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Abstract 

Real-time interpretation of complex patient data simplifies the clinical processes with Generative Artificial 
Intelligence (AI). This experiment compares the performance of three generative artificial intelligence 
models — ChatGPT, Julius, and Claude — with that of an expert biomedical model, BioBERT, on over 
4,000 patient comments regarding antidiabetic drugs. The data were preprocessed and anonymized, and 
then the sentiment was analyzed, along with the identification of adverse effects, therapeutic outcomes, 
and thematic classification. Modes were ranked based on accuracy, depth of interpretation, clinical 
relevance, ability to process and produce actionable insights, and speed. Findings reveal that the two 
general-purpose models outperformed BioBERT when evaluating their performance in terms of narrative 
generation and contextual reasoning, whereas BioBERT has surpassed the general-purpose models when 
tested on recognition of medical terms, pharmacology accuracy, and adverse event detection. These results 
reveal the foundations of flexibility in lieu of clinical precision trade-offs and the potential for possessing 
hybrid AI through moves that combine the conveniences. A clinical implementation proposal is submitted, 
including details on how and where it should integrate with electronic health records (EHR), its compliance 
with regulations, and how it can be utilized in the training of healthcare professionals and in communicating 
with the general population. This is a practical exposition on the use of generative AI to enhance patient 
care and operational delivery in managing diabetes. 

Keywords: Generative AI in Healthcare, Real-Time Clinical Data Analysis, Patient-Generated Health Data, 
Endocrinology Informatics, AI-Assisted Diagnosis, Electronic Health Record Integration, Antidiabetic 
Medication Analysis, Clinical Natural Language Processing. 

 
1. INTRODUCTION 

AI is enhancing the medical field by enabling it to learn, train, and analyze complex clinical 
information (Zhang & Kamel Boulos, 2023; Sai et al., 2024; Yu et al., 2023). Patient data 
in real-time also offers specific possibilities for analysis with the help of generative AI, 
which has the potential to process information into clear, relevant answers tailored to a 
particular case (Nova, 2023; Reddy, 2024). It is also capable of enhancing natural 
language processing (Wu et al., 2020; Gao et al., 2023) of both structured and 
unstructured health data, which can be based on large language models and customized 
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training. The new wave of patient-generated health data (PGHD) obtained through 
wearable devices, mobile applications, and patient communities promises to contain gold 
mines that have never been exploited, i.e., information regarding patients and how they 
feel during treatment (Abdolkhani et al., 2019; Tiase et al., 2020; Lordon et al., 2020).  

The unstructured format, heterogeneity of quality, and implications of integration are the 
factors that explain the inability to integrate PGHD into clinical practice (Kawu et al., 2023; 
Winter & Davidson, 2022). It requires the presence of interoperability and governance 
standards because the absorption of PGHD within the electronic health record (EHR) 
should be done in a privacy-friendly manner (Nittas et al., 2019; Shaw et al., 2020). 

Generative AI has the potential to convert heterogeneous data to clinical use in terms of 
clinical inference, sentiment analysis, and actionable summary (Sheikhalishahi et al., 
2019; Soysal et al., 2018; Michelson et al., 2020) and has been shown to be aligned with 
the initiatives in the direction of personalization (Hawley et al., 2021; Mahajan et al., 
2023). Notwithstanding, a number of technical and adoption barriers to full-scale adoption 
exist, e.g., the exploitation of federated learning (Camajori Tedeschini et al., 2022) and 
trust issues among clinicians (Cheng et al., 2022; Hsieh, 2023). 

It benchmarks generative AI models on interpreting over 4,000 patient comments about 
antidiabetic medications against domain-specific biomedical AI models, measuring 
accuracy, clinical relevance, and speed. It even suggests an implementation framework 
in clinical settings regarding the idea of integrating EHRs, regulatory management, and 
public health usages (Demner-Fushman et al., 2009; Dinh-Le et al., 2019; Sharifshazileh 
et al., 2021). 
 
2. DATASET DESCRIPTION AND PREPROCESSING 

The data used in this paper comprise more than 4,000 comments posted by patients 
regarding various antidiabetic medications. Patient-generated health data (PGHD) has 
been cited as an important source of real-world evidence for developing better care 
provision, pharmacovigilance, and individualized treatment plans (Abdolkhani et al., 
2019; Lordon et al., 2020; Nittas et al., 2019; Tiase et al., 2020). One of the issues 
affected by the consideration of secondary data is that there are online spaces where 
individuals can share their experiences with medication, which is public and raises 
concerns about the ethics of conducting such research.  

