’s
suggestions)

High – emphasis on
improvisation,

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 590

experimentation

Primary Tools
IDEs, version control,
manual testing tools

Copilot, CodeWhisperer,
ChatGPT, automated
CI/CD

Live editors, visual tools,
intuitive UIs, creative
frameworks

Feedback Loop
Slower (compile–test–
debug cycles)

Faster via AI code
generation and completion

Real-time (e.g., live coding,
instant UI/code reflection)

Flexibility
Rigid structure; changes
need rework

Moderate – adaptable
through prompts

Highly flexible – evolves as
the developer vibes with the
code

Emotional
Engagement

Low – work can feel
mechanical

Medium – AI may reduce
frustration

High – coding influenced by
mood, flow, aesthetics

Error Handling Manual debugging
AI-assisted error
suggestions

Mistakes are part of creative
process (explorative
debugging)

Documentation
Dependency

High – formal specs,
UML, process flows

Medium – some generated,
some informal

Low – often minimal,
sometimes embedded within
the code structure

Reproducibility
High – strict process
ensures consistency

Medium – depends on AI
behavior and prompts

Low to medium – output may
vary with developer’s state or
intent

Collaboration
Style

Team-based, roles
defined

Human + AI collaboration
Fluid; often solo or peer-
based in a jam-like setting

Learning Curve
Steep – requires
structured training

Moderate – depends on
familiarity with AI tools

Gentle – exploratory, intuitive
learning encouraged

Ideal Use
Cases

Enterprise software,
safety-critical systems

Rapid prototyping, code
generation, automation

Creative apps, prototyping,
educational tools, artistic
software

A. Growth of Software Development Paradigm

TABLE III outlines the growth trajectory of software development paradigms from 2000 to
2040. The estimates were informed by a combination of past research [21, 22], recent
industry trends [25, 26], and projections based on the evolution of AI and affective
computing [28, 30]. Between 2000 and 2015, conventional software engineering
methods, such as the Waterfall model and Agile methodologies dominated software
development [21, 22]. During this time, AI's role in software engineering was still limited,
mostly constrained to theoretical research or specialized automation tasks [23]. By 2015,
the integration of DevOps and automation started to stabilize conventional methods, while
early intelligent code completion tools began entering mainstream IDEs [24]. The 2020s
marked a rapid shift with the introduction and adoption of AI-assisted coding tools like
GitHub Copilot, which redefined software development processes [25, 26]. At the same
time, "Vibe Coding" while not formally recognized, began to surface through discussions
around emotion-aware computing and developer-centered workflows [27, 28]. Projections
for 2030 and beyond are informed by trends in generative AI, human-in-the-loop systems,
and creativity support tools. AI is expected to dominate the software lifecycle, while Vibe
Coding is anticipated to emerge as a human-centric alternative that combines emotional
context, intuitive design, and expressive programming techniques [29, 30].

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 591

Table III: Growth of Software Development Paradigm

Year
Conventional Software

Development
AI-Driven Software

Development
Vibe Coding Software

Development

2000
Rapid adoption of Waterfall,
early Agile

Minimal presence Not applicable

2005
Peak Agile expansion;
enterprise use

Early AI research in
automation

Not applicable

2010
Mature practices, DevOps
integration

Rise of ML tools, smart IDEs Not recognized

2015
Gradual stagnation in
innovation

Emergence of AI-assisted
coding (e.g., code
completion)

Ideational only (creative
coding in niche)

2020
Plateaued in growth, mostly
support phase

AI copilots (e.g., GitHub
Copilot beta) gain popularity

Conceptual buzz, no formal
method

2025
Legacy systems, minor
enhancements

Widespread use of AI-driven
design, testing, coding

Introduced as experimental
method via academic
proposals

2030
(Projected)

Decline in relevance except
for regulated systems

Mainstream for full lifecycle
support

Early adoption in creative
industries, startups, and
experimental labs

2035
(Projected)

Minimal use in innovation
contexts

Dominant in enterprise and
productivity coding

Growing community,
integrated with creative
toolchains, gaining research
interest

2040
(Projected)

Niche/archival relevance
Ubiquitous; AI-first
development norm

Emerging alternative in
human-centric and emotion-
aware software systems

After normalizing the values of Table 3 on a scale of 0 to 10, where 0 = no adoption, 10
= peak adoption we get the below growth as shown in Fig. 3. The growth-chart clearly
visualizes that, the practice of AI driven software development and vibe coding software
development strategies are growing rapidly over time. But there are no or limited formal
research regarding this growing technology.

