

EFFECTS OF PROLONGED FASTING ON IMMUNE FUNCTION, CANCER-RELATED BIOMARKERS, AND SAFETY IN HUMANS

NONGNAPAT KANTHAKHOO

University of California, Riverside. Email: farnongnapat20@gmail.com

Abstract

The issue of prolonged fasting has become a topic of increasing scientific interest because of the possible impact of this practice on the body in terms of immune regulation, metabolic well-being, and cancer-related biological functions. The long spells of caloric starvation, which are induced in prolonged fasting, result in large-scale physiological changes, such as the alteration of energy metabolism, hormone levels, and cellular responses to stress. The current paper discusses the consequences of long-term fasting regarding immune response, the presence of biomarkers related to cancer, and safety implications on human subjects. The review is based on the findings of observational research and clinical studies to assess the evolution of innate and adaptive immune responses (i.e., leukocyte dynamics, inflammatory cytokine profiles, and immune system regeneration after refeeding). Concurrently, the effects of long-term fasting on cancer-biomarkers, including insulin, insulin-like growth factor-1 (IGF-1), glucose, C-reactive protein and oxidative stress biomarkers are highly evaluated with special focus given on the processes of cell growth, inflammation and tumor suppression. Although there are studies that report positive modulation of biomarkers and decreased systemic inflammation, the results are still inconclusive because of the lack of uniformity in fasting regimens, time, and subject profiles. Safety and tolerability is also considered and it focuses on short-term adverse effects, including fatigue and electrolyte imbalance, and the risks of people with vulnerable conditions such as cancer or metabolic disorders. Altogether, the data indicates that chronic fasting can potentially provide biologically realistic advantages related to immune regulation and decrease the risk of cancer; nevertheless, the existing evidence is not enough to justify the extensive application of this practice. Clinical trials should be further conducted in large and well-designed human trials to determine the best fasting regimens, safety during long period and clinical relevance.

Keywords: Prolonged Fasting; Immune Function; Cancer-Related Biomarkers; IGF-1; Inflammation; Autophagy; Human Studies; Safety.

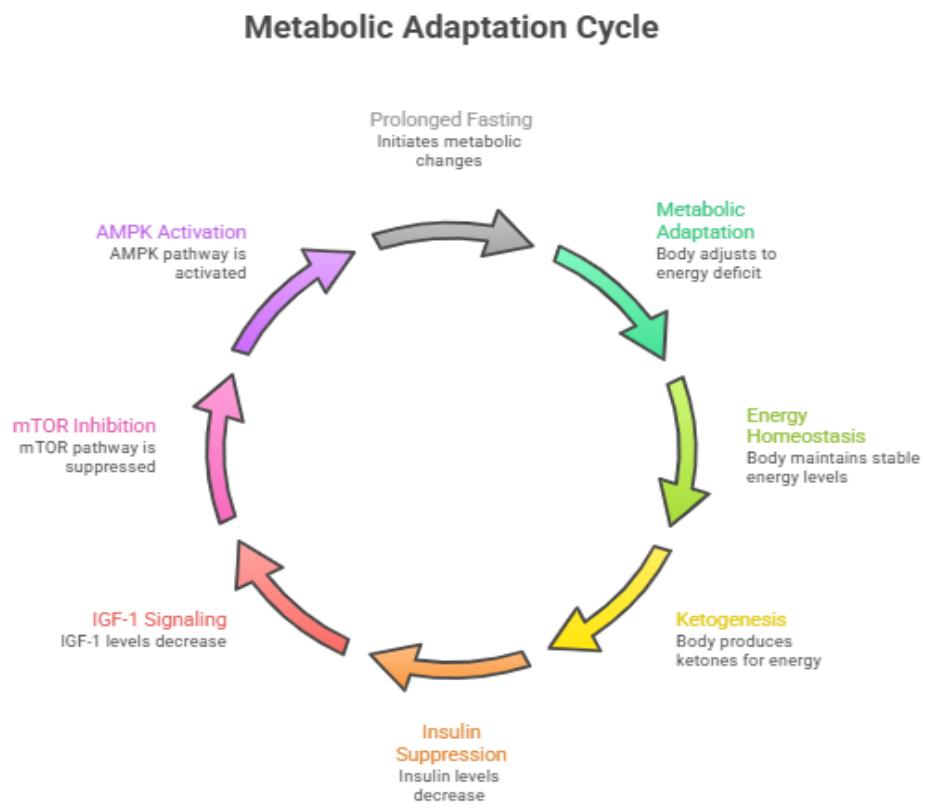
1. INTRODUCTION

Over the past few years, there is growing interest in prolonged fasting in the fields of biomedical and clinical research because the practice can control metabolic health, immune performance, and disease-related biological processes. Prolonged fasting, which is loosely defined as lengthening of several days up to weeks of minimal or no caloric intake, contrasts with short-term or intermittent fasting and which results in deeper physiological and molecular changes. Traditionally practiced as a religious, cultural and therapeutic activity, fasting as a potential non-pharmacological intervention has resurfaced in contemporary medicine as a potential intervention in chronic disease prevention and management such as cancer.

The biological explanation of the study of long-term fasting is based on its ability to induce a complex of metabolic and cellular stresses that favor changes in adaptation and survival. Long-term starvation leads to a metabolic shift of glucose-dependent metabolism to fatty acid metabolism and ketone body generation and decreases in the levels of insulin

and insulin-like growth factor-1 (IGF-1). The changes in these metabolic processes affect important signaling pathways including mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK) and autophagy-related pathways, which are very important in immune responses, inflammation and cancer progression. Prolonged fasting is thus a special physiological condition wherein both the processes related to the immune and cancer can be influenced. The immune activity is very sensitive to the nutritional status and metabolic clues. The innate and adaptive immune systems are dependent on a closely controlled energy source to facilitate the growth of cells, their differentiation, and activity. Experimental and limited studies indicate that, in the case of extended fasting, there is the temporary inhibition of the immune system during the fasting stages, and in the re-feeding phase, the immune system is replenished. This has been attributed to the decrease in the inflammatory cytokines, changes in leukocyte functions and increase in the activity of hematopoietic stem cells. This type of immune-modulation can have clinical implications, especially in diseases that are typified by chronic inflammation or immune mal-regulation, both known to trigger cancer-causation and cancer-progression.

Biomarkers associated with cancer give an essential understanding of the biological mechanisms in tumor development, progression and response to therapy. A significant number of these biomarkers, including glucose and insulin, IGF-1, C-reactive protein (CRP), and oxidative stress markers, have direct effects caused by metabolic and inflammatory conditions. Long periods of fasting have been linked to positive modifications in various of these indicators, such as lowered IGF-1 signaling, lowered systemic inflammation, and also increased cellular repair by autophagy. The effects have created a focus in fasting as a preventive measure of cancer or as a supplement to traditional cancer treatments. Nonetheless, there is a controversy in translating the results of such findings to clinical practice, especially because the responses of humans vary, and there is not enough data in the long-term.


Although there is an increasing enthusiasm, the security of the long-time fasting in humans is still a primary issue. Long term caloric deprivation can lead to potential risks including electrolyte imbalances, hypoglycemia, micronutrient deficiencies, and loss of lean body mass particularly when applied to populations who are vulnerable such as cancer patients, elderly, and those with a metabolic disorder. The ratio of the potential therapeutic advantages and the physiological danger underlines the necessity of considering the fasting interventions in the well-observed clinical set-ups. Further, current human trials are diverse in terms of fasting period, procedures, health condition of participants, and outcome measures, thus making it hard to come up with conclusive results about efficacy and safety.

Considering these factors, the in-depth study of the immune-modulating impact of the long-term fasting on cancer-related biomarkers, immune functionality, and safety in humans is justified. This research paper will critically integrate available evidence based on human structures in an effort to explain the biological effects of long periods of fasting, determine its possible clinical applicability, and also determine gaps in the existing body of knowledge. Combining the results on immune, metabolic, and safety levels, the work

is aimed at offering a balanced and evidence-based view of the prolonged fasting as a possible therapeutic or prevention intervention, in addition to pointing out the future research and clinical practice directions.