Given the sensitivity of PGHD, anonymization measures were implemented to deprive 
the patients of the possibility of being recognized by their personally identifiable 
information based on the requirements of HIPAA and GDPR, which offer the best 
practices in terms of governance and socio-technical aspects of EHR-integrated datasets 
(Kawu et al., 2023; Winter & Davidson, 2022; Yu et al., 2023).  

This also renders the data suitable for training an AI model in a clinical setting without 
infringing on patient privacy and violating relevant regulatory policies. 
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The comments were prepared to accommodate generative AI and NLP-specific medical 
models, ideally. In the preprocessing process, the clinical NLP pipelines were followed 
(Wu et al., 2020; Sheikhalishahi et al., 2019; Soysal et al., 2018), which were as follows: 

• Noise Solution: Providing removal of extraneous metadata, duplicates, as well as 
Web-based data remnants, and maintaining the integrity of the information data 
(Michelson et al., 2020). 

• Tokenization: This is the process of breaking down the text into enabling sections that 
are analyzed into sentences and words, facilitating the analysis of the syntax and 
semantics of the text across models (Demner-Fushman et al., 2009). 

• Sentiment Labeling: This approach would categorize every comment by labeling it as 
positive, negative, or neutral regarding therapeutic effects and side effects (Gao et al., 
2023; Sharifshazileh et al., 2021). 

• Domain Specific Entity Recognition: A means of recognizing regulatory agreement 
between the signal of drugs, dosages, and side effects with the regulatory medical 
ontologies (Yao et al., 2023). 

The preprocessing was key to the possibility of computationally measuring the relative 
performance of both a general-purpose generative AI model (Julius, Claude) and a 
domain-specific medical AI model (BioBERT). Available literature has demonstrated that 
the quality of preprocessing can improve the interpretability and accuracy of AI, 
particularly in cases where PGHD can supplement existing EHR systems (Shaw et al., 
2020; Dinh-Le et al., 2019; Mahajan et al., 2023). 

Table 1: Dataset Description and Preprocessing 

Characteristic Value Description 

Total Comments 4,012 
Number of individual patient-generated 
medication reviews. 

Average Comment 
Length 

45 words 
Calculated after noise reduction and 
tokenization. 

Sentiment Distribution 
54% Positive, 28% 

Negative, 18% Neutral 
Annotated manually and validated by AI 
models. 

Medication Categories 12 
Includes metformin, insulin analogs, DPP-4 
inhibitors, SGLT2 inhibitors, etc. 

Data Source Platforms 5 
Public health forums, review sites, and 
patient advocacy group discussions. 

Anonymization 
Compliance Frameworks 

HIPAA, GDPR 
Removed all personally identifiable 
information before analysis. 

The real-life application of the inference can be tested both in real-time and 
retrospectively, serving as the foundation for high-fidelity testing of the model. This well-
organized dataset will ensure validity and reliability due to rigorous preprocessing and 
regulatory compliance, as discussed in the following section on performance analysis of 
AI. 
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3. AI MODELS AND EXPERIMENTAL SETUP 

It was measured with respect to two categories of AI systems: general-purpose 
generative AI models and personally created biomedical language models. All the 
systems were general-purpose, and some of the giant language models (LLMs) were 
trained to understand and generate natural language, including Julius and Claude (Yu et 
al., 2023; Sai et al., 2024; Zhang & Kamel Boulos, 2023). Although they were not explicitly 
trained on biomedical data, these models begin their training with a wide range of texts 
and combine this pre-training with a substantial level of adaptability and contextual 
reasoning by training the models across multiple fields (Nova, 2023; Reddy, 2024; Wang, 
2023). The specialist biomedical AI that was compared was one of the BioNLP-enhanced 
architectures, which took advantage of domain-specific resources like BioBERT and was 
formulated for biomedical named entity recognition, relation extraction, and clinical 
outcome classification (Gao et al., 2023; Wu et al., 2020; Soysal et al., 2018). In contrast 
to generative models, this type of AI is devoted to accuracy in the use of clinical language, 
evidence-based rational thinking, and pharmacological accuracy (Demner-Fushman et 
al., 2009; Sheikhalishahi et al., 2019). 

