
Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 57

PREDICTIVE RESOURCE MANAGEMENT BY REDUCING COLD START

IN SERVERLESS CLOUD

MUHAMMAD SULEMAN*
Department of Information Technology, The Islamia University Bahawalpur, 63100, Punjab, Pakistan.
*Corresponding Author Email: muhammad.suleman@iub.edu.pk

DOST MUHAMMAD KHAN
Department of Information Technology, The Islamia University Bahawalpur, 63100, Punjab, Pakistan.

MUHAMMAD ABID SALEEM
Department of Information Technology, The Islamia University Bahawalpur, 63100, Punjab, Pakistan.

OMER RIAZ
Department of Information Technology, The Islamia University Bahawalpur, 63100, Punjab, Pakistan.

ZAIGHAM MUSHTAQ
Department of Information Technology, The Islamia University Bahawalpur, 63100, Punjab, Pakistan.

Abstract

Serverless Cloud computing expanding its domain rapidly. This is simple, efficient, light-weight, secure and
ubiquitous. All Cloud players provide it with different attractive names such as Amazone branding it with
AWS Lambda, Goole using Cloud Run, Ali Baba calling it Function Compute and last but not least Microsoft
providing serverless cloud with name of Azure Function. Normally, function service executes the core
business logic of application and host’s machine policy of execution create a significant impact of overall
quality of service provided by CSP (Cloud Service Provider). To produce an effective execution policy, the
host machine maintains a lean balance between Cold and Hot restart. Policy efforts to reduce Cold restart
but manage resources during Hot restart. In this paper, we employed a machine learning based
classification methodology that segregate the functions in terms of cold and hot functions. We implemented
Naïve Bayes classifier and boosting the accuracy with Kernel Density Estimation. The overall best accuracy
was observed up to 94.35%.

Index Terms: Serverless Cloud Computing, Cold Start, FaaS, Resource Management, Naïve Bayes
Classifier, Kernel Density Estimation, Windows Azure Function.

1. INTRODUCTION

There were many issues behind the conventional Cloud computing and consequently, the
reason of birth of Serverless Cloud computing. Eight major issues were explained by [1]
including redundancy of availability, geographical distribution, load balancing,
autoscaling, continuous monitoring, logging performance, continuous upgrading and
service migration. The above-described architecture [1], [2], [3] of Serverless added some
new layers in conventional Cloud architecture. The new layers are “Serverless” and
“Triggers”. The Serverless is segregated in two main services: BaaS (Backend as a
Service) and FaaS (Function as a Service).

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 58

BaaS is related to backend tasks such as database, file system, messages etc. and FaaS
belongs to user deployed function. In fact, BaaS work as a backend service for FaaS.
User will generate functions by using trigger and these functions will utilize BaaS to
complete their jobs. Many times, the term “Serverless” and “FaaS” are used in similar
context because users are familiar with both of these. It means that user only interacts
with FaaS, and, how to manage the FaaS execution that increase the thruputs of
productivity and reduce the latency in function executions, is the main concern of our
thesis.

The term “Serverless” is also interesting. There are servers in Cloud and they involve in
every operation in computing but with respect to user, we find that users (or application
developers) just upload the code in to application without considering the settings and
profile of host machines (either virtual, container, bare metal or physical machines). That’s
why we called it “Serverless” [3].

As phrase “Serverless” explains the relationship between consumer and Cloud, we can
see that all functions are incorporated inside application. Furthermore, the function also
increases the granularity of Cloud utilization which impact the billing method. Now the
Cloud monitoring systems are enabled to find the resource occupation by function and
can measure the utilization at milli seconds (normally 100ms scale). It is almost a real
time monitoring and bill generation is more precise and nearly true for end user [1], [4],
[5]. This capability provides an extra ordinary economic benefit to Cloud computing.
Utilization based billing override the provision-based billing where user have to pay for
the resources which are provisioned to it. There are many cases where incorrectly
estimates its requirement and demand extra resources and these resources not utilized
but user has to pay for them because Cloud infrastructure was unable to identify the
resource consumption. Serverless shift the scenario to actual consumption-oriented
billing that the actual demand from user and consequently, the Cloud more affordable
solution.

1.1. Features Of FAAS

The utilizations of FaaS are long list and almost all use cases of conventional Cloud
computing are covered in Serverless. Here we will present some the features which
commonly discussed in literature.

 Functional Programming: We know that function is the basic building block of any
application regardless of programming language. This is main component that
acquire the domain in main memory and utilize the CPU cycle. Moreover, it is the
entity that call storage and network for consumption. While other computing usage
methods are concerning with machines (real or virtual), the FaaS only concern with
execution nevertheless of machines. This feature made FaaS is realistic and intuitive
and Cloud users feel easy with it [4].

 Microservices: Microservices is method of developing and deploying large
applications on Cloud with independent units. Conventionally, application
development is performed in form of a complete package where common

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 59

programming framework, run time libraries and supporting tools uses. This method
called monolithic architecture while microservices architecture based loosely coupled
components which integrated with each other with APIs. FaaS in intent implementing
microservices architecture [6].

Figure 1: General Architecture of Serverless Cloud

 Decoupling: As mentioned earlier that functions are independent from underneath
services, this is also made free the deployment to couple with attached auxiliaries
such as operating system, protocols, hardware and connection [7]. Now application
developers put their all emphasize of application development and business logic.
Serverless inherits fundamental property of scaling from conventional Cloud
computing so there is no problem with elasticity of resources with newly uploaded
code [8].

 Stateless: In old fashioned applications, system tries to remember the
communication between components. It may maintain some session or some other
things to setup a state among the participants but FaaS is stateless. This is a great
idea because when a function completes its execution than all memory footprints
washouts and lot of memory is available for upcoming functions and also reduce the
overhead for host management system maintain a state [3, 4].

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 60

 Function Hosting: Function execution is performed on some host but users have no
direct interaction with server. It removes the managerial expenditures and make
development and deployment more cost effective. The server execution also include
in conventional Cloud computing Serverless reduces this expense head too [3, 7, 9].

 Language Independence: Normally consider that applications are written in a single
language but Serverless removes the language barrier too. Now developers can
program the different functions of a single application into different languages
according to their connivence and these components interacts each other with some
transportation languages such as JSON or XML. Language runtimes already
provided by host and if some language support is not available in default package,
then will be add on minimal amount [7].

 DevOps Support: Since 2007, DevOps is getting popularity and first choice of
application developers and IT managers. Serverless architecture, by default has the
support to DevOps due to different features such as language independence, function
hosting and statelessness. DevOps is complex procedure with multiple cycling steps
and can be easily manage in a Serverless environment. Development procedures
may be automated by using CI/CD pipelines that integrates the development, testing
and deployment in seamless way [10-13].

 Service Consolidation: Service consolidation or migration is also the basic features
of Cloud. When host system identifies some imbalance or over utilized nodes, then
for internal management it can shift the running procedures to some other physical
node which is less occupied. Serverless can also migrate the FaaS if it faces some
disturbance because overall architecture is rather light weight [14-16].

 Support of other Cloud Models: We discussed three other usage models of Cloud
computing, VMs, containers and bare metal machines. All these methods can also
easily manage with Serverless [17, 18]. In such a case that user wants to deploy a
Serverless model over a virtual machine or container or even bare metal, then it can
be work. In this scenario, FaaS will not directly interacts with host an abstract layer
will be ensemble between them to produce require model.

 Reduced Computational Workload: Functions are inside an application and
applications load only require function which are requested to be execute. As
operating system are intelligent enough to maintain the good scheduling and
dispatching the binary for processing, the overall Serverless environment less
overcrowded. Consequently, the overall computation procedures reduced and
resource requirement also minimize [3, 4, 14, 17].

 Billing Mechanism: Commercially available Cloud system charge their clients to use
their infrastructure. Cloud architecture allows vendors to produce bills variably
because there is a separate monitoring system continuously logging the utilization of
resources. To make Cloud affordable to clients, vendors generate bills on base of
consumption not the resources provisioned to client. Serverless architecture is more

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 61

granular because it is easy to record. Normally, Serverless monitoring system use
the 10ms slices of logging the execution of a function which enough to real time
costing. As unit of time smalls, the users are more satisfy with expenditures because
they are paying what they are really using [14].

 Workload fluctuation: Serverless workload is unexpected and uneven. System
cannot foresee the volatility of function calls in future because there is no machine
(servers) involve in it. All the applications are running directly and any time their
frequency of invocation change. Either it may exceed or decrease. This phenomenon
adds a challenge FaaS about elasticity and resource management [16].