2. THEORETICAL AND BIOLOGICAL BACKGROUND

The principle in the theoretical basis of studying the effects of prolonged fasting on immune functions, cancer-related biomarkers, and safety is based on the tight links between metabolism, cellular signaling, and immune regulation. Cellular behavior has a major key determinant of nutritional availability, which affects energy production, growth signaling pathways, and stress responsive pathways. Prolonged starvation is a unique metabolic condition that triggers evolutionary time-tested survival programs, most of which are directly related to immune regulation and cancer biology. These biological processes are fundamental to comprehension of clinical outcomes and biomarker alterations of human studies.

Figure I

Brief diagram explanation:

The figure shows the metabolic changes that occur during extended fasting to switch the body to ketogenesis and insulin and IGF-1 suppression signalling. The changes prevent growth-associated pathways including mTOR and induce AMPK and autophagy, which

enhances stress resistance and repair of cells. The changed metabolic milieu can adjust both the innate and adaptive immune response and results in a decrease in inflammation and increase in the immune regulation. At the same time, the mechanisms related to fasting also affect cancer biology, as they enhance the DNA repair process, decreasing oxidative stress, and restricting tumor-promoting metabolic routes. Cumulatively, these interrelated processes underscore the fact that extended fasting can provide physiological resilience but the final outcomes will be more dependent on the possibility of benefits and the issue of safety.

2.1 The metabolic changes of protracted fasting

In the process of long-term starvation, a metabolic state change takes place in the human body that is aimed at conserving the key activities with limited energy use. It takes about 24 hours before the glycogen stores are utilized and the body starts depending more on lipolysis and hepatic ketogenesis to fulfill the energy requirements. The effect of this alteration is high circulating levels of free fatty acids and ketone body, including 2-hydroxybutyrate, which are alternative sources of energy to the peripheral tissues, brain included as well as immune cells. At the same time, the insulin and plasma glucose levels decrease, which decreases the anabolic signaling and enhances metabolic efficiency.

The metabolic changes are not only passive outcomes of caloric deprivation but an active control of cellular mechanisms related to inflammation, oxidative stress as well as tissue repair. Examples include ketones bodies, which were observed to have signaling activity that affected gene expression, inhibited oxidative stress, and inhibited inflammatory pathways. This metabolic state that is caused by fasting thus provides a systemic context whereby immune reactions and cancer-related pathways can be significantly changed.

2.2 Hormonal and Molecular Signaling Pathways

Long-term fasting has a powerful impact on various important hormonal and molecular pathways that regulate cell growth, resistance to stress, and immunity. Another effect that is most regularly noted is insulin and insulin-like growth factor-1 (IGF-1) signaling suppression. IGF-1 is a crucial hormone in cell growth and survival and is also reviewed to have a contribution in tumor development and cancer risk. Fasting-lowered IGF-1 activity is linked to lowering of downstream signaling including: the mechanistic target of rapamycin (mTOR) which is a central regulator of cell growth and protein synthesis.

Simultaneously, fasting triggers the protein kinase known as AMP-activated protein kinase (AMPK), which is a cellular energy sensor and stimulates catabolic and inhibits anabolic activity under low-energy states. The activation of AMPK increases the mitochondrial biogenesis, fatty acid oxidation, and autophagy which help to promote cellular stress resilience. The autophagy in particular is an essential process of degrading damaged organelles and misfolded proteins, thus ensuring the cellular homeostasis and genomic stability, which are of paramount significance in the immune cell functioning and cancer suppression.

2.3 Immunological-Metabolic Interactions

Immunocytes are metabolically dynamic and change their energy expenditure according to functional specifications. Long-term starvation changes the metabolic environment in which immune cells are active resulting in immune cell distributions, activation, and workings. Natural immune cells, including macrophages and neutrophils, show a change in inflammatory reactions during fasting, which is usually marked by low levels of pro-inflammatory cytokines. Adaptive immunity cells such as T lymphocytes can also have temporary decreases in proliferation during fasting sessions, and then perform more regeneration during refeeding periods.

Theoretical considerations indicate that this fastingrefeeding process can potentially facilitate immune system regeneration by selectively eradicating the dysfunctional or damaged immune cells in the body as well as inducing the hematopoietic stem cell to become active. This principle has parallelism with the overall hormesis theory, in which physiological stress in the short-term initiates adaptive reactions that increase resilience in the long-term. Here, the long term fasting can reset the immune system by decreasing chronic inflammation without compromising or impairing immune competence.

Table: Key Concepts in Immunometabolism and Immune–Metabolic Interactions

Keyword	Definition / Description	Relevance to Prolonged Fasting
Immunometabolism	Study of the interaction between metabolic processes and immune function	Explains how fasting-induced metabolic changes regulate immune responses
Energy metabolism	Cellular processes generating and utilizing energy	Shift from glucose to fatty acid and ketone utilization during fasting
Immune cell bioenergetics	Energy production and consumption in immune cells	Determines immune cell activation, differentiation, and survival under fasting
Innate immunity	First-line, non-specific immune defense mechanisms	Fasting may reduce excessive inflammatory innate responses
Adaptive immunity	Antigen-specific immune responses involving T and B cells	Fasting alters lymphocyte activity and promotes immune regeneration
Metabolic reprogramming	Cellular adaptation to altered energy availability	Enables immune cells to function under nutrient-limited conditions
Cytokine signaling	Communication between immune cells via cytokines	Fasting modulates pro- and anti-inflammatory cytokine profiles
Inflammatory regulation	Control of inflammatory responses	Reduced chronic inflammation through metabolic suppression
Nutrient sensing	Detection of energy and nutrient availability by cells	Activation of energy-sensing pathways during fasting
AMPK signaling	Energy-sensing pathway activated during low energy states	Promotes immune cell stress resistance and metabolic efficiency
mTOR pathway	Central regulator of cell growth and metabolism	Inhibition limits excessive immune activation and cell proliferation
Fasting-induced immune modulation	Immune changes driven by fasting-related metabolic shifts	Balances immune suppression and regeneration
Immune homeostasis	Maintenance of immune balance and stability	Enhanced through controlled metabolic stress and refeeding
Metabolic stress response	Cellular adaptation to energy deprivation	Supports immune resilience and survival during fasting

Explanation of the table:

The table indicates some of the important concepts in immunometabolism by connecting metabolic pathways with the functions of the immune system. It brings out the effects of prolonged fasting in modifying energy metabolism and nutrient sensing causing metabolic reprogramming of immune cells. These alterations affect the cytokine signalling, inflammatory control and the equilibrium between innate and adaptive immunity. In general, it is revealed that fasting-induced metabolic stress responses play a role in immune modulation and immune homeostasis in the table.

2.4 Relevance to Cancer Biology

The pathogenesis of cancer is interconnected with the disruption of the normal metabolism, prolonged inflammation, and the defect of immune control. These pathways interact with the biological processes that are triggered in the course of prolonged fasting on several levels. A decrease in growth factor signaling and inhibition of mTOR restrains cell growth, whereas increased autophagy and repair of DNA damage promote genomic integrity. Also, the anti-inflammatory influence of fasting has the potential to counteract tumor-enhancing inflammatory conditions.

Theoretically, metabolic stress induced by fasting can be used to preferentially induce cancer cell death because cancer cells can be metabolically inflexible and rely on glucose-driven anabolism. Conversely, normal cells can be more able to adjust to the conditions of fasting, thus generating a difference response that could be utilized in the treatment. These mechanisms offer a conceptual framework of discussing the extended fasting as an adjunctive or complementary strategy to cancer prevention or therapy.