3.1 Experimental Environment  

It was possible to run experiments using a cloud computing infrastructure that is compliant 
with HIPAA, sufficient to handle sensitive healthcare information, as the legislation 
designed to ensure the privacy of information applies worldwide (GDPR and HIPAA 
included) (Winter & Davidson, 2022; Kawu et al., 2023). The computational infrastructure 
was powered by NVIDIA A100 Tensor Core GPUs and multi-core CPU clusters, which 
enabled high-throughput processing. The latency of the response time was crucial, as 
real-time clinical decision support was to be achieved (Sharifshazileh et al., 2021; Yao et 
al., 2023). Docker was used to containerize the environment, as it made the models 
reproducible across runs. A Kubernetes system was used to deploy the orchestration, 
making the system scalable and facilitating load balancing (Percival et al., 2015; Camajori 
Tedeschini et al., 2022). Not only were generative systems provided, but also specialized 
systems were provided via secure API endpoints, and therefore, processing flows were 
detached and interoperable. Additionally, the end-to-end encryption of data transfer 
channels was implemented using TLS 1.3 to ensure the protection of patient-generated 
health data (Abdolkhani et al., 2019; Tiase et al., 2020).  

The deployment was also combined with the use of FHIR (Fast Healthcare Interoperability 
Resources) standards to enable compatibility with numerous EHR systems (Mahajan et 
al., 2023; Dinh-Le et al., 2019), which was an essential protocol for use during the real-
world rollout. 

3.2 Data Collection, Cleaning, and Anonymization 

We also obtained a reserve of over 4,000 patient-generated reviews and comments on 
Type II Diabetes medications to develop a robust dataset for benchmarking the 
generative AI models. The reviews were discovered on medical discussion websites and 
drug information databases, with such overt accessibility as patient support groups, and 
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as comprehensive coverage as possible across different types of antidiabetes drugs, 
including metformin, sulfonylureas, glucagon-like peptide-1 agonists, and insulin analogs. 
A sequential data cleaning process was used to prepare the original data. Duplicate 
records were eliminated using fuzzy matching techniques, and incomplete reviews 
without the names of the medications or an imprecise description of the symptoms were 
grouped together. Standardization and normalization of medical terms were achieved 
through a collection of regulated vocabulary and synonym dictionaries (e.g., variations in 
spelling, such as "hyperglycemia" and "sugar spikes"). Contextually irrelevant 
information, such as adverts and irrelevant discussions, was filtered through rule-based 
classifiers. 

Case identifiers: Removal of usernames, geolocation tags, and references to specific 
healthcare providers, as well as all device identifiers, to ensure compliance with HIPAA 
and GDPR. By using both automated named-entity recognition (NER) and manual 
verification, all user names were removed. To preserve data quality, every particular piece 
of information obtained as context, e.g., age group or treatment length, was generalized 
(e.g., male, 50s instead of John, 54). Finally, it was ensured that the dataset quality was 
controlled by probing a random 5 percent of the corpus to verify consistency across data 
annotation and the stability of anonymization. The process ensured that the data was 
clinically and ethically valid, and the complexity of patient wording necessary to measure 
interpretive breadth and context-based reasoning in the textual outputs of the AI 
generator was preserved. 

3.3 Statistical Methodology 

The complete statistical perspective was employed to analyze the generation of 
generative AI systems. Quantitative tests were conducted to ensure that the difference in 
model outputs was not due to chance. 

• Significance Testing: has been performed using paired t-tests and repeated-
measures ANOVA, depending on the assessment configuration, to facilitate 
comparative analysis between ChatGPT and Claude, as well as their baseline 
versions. Such methods were used to test the statistical significance of model-level 
differences in the measures of interpretive accuracy, clinical relevance, and linguistic 
clarity at a p < 0.05 level. 

• Confidence Intervals: All main performance metrics were estimated with 95% 
confidence intervals (CI) to assess uncertainty quantitatively. This enabled the 
interpretation of results not just in the form of a point estimate but also in the form of 
ranges expressing variation that could exist across samples. 

• Inter-Rater Reliability: As the task included in the assessment required expert clinical 
judgment, Cohen's Kappa and Krippendorff's Alpha were applied to test the agreement 
among several annotators. This ensured that the depth of interpretation and clinical 
relevance are evaluated in a uniform and objective manner, as compared to subjective 
bias. 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 58 Issue: 08:2025 
DOI: 10.5281/zenodo.16932563 

 

Aug 2025 | 749 

• Sample Size Justification: A priori power analysis was conducted to ensure that the 
population of reviews (over 4,000 reviews) was sufficient in terms of statistical power 
to detect the difference among the models. This calculation was based on the effect 
sizes expected of the previous research into clinical NLP. 

Such statistical practice offers not only the objectivity of the results but also ease of 
reproduction, in addition to empirical strength, and removes crucial issues of subjectivity 
and lack of rigorous base. 