Fig 3: Software Development Paradigm Growth

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 592

5. CHALLENGES AND ETHICAL CONCERN

A. Key Challenges

While vibe coding offers innovative ways to foster creativity, flexibility, and emotional
engagement in software development, it also comes with unique challenges that must be
considered for its practical application. Below are some of the key challenges:

1) Lack of Structure and Predictability

The unstructured, improvisational nature of vibe coding can lead to inconsistent code
quality and difficulty in predicting project outcomes. In environments where deadlines,
specifications, and scalability are crucial, vibe coding might struggle to deliver results that
meet predefined criteria.

Impact: The absence of clear requirements and formalized processes can make it difficult
for teams to maintain project timelines, track progress, and ensure the reliability of the
final product.

2) Scalability and Maintenance

Vibe coding encourages rapid iteration and creative exploration, which can lead to
spontaneous, ad-hoc solutions that are difficult to scale or maintain over time.

Impact: As the project grows, it could become increasingly difficult to refactor or integrate
new features without significant technical debt.

3) Increased Cognitive Load and Mental Fatigue

While vibe coding encourages creativity, it can also lead to mental exhaustion as
developers constantly toggle between structured coding tasks and spontaneous, flow-
driven decisions.

Impact: Extended periods of creative immersion without breaks or clear boundaries can
affect the developer’s well-being and productivity.

4) Difficulty in Collaborative Development

Vibe coding, with its focus on individual expression and real-time feedback, can create
collaboration friction in team environments.

Impact: In larger teams, achieving a shared vision for the project may become
challenging, leading to potential misunderstandings, code duplication, or integration
issues.

5) Quality Assurance and Testing Difficulties

The freeform nature of vibe coding might not align well with traditional testing and quality
assurance (QA) procedures. Since vibe coding involves continuous, spontaneous
creation, the automated testing pipelines might struggle to keep up with constantly
changing code that lacks rigid structures.

Impact: Ensuring that code passes quality checks, integrates well with the overall system,

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 593

and meets user expectations could be hindered by the lack of formal validation practices
within the vibe coding approach.

6) Resistance to Change from Traditional Developers

Developers accustomed to traditional, structured methodologies (e.g., Waterfall, Agile)
may resist the fluidity and open-ended nature of vibe coding. This can create a barrier to
adoption, especially in organizations that prioritize predictability, scalability, and formal
project management techniques.

Impact: Introducing vibe coding into conventional development teams may face
resistance, slowing down its acceptance and integration into established workflows.

7) Tooling and Support

Vibe coding relies heavily on real-time feedback, live editing, and creative tooling.
However, many current development environments are not optimized for such
improvisational workflows.

Impact: Without the right tools, the potential for vibe coding to foster creativity and fluidity
may be undermined, making it harder for developers to adopt this style effectively.

8) Measuring Success and Progress

Since vibe coding does not follow traditional KPIs (e.g., sprints, deliverables), measuring
progress can be difficult. Vibe-based projects may lack the traditional project metrics that
stakeholders and team leads are used to, such as story points, velocity, or release
timelines.

Impact: Without clear milestones and measurable outcomes, it becomes harder to track
whether a project is on course to meet its long-term objectives.

9) Integration with Traditional Frameworks

Integrating vibe coding with established software development frameworks or DevOps
pipelines can present logistical difficulties. As the methodology encourages spontaneity
and fast iteration, it may not seamlessly fit within the structure of version control, CI/CD
pipelines, and deployment processes that traditional frameworks depend on.

Impact: This dissonance between freestyle development and traditional frameworks could
disrupt the workflow, causing delays in deployment and integration.

While vibe coding offers a fresh, emotionally-connected approach to software
development, it is important to acknowledge the challenges it poses, particularly in terms
of structure, scalability, collaboration, and tooling. Developers adopting vibe coding must
remain aware of these challenges and implement strategies to mitigate risks, ensuring
that the innovation it brings doesn't compromise long-term project sustainability.