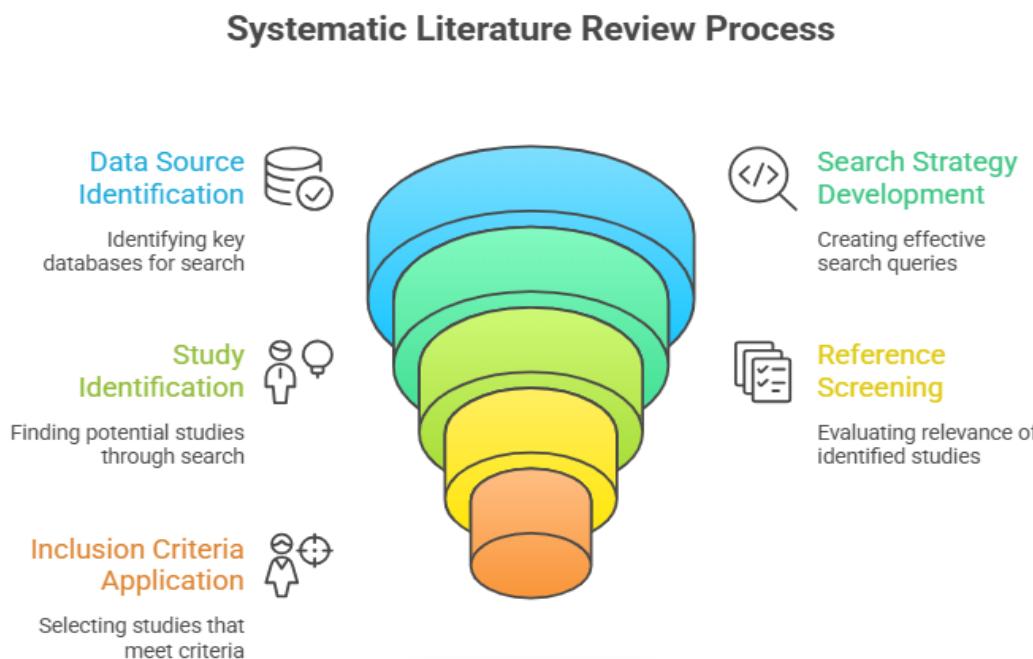
2.5 Safety Concerns In the Biological Framework

Although the biological adaptation to discontinuous fasting could have some pronunciations, it is also associated with physiological difficulties that require consideration. The inhibition of anabolic processes and long-term energy deficiency may negatively affect maintenance of tissues, electrolyte and immune homeostasis unless regularly assessed. The theoretical frameworks indicate that the safety and the effectiveness of the fasting interventions are dependent on the individual variability such as the baseline nutritional status, the metabolic health, and the disease burden.

Consequently, the knowledge of the biological background of prolonged fasting not only clarifies how the process may be effective, but also explains the limits, within which the interventions may be safely practiced. The framework offers fundamental background to the interpretation of the outcomes of human studies, and frames the methodological and ethical deliberations, as will be presented later in the paper.

3. METHODOLOGY

This research uses a systematic and methodological approach of the study to determine the consequences of long-term fasting on immune functioning, cancer-related biomarkers, and safety consequences on human populations. Due to the ethical and


practical constraints of engaging in long-term fasting interventions under controlled experimental conditions, the approach is geared to synthesize and critically analyze the available human based evidence, and at the same time maintain transparency, reproducibility, and scientific rigor.

3.1 Study Design

The method used was a systematic review and the narrative design to analyze the peer-reviewed human studies on the topic of prolonged fasting interventions. Emphasis on human subjects was supposed to improve the clinical use and translational practicability. Interventional and observational studies were also taken into account to embrace a wide variety of fasting protocols, time, and participants attributes. Such design enables combination of mechanistic knowledge and clinical outcomes regarding immune functionality, cancer-related biomarkers and safety.

3.2 Data Sources and Search Strategy

To find the relevant studies that were published within a specific time period, systematic literature search was carried out in various electronic databases, such as PubMed, Scopus, and Web of Science. The search terms were created based on the combination of controlled vocabulary and free-text keywords which were related to prolonged fasting immune function, cancer biomarkers and human safety. The search strategy was refined by the application of the Boolean operators to define a comprehensive coverage of useful literature. Manual screening of reference lists of included studies and pertinent review articles was also done to find more relevant publications.

Figure: II

Brief diagram explanation:

This section explains that the systematic approach to identify the relevant literature is planned in the following ways: how to select electronic databases (PubMed, Scopus, Web of Science) and search terms and Boolean operators, as well as how to screen reference lists. The plan achieved the thorough retrieval of human-based research on the long-term effects of fasting, immune-related biomarkers, cancer related biomarkers and safety, and reduced bias and guaranteed the highest reproducibility.

3.3 Eligibility Criteria

The studies have been chosen according to predetermined inclusion and exclusion criteria. The inclusion criteria included peer-reviewed articles that included human subjects, use of either prolonged fasting or extended fasting-mimicking regimens, and reported at least one outcome of immune parameters, cancer-related biomarkers, or safety. This was applied to both healthy and a clinical population such as the cancer patients. Animal or in vitro studies, short-term fasting interventions (less than 24 hours), studies without primary data and those publications that were not available in full text were excluded.

3.4 Outcome Measures

Primary outcome measures of immune function indicators, such as leukocyte counts, immune cell subsets, cytokine, and systemic inflammation indicators. The secondary outcomes were cancer associated biomarkers, e.g. glucose, insulin, insulin-like growth factor-1 (IGF-1), C-reactive protein (CRP), oxidative stress, and molecular markers of autophagy and cellular repair. The systematically measured safety outcomes were adverse events, biochemical abnormalities, tolerability and rates of withdrawal of the participants.

3.5 Data Extraction

The process of data extraction was carried out through a standardized data collection framework in order to provide consistency among studies. The information that was extracted consisted of study design, the characteristics of participants, the detail of the fasting, the duration of the intervention, outcome measure and the key results. In case they were available, data about monitoring procedures and clinical supervision in fasting state were also recorded. This systematic methodology helped in comparison of cross-studies and synthesis of findings by themes.

3.6 Quality Evaluation/Risk of Bias

Quality of methodologies of included studies was determined by the help of the established critical appraisal tools, depending on the type of study. Some of the factors assessed were the sufficiency of the sample size, coherence of fasting instructions, validity of outcome measurement, and control of confounding factors. Risk of bias was assessed with regard to the selection bias, performance bias, and reporting bias. The quality assessment outcomes were taken into consideration in order to put into a perspective findings and guide the strength of conclusions made.

Table: Quality Evaluation and Risk of Bias Assessment

Quality Domain	Description	Impact on Study Findings	Assessment Considerations
Selection Bias	Bias introduced by participant recruitment or allocation	May affect representativeness of results	Adequacy of inclusion/exclusion criteria, randomization procedures
Performance Bias	Differences in care or intervention delivery	Can influence intervention effectiveness	Standardization of fasting protocols, participant monitoring
Detection Bias	Systematic differences in outcome measurement	May skew observed effects	Validity and reliability of immune and biomarker measurements
Reporting Bias	Selective reporting of outcomes	Limits transparency and completeness	Completeness of results reporting, adherence to protocol
Sample Size & Power	Adequacy of participant numbers	Influences statistical reliability	Evaluation of sample size calculation and effect detection
Confounding Factors	Uncontrolled variables affecting outcomes	Can lead to misinterpretation of results	Consideration of diet, exercise, medication, baseline health
Overall Study Quality	Holistic appraisal	Determines confidence in conclusions	Use of standardized appraisal tools (e.g., Cochrane, ROBINS-I)

Brief description of the table:

The table encompasses the important domains to assess the quality of the study and the risk of bias in the research of prolonged fasting. All of the areas are evaluated such as selection and performance bias, confounding factors, and so on, to reveal the ways in which this or that methodological strength or weakness could affect the study results. Such an organized assessment of results guarantees a clear reproducible and evidence based interpretation.

3.7 Data Synthesis and Analysis

Since there was a heterogeneity of fasting protocols, groups of participants, and outcomes, a qualitative synthesis methodology was mostly used. Results have been grouped on the basis of theme (the immune outcomes, cancer-related biomarkers and safety considerations). In cases of adequate homogeneity quantitative trends were summarized descriptively. The focus was on the identification of the common patterns, mechanistic understanding, and inconsistencies in studies.

3.8 Ethical Considerations

Since this study was conducted as a secondary analysis of already published information, there was no need to ethically approve the research. Nevertheless, the ethical issues connected with the intervention of protracted fasting were critically reviewed in the studies that were included in the reviews, especially in terms of the safety of the participants, informed consent, and clinical supervision. All these factors were incorporated in the discussion of findings and suggestions on future studies.