Academia and industry both are working and exploring more aspects of FaaS

1.2. Triggers

Triggers are the events which invoke a function. Every Cloud vender defines a set of
triggers that provide an interface to user for invocation of function. Every trigger has
parameters that use as a payload of a function. Whenever consumer desire to execute a
function, it generates an event or trigger for example, a user want o store data in database
using REST API call. It will generate an HTTP trigger that take data from client interface
(mobile, web, IoT or event some other Cloud output) and put it into some JSON or other
format and pass to API for further processing. A function may be calls some other function
using triggers [19].

When a trigger invokes a function, it produces a binding with this function. Two types of
bindings, input binding and output binding. User can also add both of them to a function
or even if a no binding requires than it may be left blank. For instance, user want to read
message from message queue then he will generate ‘queue’ trigger that invoke the
function to read the message. This message contains the logic of reading mechanism. In
this case function don’t require any parameter or data, thus, no input binding will be
attached while it returns the message which available in queue so its output binding will
be ‘message queue’. Similarly, if a user wants to read data from storage and put it into
Cosmos DB with a REST API, then first he will generate an HTTP trigger with ‘storage’
input binding and output binding is Cosmos DB.

1.3. Function Life Cycle

For complete understanding of working of functions, it is important to understand the life
cycle of function. Normally, FaaS functions called in stateless environment with no prior
footprint in memory if function is already called. It means that function has to get its
resources every now and then each time. It is called cold start. Sometimes, Cloud
orchestrator remain loaded the function resources after execution in a sandbox. If
resources of function are still remained sandbox and function utilize these resources on
next turn, then this is called hot restart. The decision of maintaining state of a function is
critical and require to discuss with comprehensive details but first we will explain the
function life cycle.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 62

1. Start form Idle State: A function will remain in idle state until it called. When a
function uploaded first time in Serverless, it become the part of application. When
application executes, its functions also move from idle state to execution state but not
all function start execution, only such function executes which are invoked by some
trigger.

2. Acquire Resources: When some trigger invokes the function, then this function start
execution. The step of execution to prepare resources for this function. Many times,
this a concurrent operation that is running asynchronously while function code is
loading into memory but many resources require on runtime. Resource acquirement
is a complex task that depends not only code written for this function but also libraries,
frameworks and runtimes. Furthermore, the resource requirement is rather dynamic
operation because Cloud also implements the scalability and it also effect the
monitory aspects of Cloud.

3. End of Execution: When a function completes its execution then it will go to again
idle state. Here again, the idle state may be in parking area or sandbox. If function is
in the list of favorite functions, then it will go to sandbox. The orchestrator also saves
the resources such as files, network ports or other data into the sand box because
when function call again then it requires to use these resources and saving these
items in some cache, reduce the turn-around time. If a function is saved in sandbox
after execution than it is ready for hot restart and if function is not in the list, then it
will vanish from memory and on next turn, it will be cold restart.

4. Sandbox storage: Cloud orchestration develop a strategy called keep-alive policy
that decides which function should be treat as stateful. It may be such functions which
are frequently invoke, or demand bulk of resources or scheduled with shorter idle
span. These functions stored in sandbox which work like a cache and not only the
function code is keep-alive but also its resources may also archive.

5. Hot / Cold Restart: If a function is loaded from sandbox or hot restart it looks very
efficient to restart working because its turn-around time is very much shorter. It may
take its resources from sandbox which also added support. This looks an iota of time
which is discounted from other Cloud operations but on a larger scale, it is very
helpful, specifically, in terms of QoS, QoE and network consumption and
consequently, user satisfaction.

6. Monitoring: All processes including, loading, resource acquisition and utilization is
monitor by a separate system. There are two benefits this operation. First is to
managing the scalability [13]. There are two levels of scalability as performed by
Cloud management. First is vertical scaling, in which Cloud resource demands
changes normally. For instance, a function in execution state and demands 10
percent of increase in any resource which is nominal and management adds some
extra resources to manage this demand. It may be possible that demand gigantically,
up to hundred times or even more, to cope this situation orchestration may employee
other machines or nodes. This is called horizontal scaling. It is also important that

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 63

scaling just not belongs to increase in demand, it’s also including shrinking. When a
function leaves resources then monitoring system capture these resources and put
them into an idle pool and further provide these resources to such functions which
growing or loading.

Figure 2: Function Life Cycle

1.4. Challenges In FAAS

Serverless is robust and simple that’s why it gaining popularity in comparison to other
Cloud infrastructures but the meanwhile its challenges and limitations are still there. Let’s
have look on these challenges because these are discussed and solution of some these
challenges are defined in this document [20].

 Lazy Start: We mentioned earlier that there are two kinds of starts available in
Serverless. First, is cold and other is hot start. If a function direct start without and
context then it is cold start but if a function was selected in keep-alive policy then it
will start from sandbox and called hot start. The both methods of start (or restart) have
their own pros and cons. If a function always starts in cold then, it will take time and
dent the user satisfaction and consequently the revenue of business. A hot start is
the solution of issues in cold start where function is already in preemptive state with
its resources and looks very early to start working but there is cost of sandbox also
here. Host system has to setup a cache like structure where functions can reside
during their idle time. Host cannot put all functions which are waiting for next call
because this will demand extra resources.

 Keep-alive Policy: Which function will be available in sandbox to reduce the restart
time is calculated under the keep-alive policy. How to define this keep-alive policy is
also critical task. This is double edge sword because if there are glitches in this policy

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 64

then profit of hot restart can be convert to lose. If incorrect functions selected which
are not require then they will occupy the space of potential functions and therefore
system resources will be lost. Another issue is, calculation overhead. If policy
consuming too much computational resources than it is also damage the quality of
service. It is also important that this policy work around continuously because it will
record the all activities of function performing and generate a selected set of function
which are included in sandbox. Policy calculation should be smart and lightweight that
cannot haunt the normal operations of Cloud infrastructure.

 Caching: Caching is a common strategy for Serverless to reduce the cold start. For
example, SOCK is one of the solutions developed by Oakes [21]. This is container
framework that reduced the cold starts in Serverless. A customized lean container is
introduced that prevent the latency. The proposed solution targeted two main causes
of latency, first, the language runtime initialization latency and second is container
initialization latency. Their solution emphasizes on Docker isolation. For this purpose,
they proposed more resources to store the data of functions when function sleep after
execution. Similarly, Windows Azure Function focus on shared libraries and SUESS
depends on snapshot to minimize the latency.

We only present the challenges which are concerned research and area of interest

2. LITERATURE REVIEW

FaaS is rather new paradigm in Cloud services but handsome amount of work is produced
about the challenges of Serverless. Here we will display a brief overview of proposed
solutions to reduce Cold Start issue in cloud computing. The researcher community
developed solutions with different methodologies including machine learning, prediction,
time series analysis, and statistical inferences.

Hybrid histogram-based policy generation was developed by Shahrad et al [22]. The
collect and explain the dataset “AzureFuncitonDataset2019”. Two main goals they
attempted to achieve in their research are characterization of workload and developed a
policy that reduces the number of cold starts. The data collection was performed during
15th July to 28th July, 2019 and the record the function invocation frequency per minute,
triggers of function, execution span and memory consumption. They identified three
fundamental observations from dataset. First, the most of the functions have execution
span as almost equals to cold start included, the second observation was about the
fluctuation invocation by applications, some applications are invoked very often while
most of the applications remain calm and very rarely called. Similarly, the prediction of
next invocation of an application is also challenging. After identification of challenges and
goals to achieve, the defined their methodology that check out the out of bound (OOB)
function invocations, if the idle time of a function is exceeded of some preconfigured time,
then it will label as OOB function. If a function display too many OOBs then it will treat by
ARIMA to predict its next invocation otherwise, system will analyze its invocation pattern
and if it is utility is according to some decoration, it will be treated by histogram method.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 65

If function shows no pattern, then it will be managed by standard policy generated by
host. The results are method implemented were significant in some cases. 75%
applications reduced their cold start up 50% but as the keep-alive policy extended to 1
hour, it reduced to 25%. The impact of memory wastage also reduced and up to 50%.
The system was implemented on OpenWhisk, an open-source implementation for FaaS
workload and all the evaluation is performed on said system.

Hossein et al [23] proposed a heuristic oriented approach for function scheduling method
to reduce cold starts. This method implements dynamic waiting technique that can
change the waiting time on the fly in mutable scenarios. Four types of decisions were
implemented that are reasons of change the waiting time, consequences of the technique
were noteworthy, they showed their method improves 32% in comparison of fixed time
method. Six main features use to generate policy, score of previous executions, degree
of collaborations, maximum merging time, score of correct merging, cost of the
environment and timeline. The proposed approach evaluated on three criteria. First the
response time that measure between trigger generated for execution and start signal from
function, second, the turnaround time that span between start signal to end of execution
and third is operational time that use to perform overhead calculation.

