STUDY THE FLEXIBILITY OFFERED IN THE CHOICE OF FEEDBACK GAIN MATRIX IN MULTIVARIABLE SYSTEMS

A. AISSOU
University Center Morsli Abdallah Tipaza, Algeria.
\section*{K. HARICHE}
IGEE, Université de M'hamed Bougara Boumerdes, Algeria.

Abstract

One of the most popular techniques for altering the response characteristics of a control system is the application of linear state variable feedback. The fact of using state feedback to assign the closed loop system self-conjugate set of eigenvalues, provided that the open loop system is controllable, is a well known and commonly used technique. For single-input systems, the state feedback gain is uniquely determined by the desired pole pattern, but for multiinput systems, there is a lot of freedom in choosing the parameters of the feedback gain matrix, which can assign a specified eigenvalue spectrum. There are few systematic ways of finding a unique gain feedback matrix, such as minimizing a quadratic performance index in which case the gain will be obtained by solving a Riccatti equation, or assigning both the eigenvalues and their eigenvectors .The main contribution of this paper is the elaboration of a new procedure for obtaining a unique state feedback gain matrix, which places the closed loop system poles to the desired locations and meets the following criteria: 1_Achieving the best possible time response characteristics, 2_Yielding a system with small feedback gains, 3_ Yielding a system with a good robustness.

Keywords: MIMO Systems, SISO Systems State Feedback, Gain Matrix, System Eigenvalues, Closed Loop Poles.

I. INTRODUCTION

One of the first applications of state-space methods to linear systems was that of using feedback of the state variables to relocate the eigenvalues of a given system [2, 6, 7]. J.Berhamin1959 was perhaps the first to realize [7] that if a given system realization was state controllable, then any desired characteristic polynomial could be obtained by statevariable feedback [2, 21].
In 1962, Rosenbrock discussed, among other things, the use of state feedback to relocate the eigenvalues of a plant so as to achieve better response characteristics, but a complete analysis was not pursued [15]. The same result was independently deduced in almost the same way by Popov in 1964 [18], who in fact treated the multi-input problem. In classical control system designs such as the root locus method, the objective is to adjust the feedback gains such that the closed-loop system has a desired pole pattern [19]. This is because the response is characterized to a large extent by the poles: In particular, stability of a linear system is determined by the locations of the poles, and the damping ratios of the fundamental modes determine the overshoot and the settling time for a step input. The same design considerations remain valid for multivariable problems [6, 7, 15]. Eigenvalues remain important in characterizing stability, and to a lesser extent, performance, and robustness [1, 5]. For a multivariable system, the response is
characterized by both the eigenvalues and eigenvectors. This has motivated eigenstructure assignment design [1, 7, 11, 24]
The problem to be considered is as follows: Given a system described in state space formula

$$
\begin{align*}
& \dot{x}(\mathrm{t})=\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}) \tag{1.1}\\
& \mathrm{Y}(\mathrm{t})=\mathrm{Cx}(\mathrm{t}) \tag{1.2}
\end{align*}
$$

Where A, B, C are constant matrices of dimensions $n x n, n x m$, $q \times n$ respectively: $\mathrm{x}(\mathrm{t}) \in R^{\mathrm{n}}$ is the state vector, $u(t) \in R^{m}$ is the control input vector. When and how can we apply feedback to this system, such that the resulting closed-loop system has a desired set of arbitrary poles or eigenvalues?
It is known that the closed-loop eigenvalues can be assigned to any self-conjugate set provided that the pair (A, B) is completely controllable. For single-input systems, the state feedback gain K is uniquely determined, by the desired pole pattern, and can be conveniently calculated, for example by Ackermann's formula [20]. For multinput systems there is a lot of freedom in choosing the parameters of K. Many researchers have utilized this design freedom to satisfy additional performance criteria.
The problem of pole assignment has been extensively studied by many researchers over the last decade [30]. It is simply concerned with moving the poles (or eigenvalues) of a given time invariant linear system to a specified set of locations in the s-plane (subjected to complex pairing), by means of state feedback or output feedback. The fact of using state feedback to assign the closed-loop system self-conjugate set of eigenvalues, provided that the open loop system is controllable, is a well-known and commonly used technique [2].