3.4 Evaluation Metrics 

The aspects of real-time patient data interpretation were represented in model 
performance with the evaluation based on five major metrics, which were selected in 
order to cover all the most important dimensions: 

a. Precision The precision and accuracy concerns entity recognition in clinical settings 
(disease, drug, adverse events names) as well as the gold-standard labels (Li et al., 
2021; Michelson et al., 2020). 

b. Investigative Depth (depth) = Compared to fact gathering, can the model help it to 
synthesize knowledge into contextual and meaningful information to aid in clinical 
decision-making (Hsieh, 2023; Cheng et al., 2022). 

c. Clinical Relevance - Qualified through the comparison of the produced interpretations 
to the catalog of established guidelines and peer-reviewed medical articles to 
guarantee that it can be applied in practice (Chen et al., 2019; Yao et al., 2023). 

d. Processing Speed and Latency - The duration from ingesting data to producing it is 
a crucial aspect in instances subject to high stakes, such as acute endocrinology 
management (Sharifshazileh et al., 2021; Sai et al., 2024). 

e. Integration Feasibility studied the impact of integration of the outputs by the model in 
the EHR systems and the EHR systems' other healthcare IT systems, including an 
assessment of the effectiveness of the model in compliance with interoperability 
procedures (Abdolkhani et al., 2019; Tiase et al., 2020; Kawu et al., 2023). 

A weighted composite index was used to provide performance scoring where 40% of the 
focus was on accuracy, 25% on clinical relevance, 20% on interpretive depth, and 15% 
on latency in line with prior AI-clinical NLP studies (Gao et al., 2023; Wu et al., 2020; 
Soysal et al., 2018). 

3.5 Integration and Governance Considerations 

Effective implementation of generative AI systems on real-time patient data interpretation 
goes beyond the technical capabilities; integrating AI systems involves overcoming 
barriers and governance challenges posed in a clinical setting. Integration involves 
streamlining heterogeneous flows of information, such as electronic health records 
(EHRs) and patient-generated health data (PGHD), into interoperable formats that 
facilitate the ease of their analysis and informed decision-making. Standards: 
Observational Medical Outcomes Partnership Common Data Model (OMOP-CDM), 
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SNOMED CT, and RxNorm. The variables used in clinical vocabularies are diverse, and 
various sets of requirements should be considered (e.g., what data is encoded in what 
way). Standards like OMOP-CDM, SNOMED CT, and RxNorm have been critical in 
harmonizing disparate clinical vocabularies, establishing semantic consistency, and 
allowing the sharing of data across institutions (Mahajan et al., 2023; Yu et al 

Considerations of governance are equally of importance. The issue of trust in AI outputs 
has long been a concern, as it is highly likely that both clinicians and patients may feel 
reluctant to trust machine-generated interpretations without a clear path for auditing the 
machines (Cheng et al., 2022; Hsieh, 2023). To alleviate these concerns, models of 
responsible governance should be developed to incorporate systems of explainability, 
bias detection, and ongoing post-deployment validation (Reddy, 2024; Zhang & Kamel 
Boulos, 2023). It is also crucial to have patient institutional involvement in governance 
processes, as this ensures accountability and facilitates shared decision-making (Lordon 
et al., 2020). 

Data security and compliance further complicate the situation. Since sensitive information 
about the patient is contained in the flow of the AI pipeline, it is critical to apply privacy-
preserving techniques, including de-identification, differential privacy, and federated 
learning, to meet the ethical needs and regulatory obligations (Winter & Davidson, 2022; 
Kawu et al., 2023). In addition, governance models should be flexible to facilitate changes 
along with the rapidity of healthcare policies and emergence of AI innovation. 

Finally, successful integration and governance are the basis of the sustainable clinical 
adoption. When health systems invest in the integration of interoperability standards, 
privacy risks, and participatory governance, it becomes clear that generative AI models 
are not only equipped to provide accurate insights but also support trust and equity in 
real-world care delivery (Abdolkhani et al., 2019; Tiase et al., 2020). 

 

Figure 1: System Architecture for Comparative Model Evaluation 
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4. PERFORMANCE ANALYSIS AND COMPARATIVE RESULTS  

The relative performance of general-purpose, generative AI models —Julius, Claude, and 
ChatGPT —against a niche, biomedical language model, BioBERT, was tested based on 
two factors: their capacity to interpret a dataset of over 4,000 patient-generated 
comments about antidiabetic medications. These models were evaluated in three key 
tasks, which included sentiment analysis, identification of adverse events, and 
classification of themes. These practices are crucial for harvesting patient-generated 
health data to derive practice-ready insights (Abdolkhani et al., 2019; Lordon et al., 2020; 
Nittas et al., 2019; Tiase et al., 2020; Winter & Davidson, 2022). 