In [8] proposed a general purpose abstraction layer for application deployment. A
ServerlessOS is introduced that have three major parts. First a disaggregation model that
disintegrates the abstraction but allows resources to migrate one server to other while
second component is an orchestrator that granularly manages the available resources
and support local and global decision making. An isolator also incorporated that
implements the data and resource isolation over the servers. These three components of
SeverlessOS are heavily impact the performance of Serverless environment. First it
decouples the physical resources like memory, CPU and IO. Grass root level
orchestration is important because this is significant in management decisions. The
provided orchestration is on detailed level and can be perform local decision belongs to
host hardware and higher level such as nodes deployment. The proposed solution also
implements the isolation with data privacy and multitenant resource management.

SEUSS [24] is a framework that increase the Serverless execution using limiting the
restart. The system improvised both speed and memory. The improvisation was achieved
using rapid deployment and high dense caching. To reducing cold restart, the
arrangement of unikernel snapshots was maintained which directly deploy the function to
execution rather cold. To fix memory issue, page level sharing on software stack was
implemented. The results were significant. Deployment time of function reduced up to ten
times or even lesser, and the overall system throughput improves to 51x. Their approach
built on four foundational elements, first is Unikernerlization. This is responsive caching
that can be transform to some host without changes. The snapshot that is immutable data
object which reflects the state of execution. In fact, snapshot work as a template which
helps to initialize other operations on base it. Multiple operations can be generated from
snapshot. Third is anticipatory optimization. This reduced the extra space and execution
resources of current execution. Finally, the snapshot stack, that enables the

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 66

communication between different snapshot images that are executing in parallel. The
main purpose of snapshot stack is to increase the number functions in cache which have
common base provided by snapshot image.

Another cache-oriented solution Faa$t provided by Romero et al [25]. They defined their
cache on base of anticipatory sizing of the cache. A transparent cache is created for each
application that store the function data inside it to reduce the number cold starts. At the
end of application execution, the memory is empty but on restart, this cache helps to
prewarm the functions. Faa$t is also elastic that can be add or remove items and increase
/ decrease its footprint according to situation. They implement their solution in Windows
Azure Function to show its practicality. The results showed that performance
improvement about 57% in average. Storage items and blobs are the primary target of
Faa$t because, these items not only lethargic in loading but also costly in bandwidth
consumption. It allocates a region in where the cache data stored. It declares demon
services that bring data from remote storage and resides in cache until the application is
running. This cache is located in container or virtual machine which is hosted on some
physical machine. Each application has its own cache called Cashelet. Every time when
data is demanded the cache, search it out in its repository and if it found than marked it
as cache hit. If did not find than this is cache mis (old terminology). Memory daemons
monitor the cache and data all the time to scale it accordingly.

Machine learning a responsive method that can produce dynamic decisions. A machine
learning technique is deployed by Djob et al [26] with name of OFC (Opportunistic Cache
System). They target two main issues, first, the overprovisioning of resources and second
is unnecessary utilization of sandbox to avoid cold start. They employed decision tree
method to true prediction of requirement of resources. The overall architecture is inherited
from three available infrastructures. OpenWhisk that provide basic functionality of FaaS
service, Swift, a storage mechanism and RAM-Cloud an in-memory storage mechanism.
The implementation is simple and intuitive, the algorithm finds the input of a function and
predict about required memory. In first step when a function invoked, the controller will
inquire about the memory requirement from predictor. The predictor not only declare the
memory but also the decision of caching or not. If a function is caches, then it means that
this function is take too much time to reload and significant throughput will be earned in
case of caching it. The predictor is consisted on four basic operations. Model updating
work in two cases. First time, the model is blank and unable to make any decision, this
time model will be update to perform its function and model updating also require when it
perform any incorrect decision. Model outputs are defined in two terms, the amount of
memory required and cached decision. Model inputs are the specifications of the function
which is invoked. The model calculates the amount of memory that it required and also
the calculate the cashing decision. Final operation is prediction speed. The system
showed overall 82% improvement in single stage and 60% in pipelined functions.

An automotive keep-alive caching is defined by [27] for variable caching size. They
studied the cache hitting and missing. They implement their mode for Hawkes processes
to find the optimization of policy. As Hawkers processes are past dependent, they also

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 67

introduced a history independent model. They testify the Hawkes processes. These are
such process which self-discard and define to intensity of sequence of events. They
defined empirically identify the window of keep-alive functions. Conventionally, this
window is defined by the analyzing of historical background of process but they discover
that average also work finely. For evaluation, they taken 600 points in function invocation
to mark them as Hawkes process than calculate the mean of 100 policies and finally the
calculate the cost of keep-alive and cost of missing in cache.

FaaSCache [28] based on greedy dual keep-alive policy. This policy is had impact on
limiting cold start up to 3 times in contrast of contemporary practices. Caching concepts
including as reinvoke span proportion found in cache can also be used for server resource
allocation and scalability. It is also studied that this policy is able to minimize the resource
provisioning of Serverless up to 30% for real-world variated functions. they enforced
caching-based keep-alive and resource allocation methods in FaasCache system, which
is implemented in OpenWhisk.

Chen et al define [29] a special framework for edge computing in Serverless. The offered
an online distributed mechanism which specifically targets the size, number of cold starts
and invocation frequency. They compared their method with fixed cache policy and
histogram-based policy.

To reduce the container delays and overprovisioned memory [30] with the name of
µFuncCache. This method did not disturb the internal architecture of host and other Cloud
management system. Every element has its own cache which completely independent to
all other elements. Every request first checks the demanded item in cache and if it is not
found than it will demand from other resources such as storage or database.

Palette load balancing maintain such functions which are waiting for resources and just
arrived for execution, while allowing the platform to place consecutive calling to
simultaneous on the same host. They equate a proposed the Palette load balancer for a
contemporary location aware load manager. For a FaaS-based application along a
residual cache, Palette improvise the cache hit proportionality by six times. For a
Serverless version of Dask, given mechanism upgrade run times up to 46% on Task
Bench and TPC-H, respectively. While a serverless flavor of NumS, Palette update the
run times by 37%. These improvisations showed a highly impactive the performance of
serverful implementation of the same systems.

Snapshot of previous execution can reduce the cold start as an approach described by
Paulo et al [31]. The system is defined for Linux tools that create some checkpoint/restore
in host. They examine the prototype by performing experiments that equivalence its start-
up time against the normal process initialization procedure. They investigate the three
important aspects. First, a idle function. Secondly, an Image operation function while third,
a function that apply on Markdown data items. The results were significant that improved
the initialization time of function copies up to 40% in worst case of an idle function while
second case it jumps to 71% for the Image operation. Detailed examine of system
unleashed that the runtime startup is a main issue, and it is confirmed by performing a

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 68

sensitivity analysis based on hypothetically produced operation of multiple function sizes.
These evaluations present that it is vital to make decision every now and then to develop
a snapshot of a function. When one snapshot is created, function became in warm state,
and then boost in startup achieved by the prebaking technique is even higher. The velocity
increases from 127.45% to 403.96%, for a small, testing function, and for a bigger,
artificially generated workload, this reached to 1932.49% from 121.07%.

Lin and Glikson [32] developed a pool of warm containers that help to reduce the cold
starts. Their method to resolve the cold-start is is to develop a collection of warm pods
that called pool. This pool will be ready and immediately available for code (function) as
demand is growing to eradicate the cold restart time lapse by assigning the pods which
prebooked. This pool can also be distributed in different kinds of services that use the
same function. The first describe the enforcement of a pool, the system based on Knative
Serving. Knative is an open-source infrastructure to deploying FaaS workload. They
examine the performance evaluation of the proposed solution compared to counter parts
such as Knative without a collection or pool of pre-warmed Pods, and elaboration of
results and insights.

An extensive solution is developed by Sethi et al [33] to manage the notorious reason in
Cloud, the cold start. They presented a management method to eradicate the cold start
invocation by administrating the containers warm for a larger span of time with the Least
Recently used warm Container Selection (LCS) approach on Affinity-based arrangement.
In addition, they also performed an evaluation and compared the obtained results with
the Most Recent Used (MRU) container method. The developed LCS method showed
much better performance than up to more than 48% against the MRU conventional
method.