A large number of algorithms exist for the solution of the pole assignment problem [44]. Both the state-feedback methods and output-feedback methods results in compensator matrices which are, broadly speaking either dyadic (i.e. have rank equal to one) or have full rank. Although the dyadic algorithms have considerable elegance and simplicity, the resulting closed-loop systems have poor disturbance rejection properties compared with full-rank counterparts [26].
The rest of this paper is organized as follows: Section 2 deals with the needed notations, and section 3 presents the problem formulation. Next, Section 4 discusses the Controllability Matrix. Then, section 5 explains how to find the Controllability indices. Section 6 explains the proposed approach. To demonstrate the effectiveness of the proposed algorithm, practical example included in Section 6 in order to demonstrate the proposed approach. A brief discussion about the obtained results is given in section 7. Finally, Section 8 draws conclusions and future work.

II. LIST OF SYMBOLS AND ACRONYMS

$x(t)$	State vector.
$y(t)$	Output vector.
$\mathrm{u}(\mathrm{t})$	Input vector.
n	Number of system states.
m	Number of inputs.
R	Set of real numbers
$w_{n}, w_{\mu}, \not \wp^{\prime}, \emptyset_{c}$	Controllability matrix.
k_{i}	Controllability indices.
$\Delta \mathrm{A}$	Perturbation.
\hat{m}	Rank.
T_{c}, Q	Transformation matrix.
$\begin{aligned} & T^{-1} \\ & c \end{aligned}$	Inverse of transformation matrix.
A_{c}, B_{c}	Multivariable controllable forms.
C_{c}	A general form.
0_{m}	Null matrices.
Im	Identity matrices.
A_{r}, C_{r}	Block elements.
q	$k_{i} \times \mathrm{n}$ matrix.
Ebc	Elementary matrix.
T_{r}	Rise time.
T_{s}	Settling time.
T_{p}	Peak time.
M_{p}	Maximum overshoot.
POS	Percent overshoot.
Ess	Steady-State Error.
K_{c}	Feedback gain matrix.
A_{D}	Closed-loop matrix.
$\alpha(\mathrm{s})$	Characteristics polynomial.

III. PROBLEM STATEMENT

Given a multivariable system described by state space description.

$$
\begin{align*}
& \dot{x}(\mathrm{t})=\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}) \tag{3.1}\\
& \mathrm{y}(\mathrm{t})=\mathrm{cx}(\mathrm{t}) \tag{3.2}
\end{align*}
$$

Where A, B, C are constant matrices of dimensions $n x n$, $n x m$, qxn respectively, and $x(t)$ $\in R, \mathrm{u}(\mathrm{t}) \in R^{\mathrm{m}}$, and a given set of desired eigenvalues, Z

We want to find a nmxn gain matrix K such that under the state feedback operation,

$$
\begin{equation*}
u(t)=r(t)-K x(t) \tag{3.3}
\end{equation*}
$$

The new state equation

$$
\begin{equation*}
\dot{x}(\mathrm{t})=(\mathrm{A}-\mathrm{BK}) \mathrm{x}(\mathrm{t})+\mathrm{Br}(\mathrm{t}) \tag{3.4}
\end{equation*}
$$

Has the desired eigenvalues and meets the following criteria:
1- Achieving the best possible closed-loop system time response characteristics (small transient, small steady state error)
2- Yielding a system with small feedback gains to avoid saturation of the control elements.

3- \quad Yielding a system with a good robustness, that is the close-loop system should be less sensitive to variations or perturbations of the closed loop system matrix parameters.
To solve the problem, we will assume that the given system should be completely state controllable.