B. Ethical Concerns

As Vibe Coding emerges as a novel paradigm blending emotional intelligence, AI
assistance, and freestyle software development, it introduces a series of ethical concerns

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 594

that must be addressed to ensure responsible adoption. This section outlines the key
ethical issues and potential mitigation strategies.

1) Privacy and Data Security

Vibe Coding platforms often rely on multimodal inputs such as voice, facial expressions,
and mood data to enhance context-awareness. These inputs may contain personally
identifiable information (PII), raising significant concerns regarding user privacy.
Inadequate data protection mechanisms or the absence of informed consent could result
in privacy breaches or misuse of sensitive developer data.

Mitigation: Implement end-to-end encryption, anonymize mood/voice data, and enforce
GDPR-compliant user consent protocols.

2) AI Bias and Fairness

AI systems integrated into Vibe Coding environments, such as code generators and
emotion-aware copilots, are trained on large-scale datasets that may inherently contain
societal biases. These biases could propagate into code suggestions, leading to
discriminatory or unfair logic in software systems.

Mitigation: Employ bias detection tools, incorporate diverse training datasets, and
regularly audit model outputs.

3) Developer Autonomy and Skill Degradation

While AI tools can enhance productivity, over-reliance on them may reduce developers
to passive validators of machine-generated logic.

This could erode fundamental coding skills and critical thinking abilities, especially among
less experienced programmers.

Mitigation: Maintain a balanced human-AI collaboration model with manual override and
skill-development modes.

4) Ownership and Accountability

Vibe Coding challenges traditional notions of code ownership and intellectual property.
When software is largely AI-generated, determining authorship and accountability
becomes ambiguous. Legal liabilities in case of system failures also remain a gray area.

Mitigation: Define clear usage licenses for AI-generated content and incorporate audit
logs to trace code provenance.

5) Transparency and Explainability

The “black box” nature of AI models can obscure how certain code or suggestions are
derived, potentially resulting in unexplainable or non-verifiable logic. In safety-critical
systems, this lack of transparency can have serious consequences.

Mitigation: Integrate explainability layers or visual interpreters that clarify AI-driven
decision-making processes.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 595

6) Collaborative Fairness and Plagiarism

In team environments, the use of AI to produce large code segments may create
imbalance in perceived contribution and raise questions about originality. Additionally, AI
tools may inadvertently generate code derived from copyrighted sources, leading to
intellectual property violations.

Mitigation: Use plagiarism detection tools and establish fair contribution guidelines in
collaborative projects.

Ethical challenges in Vibe Coding are multifaceted and closely tied to the intersection of
human emotion, AI autonomy, and software engineering. Addressing these concerns
requires a proactive design philosophy grounded in transparency, consent, fairness, and
continuous human oversight. Ethical vigilance will be critical to ensuring that Vibe Coding
empowers developers without compromising privacy, equity, or accountability.

6. CONCLUSION AND FUTURE RECOMMENDATION

A. Conclusion

This research paper has introduced the concept of Vibe Coding as a transformative
approach to software development that emphasizes creativity, emotional alignment, and
intuitive flow. Unlike traditional structured methodologies, Vibe Coding encourages
developers to code in a spontaneous, improvisational manner, drawing inspiration from
artistic expression and the freedom of freestyle music. Through this lens, software
development can evolve from a task-oriented process to a more fluid, emotionally
engaging activity, fostering a sense of fulfillment and satisfaction in the act of creation.
While Vibe Coding offers several promising advantages—such as enhancing creativity,
reducing burnout, and fostering rapid prototyping—it also presents notable challenges,
including issues related to scalability, collaboration, and quality assurance. These
challenges need to be addressed for Vibe Coding to be widely adopted in both academic
and industrial software engineering environments. The lack of formal structure and
reliance on real-time feedback also highlight the need for new tools, frameworks, and
practices that can effectively support this creative coding style. Despite these challenges,
the potential for Vibe Coding to redefine how we approach software development cannot
be overlooked. As the industry moves toward more human-centered and emotionally
intelligent software practices, the Vibe Coding methodology could do a significant job in
reshaping the software development landscape, making it more inclusive of creativity,
intuitiveness, and personal expression.