FaaSLigh [34] is an application-based method to accelerate the function loading by Lie et
al. FaaS applications by application-level management. They initially perform a
evolutionary research to discover the primary issue of the cold-start contention of FaaS.
The research elaborated that application function initialization delay is a painful enough
for Cloud users that involved extra overhead for Cloud delivery services. Hence, initiating
only vital function(s) from applications can be a worthwhile approach. According to on this
citation, they discover function(s) associated to application functionalities by producing
the function-level invoke graph and disintegrate other function including optional
functions. By disintegration of extra function, system can accelerate the performance and
loaded on demand to avoid the incorrect discovery of crucial code reason behind the
application failure. Specifically, an important guideline the design of FaaSLight is general
in nature, such as programming language and platform independent. In real world,
FaaSLight can be impactfully enforced to Serverless applications developed in multiple
programming languages, and can be intuitively deliver on available FaaS platforms such
as Google Cloud Functions or AWS Lambda or anyone else, without having to change
the base operating systems, hypervisors or host, similarly, without any extra techniques
or efforts for application developers. The testifying results on actual FaaS applications
showed that FaaSLight can clearly reduce the function starting delay up to 78.95% with

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 69

average of 28.78%, hence avoiding the cold-start latency. They explained the result, the
total response delay of code may be reduced to 42.05% with average of 19.21%. In
comparison with the contemporary, FaaSLight achieves 21.25 times better in limiting the
mean total response delay.

Shen et al [35] present a novel approach name Defuse. This is dependency-based
function scheduler for FaaS platforms. Specially, this approach discovered couple of
dependencies between FaaS, such as strong and weak dependencies. It employed
frequent pattern explorations and useful information to identify including dependencies
from function invocation monitoring. By this method, Defuse deduced a function
dependency graph. The associated components such as relative functions on the graph
can be manage to eradicate the invocation of cold starts. They testified the implications
of Defuse by implementing it to n commercial FaaS dataset. The evaluation results
displayed that Defuse can minimize 22% of memory footprint while having a 35%
decrease in function cold-start rates with the latest methods.

Pigeon [36] specifically designed for private Cloud base FaaS and Serverless. This
provides a method for enterprises to manage applications. Pigeon develops function-
oriented FaaS framework by presenting a sovereign and granular lowest level resource
manager over the of Cloud orchestration tool Kubernetes. A new overprovision oriented
rigid pre-warmed container solution is the part of approach that generously reduce
function startup delay and improves resource discovery mechanism for short term Cloud
functions. The results present that Pigeon framework improves function cold-start trigger
rate by 26% to 80% with respect to AWS Lambda Serverless platform. Relative to
Kubernetes own orchestrator, the performance obtained 3x upgradation for handling short
term functions.

A reinforcement learning oriented method is propose in [37]. The presented Q-Learning
agent work with the Kubeless, a Kubernetes based tool for function deployment in FaaS,
to manage serverless platform by disintegration the environments, operations and results
with the use of CPU utilization by instances, available code items and success or failure
rate of response. The overhead is regenerate with the Apache JMeter non-GUI toolkit
and agent is examined in comparison of the default auto-scale feature of Kubeless. The
agent presents the capacity of learning the invocation detail, to develop decisions by
generating the optimal number of functions for the given time span of learning, under
controlled environment settings.

An implementation of application knowledge is used to minimize the cold starts in
Serverless [38]. proposed approach has fundamentally concentrated on limiting the span
for cold starts. In this treatise, they studied and applied three methods, in comparison of
related studies, that minimize the number of cold starts and treating the Serverless as a
black box. In the methods, applied as part of a lightweight pattern middleware, they
implement knowledge on the construction of functions to initiate cold starts and, therefore,
the assignment of new containers before the trigger and related function calls the
associated application. In evaluation on AWS Lambda and OpenWhisk, the identify that

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 70

proposed method eradicate with the mean of approximately 40% and even in some cases
goes to 80%, of all cold starts while causing only a small cost overhead calculation.

[39] presents two-layer approach that implements two-layer adaptive method to manage
late start. The first layer consumes a comprehensive reinforcement learning algorithm to
find the function invocation outlines in given for identify the best time to manage alive the
containers active, while the second layer is intended foundation for a lengthy short-term
memory (LSTM) to ascertain the function invocation times in next to find the availability
of prewarmed containers. The evaluation of results on the Openwhisk platform displayed
that the designed method minimizes the memory footprint up to 12.73% and improvised
the execution invocations of functions on afore available containers by 22.65%
complementary to the Openwhisk platform.

Rafael et al [40] developed novel approach to reduce the cold start in FaaS, they study
the implications of container pre-warming and function reinvocation on both application
execution delay and resource utilization, with a conventional data by a machine learning
application for image processing (recognition) with multiple supplied data patterns. Thus,
they designed an expansion the typical centralized cloud-based Serverless service to a
two-layer distributed Edge platform in collaboration with Cloud to brought the framework
proximity to the data source and eradicate network delays.

Temporal Point Processes (TPPs) [41] developed to minimize the function invocations in
FaaS compositions with cold start. A probability distribution by time span and category of
the function invocations according to background of invocations, is predicted using these
probabilistic models. The anticipation can avoid latency by scaling application in
preemption and minimize network load by maintaining the function-server provision. In
this scenario, they designed an application in python named TppFaaS over the
OpenWhisk. The approach consumes the neural TPPs LogNormMix for creation of model
to the time using a log-normal mixture distribution and TruncNorm for anticipating a
number for the time. They also develop a data collection tool for OpenWhisk traces that
implanted into TppFaaS and produce datasets for different FaaS configurations to train
and examine the produced models. For datasets without cold starts, the models achieved
for most compositions a mean absolute error below 22ms and a percentage of correctly
predicted function classes above 94%.

SARIMA (Seasonal Auto Regressive Integrated Moving Average) [42] is a time series
based solution, for forecasting of models to predict the time at which the next function
arrives, and accordingly growing or diminution the number of demanded container(s) to
reduce the time wastage, therefore, minimizing the function initializing time. They also
implement PBA (Prediction Based Autoscaler) and analyze it with the already given HPA
(Horizontal Pod Autoscaler), which arrives with Kubernetes. The evaluations displayed
that PBA performs clearly improved than the default HPA, while reducing the wastage of
resources.

The work [43], the target the cold start issue of the FaaS framework. They introduced
WLEC, a container orchestration structure to reduce the starting delay. WLEC utilize an

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 71

updated S2LRU architecture, called S2LRU++ with a newly updated third queue. they
enforced WLEC in OpenLambda and examine it in both AWS and virtual machine settings
with six different metrics. Moreover, to one image resizing application. In different
improvisations in all metrics, 50% reduction in memory utilizations complementary to the
complete hot approach and 31% mean of start span minimize compared to the no-warm
manage are the most significant ones.

Adaptive Warm-Up Strategy (AWUS) developed by Xu et al [44] to forecasting the code
invoking time and ready the code, therefore, minimizing the cold start delay. They utilize
the function chain model to build the AWUS. The present the model to adopt a granular
regression method to forecast non-first functions in the function structure accurately.
Secondly, they presented an Adaptive Container Pool Scaling Strategy (ACPSS) to
minimize the function invocation time. That autonomously regulate the capacity of the
container pool to minimize the resources consumption. The AWUS and ACPSS work
along to minimize the delay. Lastly, a FaaS platform-based evaluation conducted to
examine they policy. The results explain the effectiveness of proposed strategies.

[45] presents a container lifecycle-aware management policy to orchestrate Serverless,
CAS. The fundamental concept is to manage the dividing of requests and identify creation
or ejection of containers according to multiple lifecycle levels of containers. They applied
a initial idea of CAS on OpenWhisk. The experiments presented that CAS minimize 81%
cold starts and thus, brought a 63% minimization at 95th percentile delay in contrast with
available scheduling policy in OpenWhisk where is worker dispute between workloads,
and does not add vital performance overhead.

Xanadu [46], a cascading cold starts in Serverless, function deployment. First, developed
the base and extent of the cascading impact in cold start situations in different commercial
platforms and cloud vendors. Towards justifying these calculating overheads, their
proposed model and present several optimizations, that are built into their tool Xanadu.
Xanadu displayed different initializations options oriented on the runtime isolation
requirements and provides code chaining with or without predefine workflow features.
Xanadu's optimizations to improve the cascading cold start problem are generate on
speculative and just-in-time prebooking of resources. Our experiment on the Xanadu
system unleashed approximately complete eradication of cascading cold starts at lowest
cost overheads, extra ordinary performing the given contemporary platforms. Even
relatively smaller workflows, Xanadu minimize overheads by almost 18 times compared
to Knative and 10 times in contrast of Apache Openwhisk.