3.9 Methodological Limitations

The possible methodological limitations may be the variability of fasting definitions, variability of methods of outcome measurements, and a lack of long-term follow-up. Study selection could also be the result of publication bias and language restrictions. These constrained factors were identified to achieve equal interpretations and to bring out areas that need to be refined when conducting future studies.

4. THE PROLONGED FASTING EFFECTS ON IMMUNE FUNCTION

The long-term effects of fasting on human immune system have far reaching consequences on both the innate and adaptive immunity that are metabolically and molecularly mediated. The immune system is very sensitive to altered nutrient availability and energy metabolism and long-term caloric restriction provokes a series of physiological responses, which control the immune cell activity, adhesion of cytokines, and inflammation. These effects are important to understand fasting as a potential intervention to regulate the immune system, to be susceptible to infections, and to prevent diseases.

4.1 Innate Immune Responses

The innate immune system is the initial response to attack pathogens and consists of neutrophils, monocytes, macrophage, and natural killer (NK) cells. Extended fasting has been found to temporarily change the populations of innate immune cells and their functioning. Signs of human research show that prolonged fasting lowers the number of circulating neutrophil and monocytes during the fasting state, which can be indicative of the energy-saving responses that are designed to restrict the number of resource-consuming inflammatory responses. At the same time, biomarkers of systemic inflammation, such as pro-inflammatory cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF- α) and C-reactive protein (CRP) tend to fall during fasting, which indicates a transition towards a less inflammatory state of body.

Mechanistically, these alterations are alleviated partly by metabolic adjustments including low levels of glucose and insulin, high production of ketone bodies and stimulation of energy-sensing signals such as the AMP-activated protein kinase (AMPK). Ketone bodies (like 3-hydroxybutyrate) have been found to activate the NLRP3 inflammasome, which is one of the main regulators of innate immune activation, and suppress the excessive inflammation. This regulated inhibition of innate immunity under starvation could be of use as a preventive in chronic inflammatory states with maintenance of baseline immune response.

4.2 Adaptive Immune Responses

T and B lymphocytes mediate adaptive immunity which is associated with antigen-specific responses and immunological memory. Extended fasting has been linked with decreases in the total lymphocyte proliferation during the fasting period, which is the suspected mechanism of saving energy and reducing oxidative stress. Nevertheless, refeeding after

prolonged fasting causes regenerative effect of the adaptive immune system. Some studies claim more hematopoietic stem cell activity and better differentiation of naive T cells occur during the refeeding period and effectively reset the adaptive immune system and could be useful to enhance immune surveillance.

Another effect of fasting is the attenuation of the pro-inflammatory/regulatory balance between T cells, between which the pro-inflammatory and the regulatory cells are found to be overabundant. This two effects of a temporary drop in immune activity when fasting occurs and then a burst in regeneration on refeeding is one of the effects of a hormetic effect, in that temporary stress can result in long-term robustness and stronger immunity.

4.3 Human Studies Clinical Evidence

Such mechanistic insights have been evidenced by human clinical and observational studies. Fasting schedule of 48 hours to more than several days has been demonstrated to decrease circulating pro-inflammatory cytokines and leukocyte levels in healthy adults both in the short term and is accompanied by a re-increase in immune cell populations when healthier adults are refed. Preliminary clinical research findings in cancer patients indicate that fasting a few hours prior to chemotherapy could offer immunoprotective benefits against cytotoxic stress to normal immune cells with tumor cells specifically sensitized. Equally, extended fasting has been linked with decreases in oxidative stress markers to aid in the better functioning of immune cells and genomic stability.

Although these findings are encouraging, the length of fasting, the health condition of the participants and the measurement methods are variable and hence such studies cannot be generalized. Short-term starvation should be reasonably tolerated in healthy people, but, in the most vulnerable groups, such as older adults, immunocompromised, and those with metabolic disorders, the risk of infection or the decrease in immunity competence may be elevated by the chronic loss of calories.

4.4 Mechanistic Summary

All in all, the consequences of extended fasting on the immune system are an indication of a well-coordinated metabolism-immunity response. Key mechanisms include:

- The inhibition of immunological processes that consume energy in order to save in the time of starvation.
- Less pro-inflammatory cytokine secretions and general body inflammation.
- AMPK stress-response activation (autophagy) to keep immune cells healthy.
- Refeeding activates hematopoietic stem cells and immunological system regeneration.

The evidence presented above indicates that prolonged fasting can be used as a modulatory intervention that can strengthen immune response and decrease chronic inflammatory load. Nevertheless, these mechanistic understandings should be

meticulously translated into clinical practice by paying attention to the issue of safety and duration of use, as well as to personal health conditions.

5. PROLONGED FASTING AND ITS EFFECTS ON CANCER-RELATED BIOMARKERS

Long-term fasting has recently been the subject of increased research about its effects on biological indicators of cancer risk, cancer progression and response to treatment. Biomarkers that are related to cancer demonstrate the underlying mechanisms like metabolic dysregulation, prolonged inflammation, oxidative stress, and unregulated cellular proliferation. Since long fasting causes systemic biochemical and hormonal alterations it has direct impacts on many of these biomarkers, which gives it a mechanistic foundation of its possible impact in cancer prevention and adjunctive therapy in humans.

5.1 Metabolic and Growth-Related Biomarkers

The primary finding has been the lowering of the levels of circulating glucose, insulin and insulin like growth factor-1 (IGF-1) as one of the most frequently reported effects of prolonged fasting. High levels of insulin and IGF-1 have been linked to high cancer risk because of their effects stimulating cell proliferation, preventing apoptosis, and stimulating oncogenic pathways including phosphoinositide 3-kinase (PI3K)/Akt and mTOR. These anabolic signals are inhibited by prolonged fasting as this process alters the metabolic state of the body towards catabolic metabolism with intense lipolysis and ketogenesis. Human experimentation indicates that the down-regulation in IGF-1 which occurs as a result of fasting is accompanied by down-regulation in the mTOR activity and therefore reduced cellular growth signaling and augmented cellular ability to withstand cellular stress. Such metabolic environment can restrict the growth advantage of cancer cells who tend to be dependent on sustained growth factor stimulation and less metabolic versatile. Northern cells, on the other hand, respond better to the energy limitations of fasting, which is why it is possible to be more argumentative about the idea of heterogeneous resistance to stress of normal and tumorous cells.

5.2 Inflammatory Biomarkers

A chronic inflammation is a proven cause of tumor development and progression. Prolonged fasting was found to adjust inflammatory biomarkers such as C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF- 6). Several studies in humans have described the findings of the decrease of these markers in the state of fasting, which indicates a systemic anti-inflammatory effect.

Reduced glucose supply, inhibition of inflammasome activation and augmentation of ketone bodies of anti-inflammatory properties, mediate the suppression of inflammatory signaling in the event of prolonged fasting. Reduced pro-inflammatory cytokines can decrease tumor promoting micro-environment, suppress angiogenesis and prevent immune evasion of malignant cells. The effects are especially applicable to obesity-associated and inflammatory-mediated cancers, in which both metabolic failure and immune dysregulation are present.