B. Future Recommendation

As we look to the future of Vibe Coding, several promising areas of exploration and
development present themselves:

1) Tooling and Integration with Development Environments

One of the major challenges identified was the lack of tools that support Vibe Coding’s
fluid, improvisational nature. Future research could focus on developing or adapting tools

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 596

that offer seamless integration between live coding environments, real-time feedback
systems, and AI-powered copilots. Platforms like VS Code or Replit could be enhanced
to support creative coding modes that reduce friction and encourage spontaneous
exploration while maintaining code quality.

2) Framework Adaptations for Agile and DevOps

While Vibe Coding thrives in creative, individual-driven contexts, its integration into
structured environments like Agile or DevOps remains a challenge. Research could
explore hybrid methodologies that combine the freestyle nature of Vibe Coding with the
predictability and collaborative aspects of traditional frameworks. This would create a
balanced development process that embraces creativity without sacrificing coordination
or timeline adherence.

3) Measuring Vibe Coding Success

Traditional metrics used in Agile and DevOps (e.g., velocity, story points) are not directly
applicable to Vibe Coding’s flexible approach. Future research could focus on developing
new success metrics tailored to vibe-driven development, such as emotional satisfaction,
creative output, and flow states. This could provide teams with new ways to evaluate
progress and success in a more holistic manner.

4) Exploring Team Collaboration in Vibe Coding

Although Vibe Coding is inherently individualistic, collaborative forms of freestyle
development such as live coding sessions or pair programming in a vibe-centric context,
could be explored. Understanding how teams can effectively collaborate in a creative,
freestyle environment could unlock new dynamics for modern software teams, promoting
an atmosphere of shared creativity while ensuring productivity.

5) Human-Centered Development Practices

The emotional and psychological aspects of coding, such as developer well-being, flow,
and motivation, are crucial in the Vibe Coding methodology. Future work could examine
how Vibe Coding affects developer satisfaction, mental health, and long-term productivity.
By placing developers at the center of the process, Vibe Coding could contribute to
creating a more sustainable and emotionally fulfilling career path in software engineering.

6) Empirical Studies and Validation

To validate the efficacy and practicality of the Vibe Coding methodology, further empirical
studies are needed. Researchers could conduct studies comparing the outcomes of
projects developed using Vibe Coding versus traditional methodologies, measuring
aspects such as creativity, time to completion, code quality, and developer satisfaction.
Such studies could provide more concrete evidence for the adoption of Vibe Coding in
both academic and industry settings.

In conclusion, the Vibe Coding methodology represents an exciting frontier in software
development, one that blends creativity, emotion, and intuitiveness with the technical craft
of coding. As the software development community continues to evolve, adopting more

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 597

flexible, human-centric approaches will become increasingly important. By further refining
and validating our proposed approach, researchers can design the system for a more
innovative, expressive, and joyful future of software engineering.

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this paper. The
research was conducted independently, without any commercial, financial, or personal relationships that
could have influenced the outcomes or interpretations presented in this work.

References

1) K. Beck, et al., Manifesto for Agile Software Development, 2001. [Online]. Available:
https://agilemanifesto.org/.

2) A. Blackwell and N. Collins, "The Programming Language as a Musical Instrument," Proc. of the
Psychology of Programming Interest Group (PPIG), 2005.

3) N. Nayeem, "Vibe Coding: Revolutionizing Software Development with AI Assistance," Medium, Mar.
21, 2024. [Online]. Available: https://medium.com/@nomannayeem/vibe-coding-revolutionizing-
software-development-with-ai-assistance-2d578c32e8b5

4) N. Collins, A. McLean, J. Rohrhuber, and A. Ward, "Live coding in laptop performance," in The Oxford
Handbook of Computer Music, R. T. Dean, Ed. Oxford, U.K.: Oxford Univ. Press, 2014, pp. 103–122.

5) J. Highsmith, Agile Project Management: Creating Innovative Products, 2nd ed. Boston, MA, USA:
Addison-Wesley, 2009.