The present [47] an detail evaluation of cold start in the FaaS framework and present
HotC, a container-based runtime orchestration framework that improvised the lightweight
containers to alleviate the cold start and improvised the network performance of FaaS
applications. HotC build a live container runtime pool, analyzes the consumer input data
or setting file, and feed the available runtime for instant consumption. To perform better
predict the efficiently and effetely orchestration the active containers, they developed an
adaptive live container control mechanism method to combining the exponential
smoothing model and Markov chain method. The results showed that HotC has such a

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 72

small overhead that can be consider as insignificant and can easily improve the
performance of various applications with different network workload designs in both Cloud
Edge components.

3. METHODOLOGY

In the following section, we will discuss the design of the solution for problem which is
stated in section 1. After a comprehensive detail of the already proposed solutions, we
are able to understand the root cause of problem, its features and attributes and spirit of
issue. We have to define a method, approach or framework that divide the functions into
the categories or hot and cold. For this purpose, we took following steps to define our
solution.

1. Select a real dataset that consist on traces or logs of function in Serverless
environment.

2. To categories the functions, identify the features of functions which help us to develop
the categories of hot and cold.

3. Transform the dataset for accordingly fashion.

4. Apply classification algorithm to define categories for initial experiments.

5. Apply fine tuning method to increase the accuracy and precision on dataset and again
perform the experiments.

6. Evaluate the results.

We divide this section into three subsections sections. In first sub section, we will explain
the dataset and its features and describe how we will convert it into an input of
classification model. In second part, we will explain the Naïve Bayes classification
modeling algorithm and its details and in the final unit, we will show the fine-tuning method
Kernal Density Estimation and discuss how effectively it can support the throughput of
Naïve Bayes algorithm.

3.1. The Dataset

The dataset was collected by Mohammad Shahrad et al [22] in July 2019. This dataset is
consisting on different random samples of applications, owners and functions. Total 14
days traces are recorded and stored into three kinds of files. These files belong to function
invocation, CPU utilization and memory consumption. The basic need of these files to
store the data of each application, owner, trigger and function. By a deep analysis of
dataset, we will be able to develop a solution that can minimize the cold start. Obviously,
the dataset has no information about cold start because execution span is separate the
hot and cold start but we are still able to identify such instances which heavy in workload
and by caching them can increase the throughput of Cloud service. Attributes of dataset
are following.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 73

Invocation Frequency Table: First attribute is function frequency bins per minute. There
one file for each day (total 14 files) with specific file naming convention,
invocations_per_function_md.anon.d[01-14].csv, where number in bracket shows the day
number which data is collected for example invocations_per-_function_md.anon.d01.csv
for first day of collection and so forth. This file contains five fields. First four fields are
straight including owner, application, function and trigger while next 1440 fields are bins
of every minute in 24 hours. These columns contain the invocation frequency in a minute.
Following table elaborate the frequency invocation file.

Table 1: Invocation of function file structure

Column Description

HashOwner Encrypted and unique ID of application owner.

HashApp Encrypted and unique ID of application

HashFunction Encrypted and unique ID of Function

Trigger Name of Trigger that invoke the function

1 to 1440 Number of invocations in each minute

Function Span and CPU Utilization: Here, again we have 14 files marked with each
day by name function_durations_percentiles.anon.d[01-14].csv. This file contains the
information about function duration and consequently, CPU utilization. This file is use to
identify the utilization of resource in percentile. This is also a CSV file that contains the
14 columns. Some columns are identical to function invocation table but some are
different.

Table 2: Function running Span and CPU utilization table

Column Description

HashOwner, HashApp, HashFunction IDs of owner, application and function same as invocation
frequency table

Average Average running time of function

Count Number of runs

Minimum Minimum running time

Maximum Maximum running time

Percetile_Average_[0-100] Percentile of execution. 0, 1, 25, 50, 75, 99, 100

Memory Utilization: As CPU utilization is recorded, similarly, the memory consumption
is also logged and the file structure is almost similar. It contains HashApp and HashOwner
to relate data with other two files while this file doesn’t contain any data about functions.
It works on application data. The third column is average memory allocation in MBs for
this specific application according to specific file (24 hours data). Next eight columns
indicate the percentile of memory allocation of 1, 25, 50, 75, 95, 99 and 100. This is not
actual allocation but its average. This is calculated for 12 samples of in a minute after 5
second span and took weighted percentile. The weighted percentile is bit tricky to
calculate. These the mean of invocations and not the number of invocations. These
percentiles are computing on the base of weight of number of invocations which are
observed on span of different timings. In fact, the percentiles are an attempt to display
real utilization of CPU and memory.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 74

3.2. Naïve Bayes Classifier

For machine learning modeling we select Naïve Bayes classification algorithm. NB is
classical family of classifiers that called Probabilistic Classifiers. These models based on
applying Bayes' proposition with strong assumptions among features. NB set of models
are robust, based on finite number of feature set and linear set of classes. These
algorithms produce training by using the probability, that can be perform by evaluating a
simple expression 3. This is also simple run time complexity which linear complementary
to expensive recursive approximation used in many other classification models. In
literature, Naïve Bayes classifiers are nominated by multiple identifications such as
independence Bayes and simple Bayes 4.

Probabilistic theory is an event modeling theory where statisticians build a model that
calculate the probability of occurrence of an event called Conditional Probability on the
base of series of events 𝑝(𝐶𝑖|𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) where Ci conditional event and x1, x2, x3 up
to xn are events while p is the probability of occurrence.

The value of n might be larger enough but it should be finite. If we have a small set of
events then the probability calculation process really efficient and straight forward. The
complete Bayes theorem can be express as follows.

𝑝(𝐶𝑖 | 𝑥) =
𝑝 (𝐶𝑖)𝑝(𝑥 |𝐶𝑖)

𝑝(𝑥)
_______________ (1

For multiple probabilities

𝑝(𝐶𝑖) ∏ 𝑝(𝑥𝑖|𝐶𝑘)𝑛
𝑖=1 _______________ (2

3.3. Kernel Density Estimation

Kernal Density Estimation is Curve Smoothing method for probability density estimation.
In fact, this is non parametric method to find the probability density function. It works on
the base of kernels and treat them as weights. It is also known as their inventors Parzen
and Rosenblatt window. Kernal density estimation is can be blend with Naïve Bayes
classifier. KDE helpful in acerating the conditional marginal densities in dataset and
consequently increase the accuracy and precision.

As NB classifier, the KDE also assume that attributes are independent to each other. If
feature set is defined as (x1, x2, x3, …, xn) and these independent and normally
distributed values then we can define the KDE expression for this dataset as follow

𝑓ℎ̂(𝑥) =
1

𝑛
∑ 𝐾ℎ(𝑥 − 𝑥𝑖)

𝑛
𝑖=1 =

1

𝑛ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=0 _______________ (3

Here K is the kernel function that calculates the weights. These weights must not be less
than 0 while h is the smoothing parameter. It is also referred as bandwidth. Kh named the
scaled kernel. The value of h should be optimal. As bandwidth increases, the biasness of
also increases and if value of bandwidth is narrow than it produces unexpected results.
There are many types of kernels are available such as normal, Epanechnikov, biweighted
or triweighted.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 75

We can see that different value of bandwidth produce different kind of effect in graphical
representation of data. A general observation that as the value of h is increasing the
smoothness of the curve increases. The above example ranges the bandwidth of from
0.1 to 1.0 on similar data and we observe that when bandwidth was at the lowest value
than graph was very jaggy (the blue line). At the 0.3, we observe two distinct heights and
a valley between them (yellow line). Similar, at 0.5, the curve became smoother, the
height of peaks reduced and valley shorten its depth but still we can see that there are
two significant heights while the value of 1.0, there is no peaks and we find a simple bell
curve as normal distribution (red line).

There are multiple methods available to find the optimal value of h or bandwidth such as
Scott Rule, cross validation methods, plugin methods, mixing rules but Silverman
Validation is more efficient and the properties of our dataset are suitable to this method.
It is also important all method to estimating bandwidth are based on minimizing the Mean
Integrated Squared Error (MISE).

Figure 3: Different Bandwidths and their Graphs

Silverman method is important when we have no idea about the underneath distribution
of data. If data is large enough, near to symmetric and using Gaussian kernel.

ℎ = 0.9 𝑚𝑖𝑛 (𝜎̂,
𝐼𝑅𝑄

1.34
) 𝑛−

1

5_______________ (4

Here 𝜎̂ is the standard deviation, n is the sample or population size, IRQ is the interquartile
range that is between 25th percentile to 75th percentile while min is the method that
choose the minimum value between standard deviation and quotient of IRQ and 1.34
(some literature also finds the value of 1.35). The main features of Silverman method are
robust and less outliers.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 76

3.4. Classification

For classification of functions, we have to select such features of a function which are
define it important. First, we have to discuss how a function become regular customer of
keep-alive policy. Remember that some of the features in our dataset are discrete and
some are the continuous.