5.3 Oxidative Stress and Markers of Cellular Damage

Table: Oxidative Stress and Markers of Cellular Damage in Prolonged Fasting

Category	Key Marker	Biological Significance	Effect of Prolonged Fasting
Oxidative stress	Reactive oxygen species (ROS)	Indicators of cellular oxidative burden	Reduced due to improved metabolic efficiency
Lipid peroxidation	Malondialdehyde (MDA)	Reflects oxidative damage to cell membranes	Decreased levels reported in fasting states
DNA damage	8-hydroxy-2'-deoxyguanosine (8-OHdG)	Marker of oxidative DNA damage	Reduced through enhanced DNA repair mechanisms
Protein oxidation	Protein carbonyls	Indicator of oxidative protein modification	Lowered via improved redox regulation
Antioxidant defense	Superoxide dismutase (SOD)	Enzymatic antioxidant protection	Increased activity during adaptive stress
Antioxidant defense	Glutathione (GSH)	Major intracellular antioxidant	Enhanced redox balance
Mitochondrial health	Mitochondrial efficiency	Source and regulator of ROS production	Improved via metabolic reprogramming
Cellular maintenance	Autophagy markers (LC3, Beclin-1)	Removal of damaged cellular components	Upregulated during fasting
Genomic stability	DNA repair pathways	Maintenance of genetic integrity	Enhanced stress resistance
Cellular resilience	Redox homeostasis	Balance between ROS and antioxidants	Improved during controlled fasting

Explanation of the table:

The table outlines key biomarkers associated with oxidative stress and cellular damage and summarizes how prolonged fasting influences these indicators. By reducing reactive oxygen species and enhancing antioxidant defenses, fasting promotes improved redox balance, mitochondrial efficiency, and cellular repair mechanisms. These adaptations contribute to reduced DNA, lipid, and protein damage, supporting cellular resilience and genomic stability. Oxidative stress causes carcinogenesis, genomic instability and DNA damage. Long-term starvation has been linked to the decreases in markers of oxidative stress and enhancements in antioxidant defenses. Fasting leads to autophagy activation and mitochondrial efficiency, thereby facilitating the elimination of damaged cellular constituents and decreasing the production of reactive oxygen species (ROS). Anecdotal data indicates that fasting increases the human capacity to develop endogenous antioxidants and activates more DNA repair mechanisms, thus slowing down cumulative cell damage. These defense mechanisms can reduce the level of mutation and inhibit early onset of carcinogenesis. Notably, these mechanisms can also be used to safeguard normal tissues against oxidative damage during the process of treating cancers, whereas cancer cells, which are usually typified by defective stress response mechanisms, are vulnerable.

5.4 Autophagy, Apoptosis, and Cell Cycle Regulation

Autophagy is an essential process of cellular maintenance that eliminates damaged proteins and organelles ensuring cellular integrity. A prolonged fasting is a strong inductor

of autophagy by suppressing the mTOR and stimulating AMPK. Increased autophagic activity in times of fasting aids in tumor suppressive systems by avoiding the build up of cancer causing changes. Besides, long-lasting fasting affects the apoptotic signaling and cell cycle control. The decreased signal of growth prefers programmed cell death in metabolically distressed or damaged cells, restrains unregulated cell growth. The molecular effects offer a reasonable biological rationale of the observed decreases in cancer-specific biomarkers and underpin the research of fasting as a supportive approach in cancer treatment.

5.5 Human Studies and Clinical Implications Evidence

Human clinical and observational data supports the idea of the positive effect of long-term fasting on mediating cancer-related biomarkers. Healthy people related fasting interventions to metabolic and inflammatory profiles that lead to decreased risk of cancer. Short-term fasting or fasting-mimicking diets have been investigated in cancer patients as complements to chemotherapy and some studies show that such diets result in less toxicity of treatment and normal cellular functionality. Nevertheless, the evidence is still inconclusive, and long-term results, including the development of cancer, its progression, and survival, have not been properly determined. Differences in the fasting procedures, the health status of the participants, and the methods of measuring biomarkers restrict the direct comparison of the studies. Moreover, safety issues also require a selection of patients and medical observation, especially those sick with an advanced disease or impaired nutrition.

5.6 Summarization of Biomarker Effects

Overall, the long period of fasting impacts biomarkers related to cancer using a combination of interrelated mechanisms, such as:

- Insulin and IGF-1 repression.
- Decay of chronic inflammation.
- Facilitation of autophagy and repair of cells.
- Oxidative stress and DNA damage reduction.
- Control of apoptosis and cell cycle.

These consequences indicate that long-term starvation could lead to the presence of a biological environment that is not conducive to the development and progression of cancer. However, to define the most effective fasting programmes, long-term safety, and clinical efficacy, more large-scale, controlled human trials are needed.

6. UNDERSTANDING OF THE SAFETY AND TOLERABILITY OF PROLONGED FASTING

Although long-term fasting has been linked with the potential of metabolic, immunological, and cancer-related attractive effects, the safety, and tolerability of such a behavior are of utmost importance to research and clinical practice. Extensive fasting has a vast set of

physiological burdens, including the presence of a long-term lack of energy, electrolyte imbalance, and alterations in hormones. The duration of fasting, the initial health condition, nutritional reserves and the availability of medical supervision determine the tolerance of these changes by the individuals that they can safely undergo. The interpretation of human studies on prolonged fasting should, therefore, be cautiously done by considering adverse effects and risk factors.

6.1 Short-Term Adverse Effects

Short-term negative effects of prolonged fasting, which are usually reported during the first stages of fasting, include irritability, dizziness, fatigue, headache, and poor physical performance. To a great extent, these symptoms could be explained by the depletion of glycogen, temporary hypoglycemia, and changes of fluid and electrolyte balance. The dehydration and electrolyte imbalances, especially sodium, potassium, and magnesium, might also occur in case of insufficient fluid consumption and observation. These disorders may cause the weakness of muscles, palpitations, and, in the worst case, cardiac arrhythmias. Gastrointestinal dysfunctions include nausea, constipation and abdominal pain have also been noted as a result of decreased gastrointestinal motility and abnormalities of gut hormone secretion. Whereas such effects are usually mild and reversible in healthy individuals, it can impair tolerability and compliance to long-term fasting programs.

6.2 Nutritional and Metabolic Risk

Causes of Nutritional Deficiencies

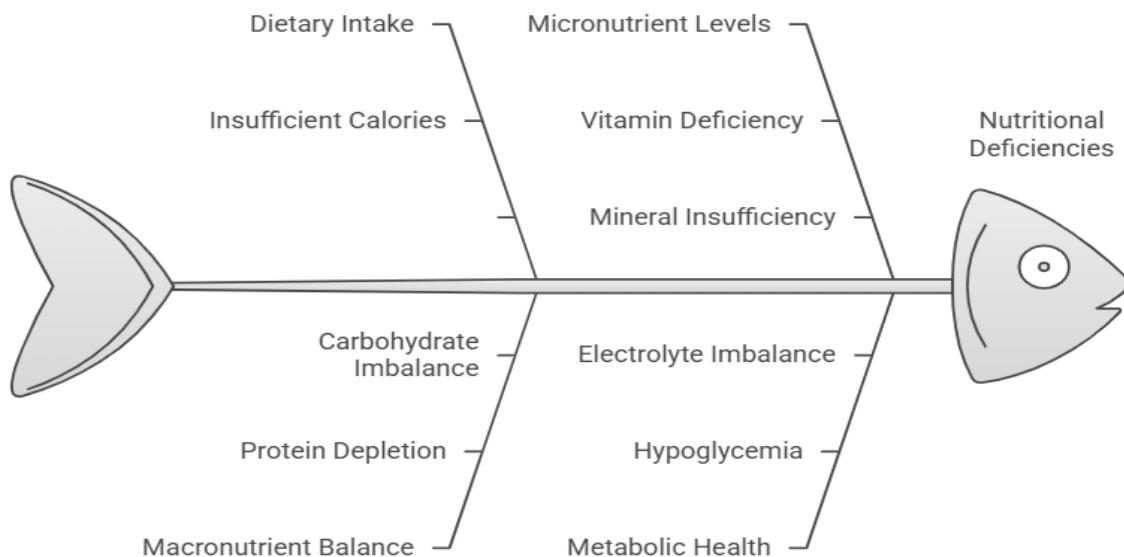


Figure: III

Explanation of the diagram:

The figure shows how nutritional and metabolic risks are possible as a result of chronic energy deprivation in long periods of fasting. Electrolytes imbalances, loss of lean body mass, and macronutrient and micronutrient deficiencies may be the effects of reduced nutrient intake. These alterations lead to the metabolic dysregulation such as the hypoglycemia and the changes in the lipid and insulin metabolism and emphasize the possibility of the risk of refeeding syndrome in case of the rapid recovery of the nutritional intake without appropriate clinical monitoring.

Extended fasting results in major metabolic adjustments, such as a higher dependence on fat and protein reserves as sources of energy. Although fat oxidation is what is desired, too much protein catabolism may lead to a loss of lean body mass especially in the long periods of fasting. Skeletal muscle loss can compromise immune response, muscle strength, and metabolic wellness, particularly in elderly people or people with chronic diseases.