6) S. McDirmid, "Living it up with a live programming language," in Proc. 22nd ACM SIGPLAN Conf.
Object-Oriented Programming Systems and Applications (OOPSLA), Montreal, QC, Canada, Oct.
2007, pp. 623–638. [Online]. Available: https://doi.org/10.1145/1297027.1297073

7) P. Naur, "Programming as theory building," Microprocessing and Microprogramming, vol. 15, no. 5,
pp. 253–261, 1985. [Online]. Available: https://doi.org/10.1016/0165-6074(85)90035-4

8) D. A. Norman, The Design of Everyday Things, Revised and Expanded ed. New York, NY, USA: Basic
Books, 2013.

9) C. Reas and B. Fry, Processing: A Programming Handbook for Visual Designers and Artists.
Cambridge, MA, USA: MIT Press, 2007.

10) Beck, K., Beedle, M., van Bennekum, A., et al. (2001). Manifesto for Agile Software Development.
Available at: https://agilemanifesto.org/

11) Fitzgerald, B. (2006). The transformation of open-source software. MIS Quarterly, 30(3), 587–598.

12) Meyer, A. N., Fritz, T., Murphy, G. C., et al. (2019). Developers' perceptions of productivity factors.
IEEE Transactions on Software Engineering, 45(1), 87–106.

13) Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: A cognitive
dimensions framework. Journal of Visual Languages & Computing, 7(2), 131–174.

14) Blackwell, A., & Collins, N. (2005). The programming language as a musical instrument. Proceedings
of the Psychology of Programming Interest Group (PPIG).

15) Nakamura, Y., Yamashita, K., et al. (2022). What is Developer Experience (DevX)? A grounded theory
approach. Empirical Software Engineering, 27, Article 78.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 58 Issue: 06:2025
DOI: 10.5281/zenodo.15743823

Jun 2025 | 598

16) Turkle, S., & Papert, S. (1990). Epistemological pluralism and the revaluation of the concrete. Signs:
Journal of Women in Culture and Society, 16(1), 128–157. https://doi.org/10.1086/494648

17) Replit. (n.d.). Replit: The collaborative browser-based IDE. Available at: https://replit.com [Accessed:
17 May 2025].

18) Replit. (n.d.). Ghostwriter: AI pair programmer by Replit. Available at: https://replit.com/site/ghostwriter
[Accessed: 17 May 2025].

19) Observable, Inc. (n.d.). Observable: Build fast, flexible data visualizations. Available at:
https://observablehq.com [Accessed: 17 May 2025].

20) Framer B.V. (n.d.). Framer: The web builder for creative teams. Available at: https://www.framer.com
[Accessed: 17 May 2025].

21) Sommerville, I., Software Engineering, 10th ed., Addison-Wesley, 2015.

22) Bourque, P., and Fairley, R. E., Guide to the Software Engineering Body of Knowledge (SWEBOK),
IEEE Computer Society, 2014.

23) Harman, M., and Clark, J., “Search-based software engineering,” Information and Software
Technology, vol. 43, no. 14, pp. 833–839, 2004.

24) Allamanis, M., Barr, E. T., Bird, C., and Sutton, C., “A Survey of Machine Learning for Big Code and
Naturalness,” ACM Computing Surveys, vol. 51, no. 4, pp. 1–37, 2018.

25) GitHub, The State of AI in Software Development, GitHub Report, 2023. [Online]. Available:
https://github.blog/copilot.

26) Chen, T., Liu, M., Zhang, Y., and Lin, Z., “A Survey on Automated Programming with Large Language
Models,” arXiv preprint, arXiv:2305.XXXXX, 2023.

27) Graziotin, M., Wang, X., and Abrahamsson, P., “Happy software developers solve problems better:
Psychological measurements in empirical software engineering,” PeerJ Computer Science, vol. 1, e18,
2014.

28) Müller, S. C., and Fritz, T., “Stuck and Frustrated or in Flow and Happy: Sensing Developers’ Emotions
and Progress,” in Proc. of the 37th Int. Conf. on Software Engineering (ICSE), Florence, Italy, 2015,
pp. 688–699.

29) Walia, G., and Carver, J. C., “Affective computing in software engineering: Current status and future
directions,” Empirical Software Engineering, vol. 25, no. 3, pp. 2086–2123, 2020.

30) Dastin, J., “AI Tools Reshape Creative Workflows,” Reuters, 2023.