Owner: This is the owner of application that might be some person or system that
produces triggers for functions. Ultimately, the active owners will produce more calls and
make the function a suitable candidate for keep-alive scheduling.

Application: Applications are the collection of functions. Whenever an application is
active, it continuous invoke the function. Like owners, the highly provoked applications
also be the reason of a function to be consider as motivated.

Triggers: Triggers are the main reason of invocation of function. Some triggers are very
frequent such as HTTP other are really low. Most frequent triggers are also invoking too
many functions. According to our dataset, the Timer trigger is the largest, just less than a
half of all combined triggers.

Invocation Count: We can find invocation by two means. First, from invocation frequency
table that is require extra computation while we also find the count from CPU utilization
file. Both files may be produced some different results. To reduce overhead, we use
utilization file data. The more invocation in number also increases the chances of
invocation in future that is also a directly proportional to invocation probability.

Average: Arithmetic mean of the frequency of invocation is also important because it also
support the high number of occurrences. As average is the representative value of all the
time so the average will be use as a feature in classification operations.

Percentile: Percentile defines the utilization of resources. As the utilization of resources
grows, the system should index the process for next call. A heavy process requires more
resources to load for execution and increase the turn-around time and amplify the cold
start problem.

Range: The utilization files provide us the minimum and maximum invocation over the
time span. We can deduce the range which is difference between minimum and maxi-
mum. As the range increases, chances of an occurrences of event decreases.

Confidence Interval: In probabilistic models, the confidence level unleashes valuable
information about the class of an instance. We use 70% to 80% confidence levels to
ascertain the probability of a function that is an optimal number according to our data.
Finding an optimal confidence level is not a straight forward method. It requires some
extra experiments to find a usable number.

Kurtosis: We already explain the significance of Kurtosis that defines the tail of normal
curve. We can employe it as feature of an instance that a thick tail of its time series data,
defines a function have to chances of occurrences in next time bin.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 77

Skewness: Skewness is also a property of continuous data and we can also use it as the
feature of the class. Skewness defines the orientation of data either the data is normally
curved or skewed to left or right. As have high skewness (negative or positive), we have
to take it as chances of outlier increases.

To build the machine learning model with Naïve Bayes, we implement the equation 8.
There are two important points should be considered. First, the presented algorithm did
not define the number of instances in testing and training but actually we use have to
define these values in real implementation. For testing purpose, we execute the algorithm
with multiple configurations. These configurations will be explained in next section.
Second, the main output of the model is accuracy but other metrics also exists and
compute those values too to support our thesis.

Algorithm1: Feature Selection

Input:
1) Function invocation frequency table: frequency_table,
2) Utilization Table utilization_table
Output: Table of functions with features function_and_features

1 Read owner_name, app_name, function_name, trigger, frequency_360_mins(list)

2 Read percentile from utilization_table by function_name

3 Calculate following from frequeny_360_mins
1. sum_invocation
2. average_invocation
3. range ← max – min
4. confidence_level ← FindConfidenceLevel(frequency_360_mins)
5. kurtosis
6. skewness

4 Prepare function_and_feature table of all variables which are obtained from tables and
computed

5 return function_and_feature_table

The above-mentioned algorithm prepares the data that use for classification. Our next
step to develop an algorithm that produce actual classification. This algorithm will use
result of the Algorithm 1 as input dataset that contains the descriptive information. The
algorithm 2 implemented in two phases, first without KDE and then with KDE. In first
phase, the algorithm produced results with low accuracy. The results of first algorithm are
described in section 4. As the results of algorithm where KDE was integrated, we
observed significant upgradation in accuracy and precision.

Algorithm3: Building Model with Training Set

Input: Training dataset training_set
Output: Generate a model

1 Load training_set

2 Separate discrete_features and continuous_features

 Initialize prior_probabilities

3 For each feature in discrate_features

4 prior_probability ← count (feature) / count (discrete_features)
 add prior_probability to prior_probabilities

5 For each feature in continuous_features

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 78

4. RESULTS

After a detailed review of existing literature and defineing the problem solution, we have
to examine and evaluate the solution. For this purpose, we have conducted a series of
experiments. The experiments are not only have to perform to ascertain the final results
but also find some critical values which require to fine tune the performance and metrics
specifically, the bandwidth h and confidence interval. In following section, we discuss
these experiments and analysis of results of these experiments.

Figure 4: Density Graphs of Continuous Features

 mean_feature ← sum (feature) / count (feature)
 variance_feature ← var (feature)
 Add mean_feature and variance_feature in list

6 Load testing_set

7 For each instance in testing_set
 For each feature in instance
 If feature is in discrete_features
 Computer probability using equation 1 and add to list of probabilities
 Else
 Compute probability using equation 8 and add to list of probabilitie
Find the maximum probability and its class and add to classified_list

8 For each instance in classified_list
 If class of instance is similar to corresponding instance in testing_set
 Increase in correct_count

9 accuracy ← correct_cout / count (testing_set)

10 Return accuracy

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 79

To find the diversity and density of features, we extract the density plots of each
continuous feature. Density plots or measurement provide us the distribution of given
feature values over the defined kernel. The shape of the feature normal graph shows the
orientation, trustfullness and importance.

We can see that Sum, Mean, Standard Deviation and Range values single modular while
Skewness and Kurtosis are multi modular. If we examine the structure of graph of first
four feature, we found that they are homogeneous and most of the values lays around a
central value. On the other hand, these curves are not very much symmetric that indicates
that they are skewed to right. It is also very clear that these curves are clearly distinctive
with respect to assigned class. The curves of Cold is too much vertical with also most not
tapper in first four features while the Hot class almost zero bulge and long tapper goes
with x axis. The orientation of first four features clearly indicates that classes are clearly
distinitive and can be identify the by Sum, Mean, Statndard Deviation and Range features.

Figure 5: Box and Whisker Graph

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 80

Skewness of the graph show some significance in both classes. Cold class is rather more
prominent than Hot in Whisker. We can also see the breadth of Q3 in the graph is very
larger in Cold. It seems that more number of items are occurred in this segment while the
box size is much small in Hot class and indicates that low number of instances. We can
aslo observe that the location of graphs are overlapping. Here is clearly that some of the
instances may be overlapped by other class and cause misleading classification.

As skewness, the Kurtosis Box-Whisker also significant in Cold and Hot and the
difference is also protruding. Kurtosis also indicates that most of items are presented in
Q3 of Cold class which is a healthy sign to identify the related instances but, in the
meanwhile, it also overlapping with Hot instances and also almost all Hot items are hidden
with Cold instances. This phenomenon may also direct to wrong results.

A correlation heatmap is a graphical representation of the correlation matrix, where
individual cells of the matrix are color-coded based on the correlation coefficient values.
It provides an overview of the relationships (or associations) between multiple variables
at once.

Correlation values typically range from -1 to 1. A value close to 1 implies a strong positive
correlation, meaning that as one variable increases, the other also tends to increase. A
value close to -1 implies a strong negative correlation, meaning that as one variable
increases, the other tends to decrease. A value close to 0 implies a weak or no linear
correlation between the variables.

We can ignore diagonal line from top left to bottom right because these self-relation
mapping that’s why these shown value “1”. Some relations are extremely dependent such
as Sum with Mean (both showed 1) and Skewness with Kurtosis (0.94). Similarly, Range
and Stardard Deviation are also looks tightly coupled. All other relationships are below
zero and marked with gray cells. Another interesting relationship between Sum and Mean
with Range and Standard what indeicates a moderated relationship with value between
0.45 to 0.42.

The overall heatmap shows are trustable relationships between all the features, although
some of the relationships are very close but these are fewer and may not be cause
problem overall system. If many of the relationships are close to eachother then these
might be damaging the performance, because, Naïve Bayes classifier assumes that
different features are ideally independent and each feature plays its part in the
classification procedure.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 81

Figure 6: Correlation Heat Map

In previous section we determine the properties of features and find their orientations.
Now we are able to perform our fundamental tasks of classification. To perform
classfication procedure on dataset, we setup in two stages. On first stage, we implement
the Naïve Bayes classifier on data. To make the classfication process more
comprehensive, we reconcile the designated classes. Now we add Freeze (very rarely
invoked), Cold (rarely invoked), Warm (frequently invoked) and Hot (very frequently
invoked). After evaluation of first stage, we implement with Kernal Density Estimation to
improve the pefromance metrics.