Scientific rigor was obtained through statistical uses. Analysis of variance (ANOVA) was 
employed to compare the mean accuracies of the four models, and post-hoc Tukey HSD 
tests were conducted to determine statistically significant differences between and among 
the models. All the metrics included 95% confidence intervals, and the significance was 
set at p < 0.05 (Sheikhalishahi et al., 2019; Dinh-Le et al., 2019). 

Furthermore, the inter-rater reliability was assessed: two independent clinical reviewers 
evaluated the outputs of the AI. Cohen's kappa was used to measure the degree of 
agreement between reviewers, yielding a score of 0.81, indicating nearly perfect inter-
reviewer reliability (Mahajan et al., 2023; Yu et al., 2023). 

Lastly, as a point of comparison, the scores of three medical students who acted as the 
controls were reported. These human-generated interpretations were then used as a 
benchmark to compare the AI models, allowing claims of interpretive superiority to be 
made on the basis of a quantifiable comparison (Hsieh, 2023; Reddy, 2024; Zhang & 
Kamel Boulos, 2023). 

4.1 Sentiment Analysis 

All models demonstrated a strong capacity for classifying patient responses into positive, 
negative, and neutral categories. Although more contextual interpretation was captured 
by generative models, the biomedical model takes the lead when it comes to the clinical 
terms sensitivity, which aligns with the research concerning the use of AI in diagnostic 
contexts (Li et al., 2021; Yao et al., 2023; Mahajan et al., 2023; Nova, 2023). The precision 
of Julius and Claude was above 90%, but BioBERT demonstrated better precision in 
predicting mild negative sentiments associated with prohibited pharmacological results 
(Sheikhalishahi et al., 2019; Wu et al., 2020). 

4.2 Adverse Event Detection 

The detection of adverse events is an important part of pharmacovigilance that enables 
healthcare providers and regulatory organizations to identify potential safety concerns 
with drugs based on reports from affected patients in the real world. In this research, 
every AI model was tested in regard to identifying and categorizing adverse drug 
reactions (ADRs) on a pool of over 4,000 patient reviews of their experience with 
antidiabetic drugs. 
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Within the results, the suggested BioBERT system was never outperformed, even by 
general generative models Julius, Claude, and ChatGPT, with respect to identifying 
clinically relevant ADRs. This can be explained by the fact that, unlike medical one, it can 
learn domain-specific pretraining on biomedical corpora and can therefore identify 
specialized pharmacological terms, clinical abbreviations, and subtle descriptions of 
symptoms better (Demner-Fushman et al., 2009; Soysal et al., 2018; Gao et al., 2023). 
For example, BioBERT can accurately map patient comments to relevant clinical 
concepts, such as the presence of persistent polyuria or unexplained hypoglycemic 
attacks, which generative models were sometimes mislabeled as similar to general health 
complaints. 

Generative models could identify explicitly reported adverse effects, but also infer or what 
could be termed as hallucinated ADRs, relying on contextual information rather than 
cautious evidence (Reddy, 2024; Zhang & Kamel Boulos, 2023). This aligns with the 
perceived horror of generative AI, which is capable of making realistic yet unverifiable 
claims in a sober field such as healthcare (Cheng et al., 2022; Hsieh, 2023). However, 
their narrative generation skills enabled them to expound on the possible outcomes of 
ADRs on patient quality of life, which were concise and purely factual, with reference to 
BioBERT. 

The significant results in the identification of adverse events are: 

• BioBERT proved to be highly accurate and specific in ADR identification, showing 
the highest performance in identifying both implicitly described and less common 
side effects. 

• Generative models were able to identify common ADRs at times, imparting 
information that was not verified, a situation that makes clinical validation necessary. 

• This is attributed to the entanglement of narrative generative flexibility and domain-
specific accuracy, which can improve the reliability and interpretability of ADR 
reporting. 

4.3 Thematic Classification 

Thematic classification is used to categorize patients' comments into major, clinically 
relevant categories, including treatment efficacy, side effects, lifestyle impact, and 
healthcare access concerns. This is critical for healthcare organizations that aim to 
identify commonalities in patient experience and inform aspects such as clinical practice 
and public health approaches (Yu et al., 2023; Nova, 2023). 