Another possible risk is micronutrient deficiencies. Long-term fasting can result in the lack of sufficient consumption of the necessary vitamins and minerals, which can influence immune performance, antioxidant protection, and cell repair processes. Refeeding following extensive fasting also has its own dangers such as refeeding syndrome which can be a very severe disorder that manifests through sudden electrolyte imbalance and fluid dehydration that may lead to cardiac and neurological complications without proper care.

6.3 Vulnerable Populations: Safety

Some groups are highly vulnerable to the negative impacts of extended fasting. Cancer patients can develop unintentional weight loss, malnutrition, or lack of treatment tolerance in case fasting is not managed seriously. Likewise, older people face a higher risk of sarcopenia, dehydration, and orthostatic hypotension because of physiological changes associated with age.

Diabetic, eating disorder, renal disease and cardiovascular patients are at increased risks when subjected to prolonged fasting. These populations also have the risk of aggravated glycemic variability, electrolyte derangements or cardiovascular stress with prolonged caloric restriction. Therefore, long-term starvation should not be prescribed or taken, or it must be strictly supervised by a medical practitioner in patients with pre-existing metabolic or chronic conditions.

6.4 Tolerability and Adherence

Individuals tolerate long periods of fasting differently with some individuals being more tolerant than others depending on psychological, social, or cultural factors. Disrupted normal functioning and quality of life may be caused by hunger, irritation, and decreased concentration, which restricts long-term compliance. Research indicates that short-term fasting plans can be manageable by most people; however, most participants tend to

dropout of these plans because of the discomfort or negative symptoms associated with the long-term fasting.

Gradual refeeding plans, medical monitoring, and protocols have been found to enhance the tolerability and minimize negative consequences. Safer alternatives to fasting could include fasting-mimicking diets and altered fasting strategies because they do not eliminate nutritional intake, but still maintain metabolic effectiveness.

6.5 Ethical and Clinical Monitoring

Since there exist some possible dangers of long-term fasting, it is necessary to monitor it clinically, in both research and therapy situations. The common parameters monitored are body weight, the state of hydration, electrolyte levels, glucose, and organ function markers. Ethical aspects are also critical and necessitate informed consent, articulate risk notification, and other provisions to terminate the operations early in case of any negative effect.

Ethically, the implementation of prolonged fasting as a treatment procedure should weigh the possible advantages against known and unknowingly damaging risks. Scientists and practitioners should make sure that the fasting procedures are justified, personalized and based on the proper medical supervision.

6.6 Summary

Overall, it is possible to state that mild fasting can be tolerated in healthy people under the conditions of control, but long-term fasting involves a variety of possible risks both in the short and long term. Negative outcomes in the form of electrolyte imbalance, muscle wasting, micronutrient deficiency, and complications associated with refeeding act as reasons to exercise care. Although new data may show promising therapeutic effects, the use of prolonged fasting is not something that can be recommended universally, and it should be done in the context of the individual evaluation, clinical monitoring, and ethical consideration. More studies are needed to develop standardized safety principles and define which groups of people the long-term fasting can be justified or not.

7. DISCUSSION

This review explored the impact of starvation on immune response, cancer biomarkers, oxidative stress, and safety of human population. The overall results indicate that long-term fasting causes system-wide physiological changes that can have both positive immunological and metabolic outcomes, and simultaneously can be potentially hazardous nutrition- and health-wise. These outcomes are combined in the discussion in the context of human metabolism, immune control, and disease prevention.

The ability of the prolonged fasting to reprogram the immune function by adjusting it is one of the most persistent outcomes of the studies reviewed. The shift of the glucose-dependent metabolism to the oxidation of fatty acids and the use of ketones in the human body changes the bioenergetics of immune cells, promoting the dominance of the regulatory and anti-inflammatory phenotype. Energy-sensing signaling like AMPK and the

inhibition of mTOR signaling are associated with activation of immune homeostasis, lessening an excess of inflammatory reactions and amelioration of cellular stress defenses. This set of changes can be partly attributed to the reported alleviation of the pro-inflammatory cytokines and increased immune resistance during fasting interventions.

Concerning the use of biomarkers in relation to cancer, it seems that prolonged fasting affects the consequences of cellular proliferation, DNA repair, and tumor suppression. A decreased response of fasting insulin and insulin-like growth factor 1 (IGF-1) signals leads to an adverse metabolic condition inducing cancer cell growth and increasing stress tolerance to normal cells. This effect which can be referred to as differential stress resistance might explain the decrease in biomarkers of tumor progression and systemic inflammation. Nevertheless, biomarker modulation is an encouraging concept, but direct clinical evidence between a long period of fasting and lower cancer rates or better oncological outcomes in humans is scarce indicating that it is important to interpret it carefully.

Oxidative stress and cell damage are important mechanistic connections of metabolism, immune dysfunction and carcinogenesis. The evidence reviewed indicates that long-term starvation is likely to lead to a decreased oxidative damage through mitochondrial efficiency, decreased reactive oxygen species generation, and increased endogenous antioxidant defenses. The decreases in lipid peroxidation, protein oxidation, and oxidative DNA damage indicators are indicative of the idea that fasting causes cellular shifts to be focused on maintenance and repairs rather than growth. These impacts can add to enhanced genomic health and long-term cellular health especially among individuals with metabolic health.

Although such benefits may exist, the issue of safety and tolerability of long-term fasting is a critical issue. Some of the studies reported nutritional and metabolic risks such as lean body mass loss, micronutrient deficiencies, electrolyte imbalances, and hypoglycemia when the fasting protocols were either extended or ill supervised. These threats make it clear that the unique evaluation, medical monitoring, and planned refeeding plans are essential. The equilibrium between positive metabolic adaptation and negative nutritional stress is seen to be very thin and largely relies on the period of fasting, the health of the body, and nutritional reserves.

Behavioral and psychological reasons should also be taken into consideration. Long fasting may cause severe psychological and emotional stress, which may negatively affect commitment and general health. Such considerations can make fasting interventions in practice less feasible and cast doubt on sustainability in practice. Of particular concern are ethical implications where fasting is encouraged without sufficient evidence or medical care particularly among the vulnerable groups.

The reviewed literature also has methodological limitations, which make interpretation more complex. The differing fasting protocols, length, the nature of participants, and outcome measures of the studies make it difficult to compare studies directly. Numerous

studies are based on a small sample size, limited following up time, and proxy biomarkers instead of clinical meaningful endpoints. Also, the inhibiting variables like caloric restriction, weight loss, and changes in lifestyle can have independent effects on immune and metabolic results and it cannot be easy to determine the exact effects of prolonged fasting.

In terms of translation, long-term fasting is not to be considered as a cross-cutting intervention but a specific approach, which can be beneficial in selected groups in the controlled situation. Randomized controlled trials using standardized fasting practices, followed-up studies, and rigorous safety studies should be the focus of future studies. More attention to sex-specific reactions, age-related variations, and the relations on disease conditions is also required to improve clinical guidelines.

Finally, chronic fasting has shown a complex influence on immune functions, cancer-related biomarkers and oxidative stress, in interrelated metabolic and cellular pathways. Although the possible advantages are biologically feasible and lent by the new human evidence, they should be weighed against those already documented safety issues and ethical issues. Long-term fasting is a potentially productive intervention that has yet to be carefully scientifically assessed and implemented in a clinic in a careful manner before it can be assumed that it can be adopted on a large scale.

8. LIMITATIONS

Although much attention has been paid to prolonged fasting as a metabolic and immunological intervention, it should be admitted that even the current body of human research has a number of limitations that need to be taken into consideration when explaining the results of the current research. These shortcomings are associated with study design, features of subjects, heterogeneity of interventions, measurement of outcomes and more general problems of generalizability and clinical applicability.

Among the major limitations, one could mention the heterogeneity of fasting procedures in different studies. The literature on prolonged fasting has a variety of definitions, including multi-day water-only fasting and fasting-mimicking diets and extreme caloric restriction. The variations in the period, calorie consumption, water-hydration condition, and micronutrient supplementation make it difficult to compare the outcomes directly and prevents making conclusive conclusions regarding the best or harmless fasting parameters. It is also not easy to differentiate the effects of fasting itself as compared to general caloric restriction or weight loss because of this variability.