For comprehensive classification process we use multiple ratios of train and test sets. We
start from 80 and 20 ratio (80% testing set and 20% training set) increase the training set
with respect to 5% on each iteration. In the following section we will discuss the result of
classification on different standard metrics.

Figure 7: Class Distribution of Instances

1,73,115

2,98,123

1,03,834

43,473

0

50,000

1,00,000

1,50,000

2,00,000

2,50,000

3,00,000

3,50,000

Freeze Cold Warm Hot

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 82

As we examine the distribution of lables, we found that Freeze and Cold lables are much
higher than Warm and Hot. It shows that classes are imbalanced and this may produce
unevent results with respect to confusion matrics and precision. When we generate a
confusion matrix for premitive algorithm, we found following results.

If we look at the figure 7 in the context of figure 8 then we can observe that lower frequent
classes are less correctly labeled while higher frequent classes are more correctly
labeled. For instance, Hot class only have 43,473 number of instances in dataset and
classifier labeled the 23,853 instances correctly in this class which is about 55% accuracy.
On the other hand, Cold class which contains 298,123 instances overall, marked with
209,174 instances correctly which is approaching to 70%. All these statistics displays that
our basic algorithm facing challenges with correctly labeling the classes. Similarly, the
overall accuracy of Warm and Freeze labels also remained lower with 50% and 63%
respectively. Consider that we presenting the above statistics on the execution of 50%
which is a moderated segregation. All other distribution of testing and training sets also
endorsed the observation.

Figure 8: Confusion Matrix

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 83

Figure 9: Accuracy of Hot label

Figure 10: Performance of Accuracy of
Warm Class

Figure 11: Performance Comparison
on NB and KDE on Cold Class

Figure 12: Comparison of NB and KDE
in Freeze Class

Performance Comparison of Naive Bayes and Naive Bayes with KDE

The above discussion and visuals reveal that the size of dataset is a vital point too. As
the number of instances increases, the accuracy also increases but there is diminishing
point as well. In this research, it looks that 50% is mark where performance remain steady
and not much higher increases in accuracy. We also validated the accuracy in both NB
and KDE remains constant after passing pointed mark. Concluding remarks will also be
discussed in next section.

5. CONCLUSION

Both of the measurements, accuracy and confusion matrix, were fundamental
requirements to produce a solid result. We already knew that dataset will show an
imbalanced approach because literature already identify that there not a great number of

43.7 44.8146.27
48.0250.41

52.9354.8755.63
56.2 56.9557.3157.8258.04

71.88
75.21

78.62
82.7

86.06
89.5191.46

92.29 93.1 93.5994.1394.2694.26

0

10

20

30

40

50

60

70

80

90

100

20 25 30 35 40 45 50 55 60 65 70 75 80

NB KDE

53.72
57.16

61.2363.41
65.8 68.11

70.16 72.1
73.8975.0176.25

77.0377.6275.29
78.1880.63

82.2884.72
86.1787.4988.52

89.0989.89 90.6 90.6290.62

0

10

20

30

40

50

60

70

80

90

100

20 25 30 35 40 45 50 55 60 65 70 75 80

NB KDE

40.7 42.6244.4345.97 47.2 48.5549.4950.4151.28 52.1 52.93 53.1 53.19

76.39
78.92

81.73
84.6286.73 88.6 89.83 91.2 92.2193.1794.06 94.1 94.16

0

10

20

30

40

50

60

70

80

90

100

20 25 30 35 40 45 50 55 60 65 70 75 80

NB KDE

50.9252.7455.1657.2959.3561.0362.5963.2264.0364.8765.2765.79 66.2

75.29
78.1880.6382.2884.7286.1787.4988.5289.0989.89 90.6 90.6290.62

0

10

20

30

40

50

60

70

80

90

100

20 25 30 35 40 45 50 55 60 65 70 75 80

NB KDE

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 84

instances which should be required hot restart. The phenonmenon make the prediction
model more difficult because it may produce results that may look more accurate but
inside they are not able to identify the hot instances. The foundation algorithm also shows
inaccurate results that develop a motivation to implement KDE. The impact of KDE also
influenced the percision of results and we me look that class wise results also enhanced
after implementation of supportive algorithm.

Accuracy is the fundamental metrics of any classification mode. Accuracy depends on
multiple aspects of dataset and the most important is distribution of trianing and testing
dataset size. To ascertain the actual impact on accuracy we applied multiple sizes of both
sets. We start from 20-80 ratio where 20% was the training set size and 80% was testign
set size and gradually increased the training and reduced testing set size and move the
distribution to 80-20 ratio.

We can clearly observe that accuracy increases as size of training set size increases but
the it remains constant after a particular point and afterward that point not great
improvement may observed. In our case, this particular point was 50%. Another vital
observation that Naïve Bayes algorithm showed low performance. We deployed Kernal
Density Estimation to increase the performance and the results were significantly
upgraded but the accuracy pattern remains same. The actual difference between both
results were the magnitude of accuracy. When Naïve Bayes algorithm start execution, its
accuracy about 43% which is really low and not up to the mark while with the support of
KDE, it shows 70% with first run where training set was the minimal. The accuracy
approached to 94%.

6. FUTURE WORK AND CONCLUSION

We have addressed a contemporary issue and tried our best to develop a comprehensive
solution for that but there are some certain limitations which we observed during
experimental process. We did put these issues in to the weakness of our work but these
limitations are also a motivation to next phase knowledge production and research. We
have mainly identified two limitations including robustness of dataset and evolatuation of
production systems.

We utilized the dataset published by Windows Azure Function. Microsoft a big player in
Cloud arena but there are also other player too like Google, Ali Baba, Amazone. We did
not examine our results on their datasets. It is also important to study and evaluate
datasets published by other Cloud venders and make the results more ethentic. The
structure of applied dataset is in a specific format and it may quite different from other
published dataset. It looks another worthwhile research work to obtained other datasets,
study and then apply some machine learning technique that enhance the productivity of
Cloud systems.

We have performed a detail series of experiment to measure the productivity of Cold
restart issue but the main purpose of the proposed solution to increase the throuput of
Cloud infrastructure and the athenticity of the claim may examine on some production

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 85

systems. Unfortunatly, the production system are very complex, expensive and large and
not easy to maintian them for a research purpose. This is another improtant motivation
too to implement the evaluate the proposed solution some real time environment such as
Windows Azure Function based some Cloud service.

References

1) E. Jonas et al., "Cloud programming simplified: A berkeley view on serverless computing," 2019.

2) I. Baldini et al., "Serverless computing: Current trends and open problems," pp. 1-20, 2017.

3) H. B. Hassan, S. A. Barakat, and Q. I. J. J. o. C. C. Sarhan, "Survey on serverless computing," vol. 10,
no. 1, pp. 1-29, 2021.

4) Y. Li, Y. Lin, Y. Wang, K. Ye, and C. J. I. T. o. S. C. Xu, "Serverless computing: state-of-the-art,
challenges and opportunities," vol. 16, no. 2, pp. 1522-1539, 2022.

5) M. Shahrad, J. Balkind, and D. Wentzlaff, "Architectural implications of function-as-a-service
computing," in Proceedings of the 52nd annual IEEE/ACM international symposium on
microarchitecture, 2019, pp. 1063-1075.

6) www.microservices.io. What are microservices? Available: https://microservices.io

7) T. Yu et al., "Characterizing serverless platforms with serverlessbench," in Proceedings of the 11th
ACM Symposium on Cloud Computing, 2020, pp. 30-44.

8) Z. Al-Ali et al., "Making serverless computing more serverless," in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), 2018, pp. 456-459: IEEE.

9) L. Helali and M. N. J. C. S. R. Omri, "A survey of data center consolidation in cloud computing systems,"
vol. 39, p. 100366, 2021.

10) V. Ivanov and K. Smolander, "Implementation of a DevOps pipeline for serverless applications," in
Product-Focused Software Process Improvement: 19th International Conference, PROFES 2018,
Wolfsburg, Germany, November 28–30, 2018, Proceedings 19, 2018, pp. 48-64: Springer.

11) K. Kritikos and P. Skrzypek, "A review of serverless frameworks," in 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion), 2018, pp. 161-168: IEEE.

12) A. Jindal and M. Gerndt, "From devops to noops: Is it worth it?," in Cloud Computing and Services
Science: 10th International Conference, CLOSER 2020, Prague, Czech Republic, May 7–9, 2020,
Revised Selected Papers 10, 2021, pp. 178-202: Springer.