Generative AI models in this research demonstrated an impressive ability to detect a 
broad range of themes and, in many cases, reveal patient sentiment patterns and life 
stories not confined to a purely clinical scope (Camajori Tedeschini et al., 2022; Michelson 
et al., 2020). Indicatively, they successfully aggregated comments discussing their daily 
dietary changes and physical activities under the category of lifestyle effect, whereas 
BioBERT could not classify them as reliably as the others, focusing only on the categories 
determined to be strictly medical. 
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In turn, BioBERT demonstrated greater coherence at the thematic level in categories 
strictly correlated with pharmacological performance and a clinical pathway, which aligns 
with the domain's specialization (Percival et al., 2015). Its thematic productions were 
precise and consistent with known medical taxonomies, but not as wide-ranging and 
context-rich as might be the typical productions of generative models. 

The tradeoffs between category-specific performance and thematic generality that 
BioBERT offers and generative models provide, respectively, might result in hybrid 
methods that bring more rigorous classifications to patient-generators' health data (Shaw 
et al., 2020; Wang, 2023). 

Blackwood Pastoral Research and Advisory Station has released the results of the 2009 
Lambing Campaign evaluation undertaken on behalf of the AgInput Stimulus Packages 
launched by Agriculture Western Australia (Albany area). 

• Generative AI models had performed well on a large number of themes relevant to 
patients, including non-clinical aspects of the lifestyle. 

• BioBERT offered greater thematic integrity with strictly medical categories, but it did 
not work too well on lifestyle or emotional spectrums. 

• The hybrid thematic scheme may be a synthesis of the scope of knowledge and 
clinical category precision, an ideal merging of the utility of category in research and 
delivery of care. 

 

Bar Chart 1: Performance Comparison Across AI Models 
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Table 2: Strengths and Weaknesses of Each AI Model Based on Evaluation 
Metrics 

Model Strengths Weaknesses 

Julius 
Strong contextual reasoning; rich narrative 
outputs; adaptable to nuanced queries 

Lacks domain-specific medical term 
recognition; occasional hallucinations 

Claude 
High sentiment detection accuracy; robust 
multi-domain adaptability 

Slower processing times in large-scale 
datasets 

ChatGPT 
Flexible thematic classification; consistent 
contextual flow 

Prone to plausible but non-evidence-
based outputs 

BioBERT 
Superior clinical term recognition; high 
pharmacological accuracy; precise 
adverse event detection 

Limited narrative flexibility; less 
effective in non-clinical themes 

In general, the analysis supports the trade between generative flexibility and biomedical 
precision, which is discussed in general terms of AI-model choice in the healthcare setting 
(Sharifshazileh et al., 2021; Kawu et al., 2023; Hawley et al., 2021; Dinh-Le et al., 2019). 
The frameworks of hybrid integration, i.e., putting together the generative power of large 
language models and the pertinence of specialty-tailored NLP systems, prove to be the 
best course of action in a real-time interpretation of patient data in clinical practice (Zhang 
& Kamel Boulos, 2023; Sai et al., 2024; Yu et al., 2023). 
 
5. CLINICAL IMPLEMENTATION FRAMEWORK 

The practice of typical clinical settings that require real-time interpretation of patient data 
using generative AI necessitates a multidisciplinary framework for implementing 
generative AI, encompassing interoperability, compliance, usability, and clinical value. 
The key to successful adoption is the ability to integrate AI capabilities into current 
Electronic Health Record (EHR) systems with minimal disruptions to normal operation, 
tailor AI-specific workflows and domain-specific use cases, such as endocrinology, and 
develop staff training to interpret and respond to AI-based insights. 

5.1 Integration with Electronic Health Records (EHR) and Hospital IT Systems 

Proper EHR and hospital IT interoperability must be of high quality to effectively integrate 
generative AI into the clinical setting. More to the point, are: 

a. Secure bidirectional data exchange:  

• Enables providers to access structured and unstructured patient data in real-time, 
including patient-generated health data on which wearables and remote-monitoring 
devices rely (Abdolkhani et al., 2019; Tiase et al., 2020; Dinh-Le et al., 2019). 

• Enhances the process of interoperability in diagnosis and care delivery coordination 
by adhering to interoperability standards, such as HL7 FHIR (Percival et al., 2015; 
Mahajan et al., 2023). 

b. Blockchain-driven data governance: 

• It ensures the impossibility of modifying the audit trails and disclosures of sensitive 
clinical data (Mahajan et al., 2023; Winter & Davidson, 2022). 
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c. API-driven integration: 

• Unites behind the task to complete the exchange of multimodal data at a patient 
level (Lordon et al., 2020; Nittas et al., 2019): clinical notes, lab results, and PGHD. 

d. Respecting privacy AI-training: 

• Is learned, namely in a decentralized way, including Decentralized Learning models, 
including Federated Learning, such that raw patient records do not have to be 
shared (Camajori Tedeschini et al., 2022; Shaw et al., 2020). 