Another serious limitation is sample size. Numerous human trials on the effects of extended fasting use relatively small groups, which limit their statistical strength and predispose the research to type II errors. Subgroup analyses, such as those done on the basis of age, sex, baseline metabolic status, or disease status, are also limited by small sample sizes thus blurring potentially important heterogeneous responses. Consequently, the results might not be representative of effects on populations.

Interpretation is also limited by the selection bias of participants. In the majority of investigations, healthy volunteers or individuals whose health profile fits the study are recruited as they must not have chronic illnesses, be too weak, or have nutritional vulnerability. Although this method will enhance safety, it will reduce the extent to which the findings can be generalized to larger and more heterogeneous populations. In addition, those who volunteer to be subjects in fasting research might be health-conscious or they might be driven which could bring about behavioral confounders that can affect the results on their own regardless of the fasting.

Another weakness is the outcome measurement. There are numerous studies which use surrogate biomarkers, which include inflammatory cytokines, oxidative stress markers or metabolic hormones as opposed to clinically significant outcomes (such as disease incidence, immune competence or long-term morbidity and mortality). Although biomarkers are important to offer useful mechanistic information, they cannot always translate into a real health outcome. Besides, inconsistency and comparability are diminished by variability in laboratory procedures and the choice of biomarkers used in the studies. Fasting studies have short-term follow-up periods, which restrict the evaluation of long-term effects and sustainability. The acute changes in the metabolic or immunological markers might not be maintained with the refeeding or in the long-term. Moreover, possible negative delayed outcomes, including the accumulation of muscle wasting or depletion of micronutrients, might not be detected in short studies.

There are also confounding factors which are challenging. The response to fasting, in terms of alterations in physical activity, sleeping patterns, stress, and dietary composition, can have an independent impact on immune and metabolic outcomes. These variables are not sufficiently controlled and reported in many studies, and it is hard to isolate the particular contribution of prolonged fasting. Stresses of fasting in itself can also provoke adaptive responses not similar to those caused by less drastic dietary interventions.

There is also an ethical and practical limitation on the scope of fasting research. The long-term starvation has some inherent risks, limiting the duration and severity of interventions that could be an ethical test in humans. Consequently, in many cases, animal models or short-term human experiments will have to be extrapolated, although there are species-specific metabolic and immune suppression differences that are known.

Lastly, the perceived effectiveness of prolonged fasting can be biased as a result of publication bias. Articles with positive or new results are published more frequently and null or negative results can be underrepresented. This skew may result in excessive positivity of understanding fasting-related advantages and underestimating the risks associated with it. To conclude, in spite of the current evidence that indicates that chronic fasting can have effects on immune health, oxidative stress and cancer-related biomarkers, they should be viewed in the framework of significant methodological and practical shortcomings. To fill these gaps, it is important that larger, controlled, and long-term studies be conducted before prolonged fasting can be recommended with a high level of confidence as a safe and effective type of intervention in a clinical or a community health care center.

Table: Summary of Key Limitations in Prolonged Fasting Research

Limitation Category	Description	Impact on Interpretation
Heterogeneity of fasting protocols	Wide variation in fasting duration, caloric intake, hydration, and supplementation across studies	Limits comparability and prevents identification of optimal or safe fasting regimens
Small sample sizes	Many studies involve limited participant numbers	Reduces statistical power and increases uncertainty of observed effects
Participant selection bias	Predominant inclusion of healthy or highly motivated individuals	Limits generalizability to clinical or vulnerable populations
Short follow-up periods	Most studies assess only short-term outcomes	Long-term benefits, sustainability, and delayed adverse effects remain unclear
Reliance on surrogate biomarkers	Heavy use of inflammatory, metabolic, and oxidative stress markers	Biomarker changes may not translate into meaningful clinical outcomes
Confounding lifestyle factors	Physical activity, stress, sleep, and dietary changes often uncontrolled	Makes it difficult to isolate the specific effects of prolonged fasting
Ethical and safety constraints	Risks limit the duration and intensity of fasting interventions	Restricts experimental scope and reliance on indirect evidence
Limited clinical endpoints	Few studies measure disease incidence or immune competence	Weakens clinical relevance of findings
Potential publication bias	Positive findings more likely to be published	May overestimate benefits and underestimate risks

Summary description of the Table:

The figure recapsulates the significant drawbacks of extended fasting studies. It points out variability in fasting protocols, small samples, and short follow-up, use of surrogate biomarkers, and selection bias of participants. All these constraints limit the generalizability, comparability, and clinical applicability of study findings, and more rigorous, long-term and well-controlled human trials are required.

9. FUTURE RESEARCH DIRECTIONS

Although existing evidence indicates that long-term fasting can adjust immune response, metabolism, oxidative stress, and cancer-related biomarkers, there still exist a lot of gaps in knowledge that need to be resolved to translate the findings into safe and effective clinical/public health interventions. The research ought to focus on elucidating the mechanism in the future, maximizing the fasting regimens, determining the long-term safety, and measuring the outcomes of the clinically meaning in non-homogenous populations.

9.1 Unification of Fasting Procedures

Standardized intervention protocols are one of the most urgent needs of fasting research. Nowadays, researchers use a range of heterogeneous fasting periods 24-26 hours and longer, and fluctuating caloric intake, hydration, and fasting mimicking diets. Such inconsistencies make it difficult to compare studies across and no definite conclusions can be made regarding the best time and intensity of fasting. Comparative studies of

various fasting plans will require a unified methodology of comparing results providing clearly defined start and finish points, hydration protocols, and nutritional supplementation to establish protocols that will yield the greatest benefits and minimum risk.

9.2 Higher, Controlled Human Trials

Most current research is based on small sample sizes or observational designs that constrain the statistical power and generalizability. It requires large-scale randomized controlled trials (RCTs) to have stronger evidence on the impact of prolonged fasting on immune, oxidative stress, cancer-specific biomarkers and health outcomes in general. Properly powered trials would permit more specific estimates of efficacy, permit subgroup analyses (e.g. by age, sex, metabolic status, or disease condition), and permit the assessment of long-term outcomes, such as morbidity, mortality and quality of life.

9.3 Long-term Safety and sustainability

Despite the overall lack of evidence regarding adverse effects of short-term fasting in healthy persons, the safety and viability of the long-term fasting regimen are not well-investigated. Further studies need to be conducted on how to monitor adverse events, nutritional deficiency, lean body mass loss and metabolic complications in the long run. Longitudinal observational studies on the accruing impacts of repeated fasting and post-fasting refeeding measures are required to make sure that the positive effects of metabolism and immune are not counteracted by adverse effects, particularly in predisposed individuals including the elderly, patients with other ailments and cancer patients receiving therapies.

9.4 Mechanistic Insights and Biomarker validation

Although many studies have been able to find changes in biomarkers like IGF-1, insulin, inflammatory cytokines, and indicators of oxidative stress that are caused by fasting, the causal processes that connect these changes to clinical outcomes are not yet fully understood. The multi-omics methodology, such as genomics, proteomics, metabolomics, and epigenomics, should be adopted in future studies to explain the role of the numerous molecular pathways triggered by fasting in immune modulation, cellular resilience to stress, and cancer suppression. Comparing surrogate biomarkers to clinical endpoints will be essential to help convert the understanding of mechanistic implications into practical interventions.

9.5 Diversity of the Population and Personalized Attention

The bulk of existing research has focused on comparatively young, healthy and motivated individuals, limiting their ability to generalize their findings to the larger populations. Future studies ought to be done to investigate the consequences of long-term fasting among a wide range of populations such as older adults, those with metabolic syndrome, diabetic patients, cancer patients, and other ailing populations. Researching the intr-individual differences in response to fasting which are influenced by genes, sex, baseline metabolism or microbiome diversity will enable individualistic treatment that maximizes safety and efficacy.

9.6 Lifestyle and Therapeutic Interventions Integration

The prolonged fasting state is never experienced in isolation, thus interactive with nutrition intake, physical exercise, sleep disturbances, pharmacologic treatment. The future research must look at fasting in the framework of holistic lifestyle interventions to ascertain the synergies and possible contraindications. Moreover, the importance of examining prolonged fasting, as a complement to the current therapies including chemotherapy, immunotherapy, or metabolic treatment, can help to understand how it contributes to the high efficacy of therapies and fewer side effects, respectively.