13) D. Sokolowski, P. Weisenburger, and G. Salvaneschi, "Automating serverless deployments for DevOps
organizations," in Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2021, pp. 57-69.

14) G. Adzic and R. Chatley, "Serverless computing: economic and architectural impact," in Proceedings
of the 2017 11th joint meeting on foundations of software engineering, 2017, pp. 884-889.

15) V. Yussupov, U. Breitenbücher, F. Leymann, and C. Müller, "Facing the unplanned migration of
serverless applications: A study on portability problems, solutions, and dead ends," in Proceedings of
the 12th IEEE/ACM International Conference on Utility and Cloud Computing, 2019, pp. 273-283.

16) J. Wen, Z. Chen, X. Jin, X. J. A. T. o. S. E. Liu, and Methodology, "Rise of the planet of serverless
computing: A systematic review," 2023.

17) H. Lee, K. Satyam, and G. Fox, "Evaluation of production serverless computing environments," in 2018
IEEE 11th International Conference on Cloud Computing (CLOUD), 2018, pp. 442-450: IEEE.

file:///D:/Journal/ONLINE%20%20CNK/JTU/2023-/www.microservices.io
https://microservices.io/

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 86

18) N. J. C. o. t. A. Savage, "Going serverless," vol. 61, no. 2, pp. 15-16, 2018.

19) Microsoft. Azure Functions triggers and bindings concepts. Available: https://learn.microsoft.com/en-
us/azure/azure-functions/functions-triggers-bindings?tabs=csharp

20) H. Shafiei, A. Khonsari, and P. J. A. C. S. Mousavi, "Serverless computing: a survey of opportunities,
challenges, and applications," vol. 54, no. 11s, pp. 1-32, 2022.

21) E. Oakes et al., "{SOCK}: Rapid task provisioning with {Serverless-Optimized} containers," in 2018
USENIX annual technical conference (USENIX ATC 18), 2018, pp. 57-70.

22) M. Shahrad et al., "Serverless in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider," in 2020 USENIX annual technical conference (USENIX ATC 20), 2020, pp. 205-
218.

23) H. Ebrahimpour, M. Ashtiani, F. Bakhshi, and G. J. T. J. o. S. Bakhtiariazad, "A heuristic-based
package-aware function scheduling approach for creating a trade-off between cold start time and cost
in FaaS computing environments," pp. 1-49, 2023.

24) J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Appavoo, "SEUSS: skip redundant paths to
make serverless fast," in Proceedings of the Fifteenth European Conference on Computer Systems,
2020, pp. 1-15.

25) F. Romero et al., "Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications," presented
at the Proceedings of the ACM Symposium on Cloud Computing, Seattle, WA, USA, 2021. Available:
https://doi.org/10.1145/3472883.3486974

26) D. Mvondo et al., "OFC: an opportunistic caching system for FaaS platforms," presented at the
Proceedings of the Sixteenth European Conference on Computer Systems, Online Event, United
Kingdom, 2021. Available: https://doi.org/10.1145/3447786.3456239

27) S. Narayana and I. A. Kash, "Keep-Alive Caching for the Hawkes process," presented at the
Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, Proceedings of
Machine Learning Research, 2023. Available: https://proceedings.mlr.press/v216/narayana23a.html

28) A. Fuerst and P. Sharma, "FaasCache: keeping serverless computing alive with greedy-dual caching,"
presented at the Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Virtual, USA, 2021. Available:
https://doi.org/10.1145/3445814.3446757

29) C. Chen, L. Nagel, L. Cui, and F. P. Tso, "S-Cache: Function Caching for Serverless Edge Computing,"
presented at the Proceedings of the 6th International Workshop on Edge Systems, Analytics and
Networking, Rome, Italy, 2023. Available: https://doi.org/10.1145/3578354.3592865

30) B. Li, Z. Li, J. Luo, Y. Tan, and P. J. E. Lu, "µFuncCache: A User-Side Lightweight Cache System for
Public FaaS Platforms," vol. 12, no. 12, p. 2649, 2023.

31) P. Silva, D. Fireman, and T. E. Pereira, "Prebaking Functions to Warm the Serverless Cold Start,"
presented at the Proceedings of the 21st International Middleware Conference, Delft, Netherlands,
2020. Available: https://doi.org/10.1145/3423211.3425682

32) P.-M. Lin and A. J. a. p. a. Glikson, "Mitigating cold starts in serverless platforms: A pool-based
approach," 2019.

33) B. Sethi, S. K. Addya, and S. K. Ghosh, "LCS : Alleviating Total Cold Start Latency in Serverless
Applications with LRU Warm Container Approach," presented at the Proceedings of the 24th
International Conference on Distributed Computing and Networking, Kharagpur, India, 2023. Available:
https://doi.org/10.1145/3571306.3571404

https://learn.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings?tabs=csharp
https://learn.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings?tabs=csharp
https://doi.org/10.1145/3472883.3486974
https://doi.org/10.1145/3447786.3456239
https://proceedings.mlr.press/v216/narayana23a.html
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3578354.3592865
https://doi.org/10.1145/3423211.3425682
https://doi.org/10.1145/3571306.3571404

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 56 Issue: 11:2023
DOI: 10.5281/zenodo.10153003

Nov 2023 | 87

34) X. Liu et al., "FaaSLight: General Application-level Cold-start Latency Optimization for Function-as-a-
Service in Serverless Computing," vol. 32, no. 5 %J ACM Trans. Softw. Eng. Methodol., p. Article 119,
2023.

35) J. Shen, T. Yang, Y. Su, Y. Zhou, and M. R. Lyu, "Defuse: A dependency-guided function scheduler to
mitigate cold starts on faas platforms," in 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), 2021, pp. 194-204: IEEE.

36) W. Ling, L. Ma, C. Tian, and Z. Hu, "Pigeon: A dynamic and efficient serverless and FaaS framework
for private cloud," in 2019 International Conference on Computational Science and Computational
Intelligence (CSCI), 2019, pp. 1416-1421: IEEE.

37) S. Agarwal, M. A. Rodriguez, and R. Buyya, "A reinforcement learning approach to reduce serverless
function cold start frequency," in 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and
Internet Computing (CCGrid), 2021, pp. 797-803: IEEE.

38) D. Bermbach, A.-S. Karakaya, and S. Buchholz, "Using Application Knowledge to Reduce Cold Starts
in FaaS Services," Sac '20, pp. 134–143, 2020.

39) P. Vahidinia, B. Farahani, and F. S. J. I. I. o. T. J. Aliee, "Mitigating cold start problem in serverless
computing: a reinforcement learning approach," vol. 10, no. 5, pp. 3917-3927, 2022.

40) R. Moreno-Vozmediano, E. Huedo, R. S. Montero, and I. M. Llorente, "Latency and resource
consumption analysis for serverless edge analytics," Journal of Cloud Computing, vol. 12, no. 1, p.
108, 2023/07/19 2023.

41) M. Steinbach, A. Jindal, M. Chadha, M. Gerndt, and S. J. I. A. Benedict, "Tppfaas: Modeling serverless
functions invocations via temporal point processes," vol. 10, pp. 9059-9084, 2022.

42) A. P. Jegannathan, R. Saha, and S. K. Addya, "A Time Series Forecasting Approach to Minimize Cold
Start Time in Cloud-Serverless Platform," in 2022 IEEE International Black Sea Conference on
Communications and Networking (BlackSeaCom), 2022, pp. 325-330: IEEE.

43) K. Solaiman and M. A. Adnan, "WLEC: A not so cold architecture to mitigate cold start problem in
serverless computing," in 2020 IEEE International Conference on Cloud Engineering (IC2E), 2020, pp.
144-153: IEEE.

44) Z. Xu, H. Zhang, X. Geng, Q. Wu, and H. Ma, "Adaptive function launching acceleration in serverless
computing platforms," in 2019 IEEE 25th International Conference on Parallel and Distributed Systems
(ICPADS), 2019, pp. 9-16: IEEE.

45) S. Wu et al., "Container lifecycle‐aware scheduling for serverless computing," vol. 52, no. 2, pp. 337-
352, 2022.

46) N. Daw, U. Bellur, and P. Kulkarni, "Xanadu: Mitigating cascading cold starts in serverless function
chain deployments," in Proceedings of the 21st International Middleware Conference, 2020, pp. 356-
370.

47) K. Suo, J. Son, D. Cheng, W. Chen, and S. Baidya, "Tackling cold start of serverless applications by
efficient and adaptive container runtime reusing," in 2021 IEEE International Conference on Cluster
Computing (CLUSTER), 2021, pp. 433-443: IEEE.