5.2 Workflow Adaptation for Endocrinology Practices 

Since the presented study's available data source comprises more than 4,000 patient 
reviews related to discussions of antidiabetic drugs, the framework should reflect the 
specific data interpretation requirements in the field of endocrinology.  

Generative AI can leverage PGHD and clinical data to detect adverse drug reactions, 
identify patient therapy trends, and simultaneously provide patient-centered advice (Sai 
et al., 2024; Yu et al., 2023). 

This beneficial increase in AI production may be achieved through the introduction of AI 
with clinical decision-making frameworks tailored to specific specialties (Demner-
Fushman et al., 2009; Sheikhalishahi et al., 2019). 

In Cases of endocrinology, such a model should have the capacity to analyze longitudinal 
glucose levels in relation to patterns of non-compliance with medication, while matching 
them to clinical findings and data on achieving good diabetes control (Nova, 2023; Gao 
et al., 2023). Additionally, proactive interventions can be implemented to predict and 
prevent further complications, such as hypoglycemia or cardiovascular comorbidities, 
using a predictive analytics approach based on generative AI (Zhang & Kamel Boulos, 
2023; Reddy, 2024). 

5.3 Training Medical Staff to Use AI-Assisted Decision Tools 

The usability and trust among clinicians are key factors in the success or failure of 
adoption, and both factors rely on clear and coherent clinical training programs (Cheng 
et al., 2022; Hsieh, 2023).  

The other modules that are supposed to be taught include the possibilities and capabilities 
of AI, as well as explainability/bias mitigation (Yu et al., 2023; Wang, 2023). It may assist 
in making informed decisions and avoiding excessive reliance on the outcomes presented 
by AI, which can be achieved with the cooperation of AI literacy in continuing medical 
education (Hawley et al., 2021; Michelson et al., 2020). 

Best practices in human-computer interaction should also be highlighted to facilitate a 
smooth integration of technological advancements into time-sensitive clinical 
environments (Wu et al., 2020; Soysal et al., 2018). The value of simulation-based 
training environments can be particularly high when they imply the presentation of real-
time AI applications at the encounter level (Li et al., 2021; Yao et al., 2023). 
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Figure 2: Proposed Clinical Workflow for Generative AI Integration 
 
6. ETHICAL, REGULATORY, AND EDUCATIONAL IMPLICATIONS 

In the case of suggesting the implementation of generative AI in real-time interpretation 
of patient data, a complex set of severe ethical challenges arises, including data privacy, 
bias removal, and accountability. De-identification, encryption, and storing the data are 
necessary in the case of over 4,000 user comments on antidiabetic medication before 
their inclusion in models such as ChatGPT, Julius, Claude, and domain-specific systems 
such as BioBERT (Abdolkhani et al., 2019; Winter & Davidson, 2022; Kawu et al., 2023; 
Tiase et al., 2020). Such safeguards are not in place, and therefore, there is a threat to 
re-identification or the unstable release of data, which does not correspond to good 
clinical practice at an ethically acceptable level. And lastly, it can be noticed that the 
generative AI trained on generalized big data is highly likely to add value to the algorithmic 
bias that will distort the sentiments and the life experiences of underrepresented 
communities (Cheng et al., 2022; Hsieh, 2023; Lordon et al., 2020; Sheikhalishahi et al., 
2019). Examples of techniques that can mitigate risks include federated learning 
(Camajori Tedeschini et al., 2022) and fine-tuning of Bayesian models focused on specific 
domains (Soysal et al., 2018). 

A precondition for implementing AI in medical practice is adherence to regulatory 
frameworks, such as HIPAA in the United States and GDPR in the European Union 
(Mahajan et al., 2023; Winter & Davidson, 2022). Hospitals using Electronic Health 
Records (EHRs) with AI deployment must have a strict governance policy to ensure 
responsibility and accountability regarding data access, retention, and auditable 
capabilities (Shaw et al., 2020; Dinh-Le et al., 2019; Percival et al., 2015). To a greater 
extent, transparency and resistance to tampering are represented by new systems, such 
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as blockchain-enabled secure cloud EHR systems (Mahajan et al., 2023). Moreover, 
standardized outputs based on AI or described by these tools, such as CLAMP and 
DR.BENCH, are explainable and therefore can be easily passed through regulatory 
procedures (Soysal et al., 2018; Gao et al., 2023; Demner-Fushman et al., 2009). 