9.7 Ethical, Practical, and Behavioral Issues

The literature regarding the future of fasting research needs to still focus on ethical and practical issues related to extended fasting. These involve optimal adherence, reduction of discomfort, and establishing safe refeeding guidelines to avoid refeeding syndrome or metabolic imbalance. Sensitivity to understanding how psychological, cultural, and social aspects contribute to the fasting tolerance and sustainability will be of top importance to the development of interventions that will be effective and pragmatic and are applicable in a practical setting.

9.8 Translational and Clinical Applications

Finally, future studies should strive at closing the research gap between the mechanistic research and clinical practice. These will involve the establishment of evidence-based recommendations on safe fasting time, which patients are most likely to benefit, and the creation of protocols that may be practiced with the participation of medical staff or within the context of the local health systems. To ascertain the recommendation of prolonged fasting as a cost-effective intervention in preventive or clinical medicine, long-term studies on the morbidity, mortality, immune competence and disease prevention outcomes are imperative.

9.9 Summary:

Further investigation in long-term fasting should focus on strict study designs, protocol standardization, prolonged safety, mechanistic investigation and individualized study. The combination of clinical, biochemical and behavioral approaches will allow to obtain a whole picture of the advantages and drawbacks of fasting and safely and effectively implement it into practice.

10. CONCLUSION

Prolonged fasting is a multidimensional and complicated intervention that has profound effects on human health, including immune control, metabolic control, oxidative stress alleviation, and possible cancer protective effects. The evidence that was examined in the given study indicates that fasting triggers a series of coordinated physiological responses that encourage the maintenance of cells, resistance to stress, and homeostasis of the immune system. Other processes, which are mediated by changes in energy metabolism, activation of energy-sensing pathways, including AMPK, inhibition of

mTOR signaling, and increased autophagic activity, all lead to a decrease in pro-inflammatory signaling, increased defenses against antioxidants, and a positive modification of growth-related biomarkers like insulin and IGF-1, which are all mechanistically mediated. Effects Prolonged fasting on immune activity represent a two wave process: Dentures reduce the activity of the innate and adaptive immune system in the short term, causing the immune cells to be damaged and depleted, but on re-feeding, they regenerate and restore vitality to the initial status. This hormetic effect places emphasis on the possibility of employing fasting as a method to promote immunological resistance, better systemic inflammatory responses, and optimize the condition of immunometabolic support. Equally, the decrease in the oxidative stress indicators, lipid peroxidation, the oxidation of proteins, and DNA damage improves the ability of fasting to safeguard cellular integrity, promote genomic stability and possibly prevent diseases in the long run. Fasting is also known to regulate biomarkers related to cancer by inducing a metabolic state that is less favorable to tumor cell growth, and also inducing resistance to stress in normal cells. These effects such as decreases in IGF-1 signaling, inflammatory cytokines, and oxidative damage indicate that fasting has a promising adjunctive use in the prevention of cancer and supportive oncologic treatment. Nonetheless, whereas mechanistic understanding and biomarker alterations are promising, there is scanty clinical data related to the modestness of prolonged fasting on lowered cancer rates, development or enhanced survival in humans.

Even despite these possible advantages the long-term fasting is not without danger. Safety issues also involve that nutritional and metabolic issues, such as lean body mass loss, micronutrient deficiency, electrolyte imbalance, hypoglycemia, and refeeding complications, are especially common in vulnerable groups of patients, including older adults, patients with chronic illnesses, or patients undergoing intensive medical therapies. Behavioral issues and psychological problems, including hunger, irritability, and compliance problems, also reinforce the significance of the protocols that are designed and designed and medically supervised. The most important considerations during fasting interventions are ethical and practical considerations that will ensure safety of the participants, informed consent, and proper monitoring.

The constraints that are evident in the current studies such as heterogeneous fasting procedures, small sample sizes, and limited follow-ups, ability to use surrogate biomarkers, and lack of a diverse population population are the reasons why rigorous, well-controlled, and prolonged human studies are necessary. The future research needs to concentrate on the standardization of fasting interventions and evaluate long-term safety and clinical outcomes, inter-individual variability, and incorporation of fasting as a component of a larger lifestyle and therapeutic context. The use of multi-omics strategies and mechanistic research, in particular, holds promise in terms of clarifying the specific biological pathways by which fasting produces its results and in making these findings applicable in the development of evidence-based interventions unique to individual patients. Overall, there are high hopes attached to prolonged fasting as an activity that can be used to regulate immune activity, metabolic wellness, oxidative stress, and tumor-specific biomarkers. Its outcome is an integrated collaboration of metabolism, cell

maintenance, and system regulation, which explains its possible application in preventive and treatment settings. Nevertheless, it should be used cautiously, evaluated on a case-by-case basis, and through scientific examination to ensure maximum benefits and a minimum of risks. However, in the survey of scientific studies, it can be possible to develop prolonged fasting, which is one of the components of integrative health, the combination of basic biological knowledge and effective interventions to enhance resilience, longevity, and well-being.

References

- 1) Longo VD, Mattson MP. Fasting: Biological processes and their clinical uses. *Cell Metab.* 2014;19(2):181–192.
- 2) Raffagello L, Safdie F, Bianchi G, Dorff T, Fontana L, Longo VD. The long-term fasting lowers IGF-1/PKA to stimulate the hematopoietic stem cell-based regeneration and reverse immunosuppression. *Cell Stem Cell.* 2010;7(1):40–53.
- 3) Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, et al. Frequent fasting-like dietary regimens facilitate multi-system regeneration, improved thinking, and healthspan. *Cell Metab.* 2015;22(1):86–99.
- 4) Brandhorst S, Wei M, Hwang S, Morgan TE, et al. Fasting-mimicking diet and markers/risk factors to aging, diabetes, cancer, and heart disease. *Sci Transl Med.* 2017;9(377):eaai8700.
- 5) de Groot S, Vreeswijk MP, Welters MJP, Gravesteijn G, Boei JJWA, Jochems A, et al. Short-term effects of fasting on (neo)adjuvant chemotherapy tolerance in breast cancer patients: a randomised pilot study. *BMC Cancer.* 2015;15:652.
- 6) de Groot S, Lugtenberg RT, Cohen D, Welters MJP, Ehsan I, Vreeswijk MPG, et al. Fasting as an adjuvant method of treating cancer: a systematic review. *J Exp Clin Cancer Res.* 2019;38:209.
- 7) Mindikoglu AL, Abdulsada MM, Jain A, Jalal PK, Devaraj S, Wilhelm A, et al. Intermittent fasting at dawn to sunset causes anticancer serum proteome response and metabolic syndrome. *Sci Rep.* 2020;10:18341.
- 8) Patterson RE, Sears DD. Intermittent fasting effects on the metabolism. *Annu Rev Nutr.* 2017;37:371–393.
- 9) Anton SD, Moehl K, Donahoo WT, Marosi K, Lee SA, Mainous AG, et al. Flipping the metabolic switch: knowledge acquisition and practice of the health benefits of fasting. *Obesity.* 2018;26(2):254–268.
- 10) Mattson MP, Longo VD, Harvie M. Effects of intermittent fasting on disease and health. *Ageing Res Rev.* 2017;39:46–58.
- 11) Choi IY, Piccio L, Childress P, Bollman B, Ghosh A, Brandhorst S et al. Fasting-like diet regimen enhances regeneration and decreases instances of autoimmunity and multiple sclerosis. *Cell Rep.* 2016;15(10):2136–2146.
- 12) Mindikoglu AL, Regev A, Seliger SL, Magder LS. Long-term fasting and oxidative stress, metabolic effects in humans. *Nutrients.* 2020;12(9):2741.
- 13) Wei M, Brandhorst S, Shelehchi M, Mirzaei H, Cheng CW, Budniak J, et al. Fasting-mimicking diet and inflammatory, immune aging, and cancer risk markers. *Aging Cell.* 2017;16(5):1016–1025.
- 14) Calder PC. Feeding the immune system. *Proc Nutr Soc.* 2013;72(3):299–309.
- 15) Fontana L, Partridge L, Longo VD. Increasing healthy life span Yeast to humans. *Science.* 2010;328(5976):321–326.