IV. CONTROLLABILITY MATRIX

The system described by equations (1.1) is said to be controllable if one of the following conditions given by the following theorem is satisfied:

Theorem 4.1:

The necessary and sufficient condition for the system (1.1) to be completely controllable is given by one of the following conditions:

$$
\begin{equation*}
\mathrm{W}\left(0, t_{1}\right)=\int_{0}^{t} e^{-A t} B B^{T} e^{-A^{T} t} d t \text { is non-singular, } \tag{i}
\end{equation*}
$$

The controllability matrix

$$
\delta=\left[B, A B, A^{2} B \ldots A^{n-1} B\right]_{n x n m} \text { rank } \delta=\mathrm{n}
$$

Proof see [6].

The following corollary is very useful in computer implementation. The dimension of the controllability matrix is considerably reduced.

Corollary 4.1:

Any system identical to that described by the above equations is controllable if the ($n x$ ($n-k+l$) m) matrix:
$W_{n-k}=\left[B A B A^{2} B \ldots A^{n k} B\right]$ has a full rank, where $k=\operatorname{rank}(B)[6]$.

V. CONTROLLABILITY INDICES

Considering the system as described by equations (2.1), its controllability matrix is therefore given by

$$
\begin{equation*}
W_{n}=\left[B A B A^{2} B \ldots A^{n-1} B\right] \tag{5.1}
\end{equation*}
$$

And

$$
\begin{equation*}
\mathrm{B}=\left[\mathrm{b} 1 \mathrm{~b} 2 \mathrm{~b} 3 \ldots b_{m}\right] \tag{5.2}
\end{equation*}
$$

Where bi is a column vector of dimension $\mathrm{n} \times 1, W_{n}$ can be rewritten as:

$$
\begin{equation*}
W_{n}=\left[b_{1} b_{2} \ldots b_{m} ; A b_{1} ; A b_{2} \ldots A b_{m} ; \ldots ; A^{n-1} b_{1} \ldots A^{n-1} b_{m}\right] \tag{5.3}
\end{equation*}
$$

Searching linearly independent columns of W_{n} from left to right in order, which means a column is linearly dependent if it can be rewritten as a linear combination of its left handside columns, otherwise it is linearly independent.
At the end of this search process, we will get a set of linearly independent columns after leaving out the linearly dependent ones. Taking this set of vectors and rearranging them, we get the following ordered set:

$$
\begin{equation*}
\left\{b_{1} A b_{1} \ldots A^{K_{1}-1} b_{1} ; b_{2} A B_{2} \ldots A^{K_{2}-2} b_{2} ; \ldots ; b_{m} A B_{m} \ldots A^{k_{m}-1} b_{m}\right\} \tag{5.3}
\end{equation*}
$$

Where the integer ki represents the number of linearly independent columns associated with bi in the above vector set.
The controllability index is defined as the maximum integer ki in the following set:

$$
\begin{equation*}
\left\{k_{1} k_{2} k_{3} \ldots k_{m}\right\} \tag{5.4}
\end{equation*}
$$

The set $\left\{k_{1} k_{2} k_{3} \ldots k_{m}\right\}$ is called the set of controllability indices of the system. If the system is controllable then $k_{1}+k_{2}+k_{3}+\ldots+k_{m}=\mathrm{n}$.
The controllability indices will play an important role in the design of state feedback as it will be seen later in the coming chapter.