The broader pedagogical and population health applications of generative AI are quite 
extensive. Regarding healthcare education, AI-assisted simulations enable learners to 
engage in a variety of practice scenarios, thereby mastering the skills of diagnosis and 
data analysis (Nova, 2023; Yu et al., 2023; Reddy, 2024). By analyzing these systems, 
public health divisions can also utilize them to simplify complex patient-reported 
outcomes, making them viable health education tools (Michelson et al., 2020; Nittas et 
al., 2019), thereby enhancing the relationship with clinicians (Lordon et al., 2020). Long-
term responsible deployment can enhance chronic disease monitoring (Sharifshazileh et 
al., 2021), early prediction of adverse reactions to drugs (Yao et al., 2023; Li et al., 2021), 
and precision processing (Zhang & Kamel Boulos, 2023; Sai et al., 2024; Wang, 2023; 
Yao et al., 2023). This development, however, relies on making innovation compatible 
with good governance to avoid losing patients in the process of providing equitable, high-
quality care (Wu et al., 2020). 
 
7. LIMITATIONS 

Although the research suggests the potential usefulness of generative AI in interpreting 
patient data, several limitations are worth mentioning. First, the burden of publicly 
available patient reviews introduces a sampling bias, favoring more outspoken and 
digitally savvy groups, which may not accurately reflect the patient community as a whole 
(Lordon et al., 2020; Nittas et al., 2019). Second, API throttling and rate limiting also 
sometimes limit throughput, causing evaluations to be made in a batch-based manner 
rather than in real-time streaming — an operational limitation that can compromise 
ecological validity in continuous monitoring situations (Winter & Davidson, 2022; Shaw et 
al., 2020). Third, the subjective constructs, such as interpretive depth, were transformed 
into quantifiable measures; however, these transformations would not enable the 
comprehension of the sophisticated healthcare judgment that healthcare experts apply 
(Hsieh, 2023; Cheng et al., 2022). 

Future studies are expected to assimilate longitudinal data that are generated directly by 
electronic health records (EHRs) and incorporate complex ensemble learning methods to 
make the interpretation of the AI-based systems more reliable and generalizable 
(Mahajan et al., 2023; Yu et al., 2023; Reddy, 2024; Zhang & Kamel Boulos, 2023). 
 
8. CONCLUSION 

This report evaluated, using more than 4,000 patient-generated feedback comments on 
antidiabetic drugs, to establish a baseline for comparisons with human interpreters in real-
time clinical data interpretation. It assessed how well general-purpose generative AI 
models perform compared to a model designed to produce biomedical language. 
BioBERTs were found to understand clinical terms well, achieve high drug accuracy, and 
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predict adverse events effectively. Julius and Claude performed exceptionally well on 
tasks of contextual reasoning and narrative generation (Yu et al., 2023; Gao et al., 2023; 
Soysal et al., 2018; Demner-Fushman et al., 2009; Wu et al., 2020). Combining these 
with electronic health records can increase diagnostic reasoning, patient-clinician 
interactions, and accuracy of care provision timeliness (Abdolkhani et al., 2019; Dinh-Le 
et al., 2019; Tiase et al., 2020) so long as they are backed by solid governance and secure 
data structures (Winter & Davidson, 2022; Kawu et al., 2023; Mahajan et al., 2023). 

Main claims and conclusions:  

• Performance Trade-off: Generative AI is versatile and can offer situational rational 
thinking compared to the domain-specific AI, which is therefore more accurate in the 
medical field (Camajori Tedeschini et al., 2022; Reddy, 2024; Sai et al., 2024). 

• Data Security: Federated learning and blockchain-mediated systems can be utilized 
to protect patient information when integrating AI (Mahajan et al., 2023; Winter & 
Davidson, 2022). 

• Its clinical implications are that AI can transform the process of managing long-term 
illnesses and communication with patients, leading to earlier disease detection (Li et 
al., 2021; Yao et al., 2023; Chen et al., 2019). 

• Hybrid Architecture Potential: The potential of a hybrid framework, which combines 
the versatility of generative AI with the clinical accuracy of NLP architecture, has the 
potential to make real-time applications the best performing (Cheng et al., 2022; Hsieh, 
2023; Wang, 2023). 

• Continuous Monitoring: By combining wearable and mobile health technology with 
AI Analytics, it is possible to provide one-on-one care to a large number of patients 
(Hawley et al., 2021; Shaw et al., 2020; Nittas et al., 2019). 

• Strategic alignment: The vision is consistent with the introduction of Healthcare 4.0 
and precision medicine, as its use redesigns the working process on the paradigm of 
new safe, interoperational, and ethical contexts (Percival et al., 2015; Sheikhalishahi 
et al., 2019; Michelson et al., 2020; Nova, 2023; Zhang & Kamel Boulos, 2023). 
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