V.1.Canonical forms

Consider the MIMO system given by

$$
\begin{align*}
& \dot{x}(\mathrm{t})=\mathrm{Ax}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}) \tag{5.5a}\\
& \mathrm{Y}(\mathrm{t})=\mathrm{Cx} \tag{5.5b}
\end{align*}
$$

It is required to determine a matrix T such that transformation.

$$
\mathrm{X}=\mathrm{Tz}, \quad \mathrm{z}=T^{1} \mathrm{X}
$$

Produces a canonical form of the system (2.7)

$$
\begin{align*}
& \dot{z}(\mathrm{t})=A_{0} z(t)+B_{0} u(t) \tag{5.6a}\\
& \mathrm{Y}(\mathrm{t})=C_{0} z(t) \tag{5.6b}
\end{align*}
$$

Formal definition of the term 'canonical' can be found in the papers of Popov (1972) and Wang and Davison (1976). A survey of Luenberg forms is due to Sinha and Rosa (1976). In most cases it is assumed that the system (5.5) is completely controllable so that the stander condition (Baenett 1975) holds, namely that the controllability condition matrix

$$
\begin{equation*}
\delta(\mathrm{A}, \mathrm{~B})=\left[\mathrm{B}, \mathrm{AB}, A^{2} B, \ldots . A^{n-1} B\right] \tag{5.7}
\end{equation*}
$$

Has full rank.

VI. PROPOSED APPROACH

The contribution of thesis is concerned with the use of the freedom offered in the choice in the choice of the gain feedback matrix in state feedback design of multivariable systems beyond specification of the closed loop eigenvalues. The given system described in state space is first transformed into general controller companion form, and then a study is conducted to determine a unique feedback gain matrix, which assigns the closed loop eigenvalues to desired locations and meets the following criteria:

1) Achieving the best possible closed loop system time response characteristics.
2) Yielding a system with small feedback gains to avoid saturation of the control elements.
3) Yielding a system with a good robustness.

The step response is arguably the most relevant test of general system performance and as such it is worth discussing some of the related criteria which are used to specify system performance.
Accepted dynamic performance measure relate to the degree of oscillation, the time for the transient to die away and the response time or time for the response to reach some fraction of the final values.

Transient Response Specification

In many practical cases, the desired performance characteristics of control systems are specified in terms of time domain quantities.
Frequently, the performance characteristics of a control system are specified in terms of the transient response to a unit step input.
The performance evaluation is done in terms of the following quantities:

1) Maximum overshoot M_{p}
2) Rise time T_{r}
3) Peak time T_{p}
4) settling time T_{s}
5) steady state error

The aforementioned criteria are defined as follows:

1. Maximum overshoot M_{p} is the magnitude of the first overshoot. It may also be expressed in percent of the final value, that is

$$
\text { Percent maximum overshoot }=\frac{\text { maximum overshoot }}{\text { final value }} \times 100 \%
$$

2. Time to maximum overshoot T_{p} is the time required to reach the maximum overshoot
3. Settling time T_{s} is the time required for the output response first to reach and thereafter remain within 5% or 2% of the final value, or it is the smallest value T_{s} such that

$$
\left|y(t)-y_{s}\right| \leq 0.02 y_{s} \text { Or } \quad 0.05 y_{s} \quad \text { for all } \mathrm{t} \geq T_{s}
$$

4. Rise time T_{r} is defined as the time for the response on its initial rise, to go from 0.1 to 0.9 times the steady-sate value. Approximately T_{r} is such that $\mathrm{y}\left(T_{r}\right) \cong 0.9 y_{s}$.

Hence, the response characteristics, such as maximum overshoot and settling time can be compared for different values of the gain matrix K.

Proposed Procedure

As a first step, the given n -dimensional matrices A and B are converted into multivariable controllable companion forms A_{c} and B_{c}, if the system is completely controllable[2], Where A_{c} and B_{c} have the forms

$$
A_{c}=\left(\begin{array}{cccccc}
A_{11} & A_{12} & . & . & . & A_{1 m} \tag{6.1}\\
A_{21} & A_{22} & . & . & . & A_{2 m} \\
\cdot & \cdot & . & . & . & \cdot \\
\cdot & \cdot & \cdot & . & . & \cdot \\
\cdot & \cdot & . & . & . & \cdot \\
A_{m 1} & A_{m 2} & . & . & . & A_{m m}
\end{array}\right), B_{c}=\left(\begin{array}{c}
B_{1} \\
B_{2} \\
\cdot \\
\cdot \\
B_{m}
\end{array}\right)
$$

And C_{c} is in general form. The block matrices, $A_{i i}, A_{i j}$ and B_{i} are respectively of dimensions $k_{i} x k_{i}, k_{i} x k_{j}$ and $k_{i} \times \mathrm{m}$ where k_{i} is a controllability index and $\sum_{i=1}^{m} k_{i}=\mathrm{n}$. The block matrices are of the form given below:

$$
A_{i i}=\left(\begin{array}{cccccc}
0 & 1 & . & . & . & 0 \\
0 & 0 & . & . & . & 0 \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
0 & 0 & . & . & . & 1 \\
x & x & . & . & . & x
\end{array}\right), A_{i j}=\left(\begin{array}{cccccc}
0 & 0 & . & . & 0 \\
0 & 0 & . & . & . & 0 \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
0 & 0 & . & . & . & 0 \\
x & x & . & . & . & x
\end{array}\right),
$$

$$
B_{i}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & . & . & . & 0 \tag{6.2}\\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & 0 & . & . & . & 0 \\
0 & 0 & 0 & . & . & . & 0 \\
0 & 0 & x & . & . & . & x
\end{array}\right)
$$

Where x is a non-trivial element and the first $\mathrm{i}-1$ columns of the matrix B_{i} are zero.
It is possible to write the controllable matrix $A_{c}-B_{c} K_{c}$ in many different ways depending on the choice of the feedback gain matrix K_{c}; we may have one or more back diagonal elements, where each block is in companion form. To illustrate the procedure, we give the following example. In order not to be overwhelmed by notation, we assume $\mathrm{n}=6$ and $\mathrm{m}=3$. It is also assumed that the controllability indices are $k_{1}=2, k_{2}=2$ and $k_{3}=2$. Then we have

$$
\begin{align*}
& A_{c}=T_{c} \mathrm{~A} T^{-1}{ }_{c}=\left[\begin{array}{cccccccc}
0 & 1 & \mathrm{I} & 0 & 0 & \mathrm{I} & 0 & 0 \\
x & x & \mathrm{I} & x & x & \mathrm{I} & x & x \\
- & - & \mathrm{I} & - & - & \mathrm{I} & - & - \\
0 & 0 & \mathrm{I} & 0 & 0 & \mathrm{I} & 0 & 0 \\
x & x & \mathrm{I} & x & x & \mathrm{I} & x & x \\
- & - & \mathrm{I} & - & - & \mathrm{I} & - & - \\
0 & 0 & \mathrm{I} & 0 & 0 & \mathrm{I} & 0 & 1 \\
x & x & \mathrm{I} & x & x & \mathrm{I} & x & x
\end{array}\right] \\
& \text { and }\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & x & x \\
- & - & - \\
0 & 0 & 0 \\
0 & 1 & x \\
- & - & - \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \tag{6.3}
\end{align*}
$$

The pair $\left\{A_{c}, B_{c}\right\}$ is said to be in a multivariable controller form.
The introduction of $\mathrm{u}=\mathrm{r}-K_{c} x_{c}$ a 3×6 real constant matrix yields

$$
\begin{equation*}
x_{c}=\left(A_{c}-B_{c} K_{c}\right) x_{c}+B_{c} r \tag{6.4}
\end{equation*}
$$

Because of the form of B_{c}, all rows of $A_{c}-B_{c} K_{c}$ expect the three rows containing strings of x , are not affected by state feedback. Because the three nonzero rows of B_{c} are linearly independent, the three rows of $A_{c^{-}} B_{c} K_{c}$ containing strings of x can be affected by the state feedback gain matrix K_{c}.
Different choices of the number of blocks and their sizes will lead to a number of possible cases.

Case 1: we choose K_{c} so that $\left(A_{c}-B_{c} K_{c}\right)$ is a single block in companion form, of dimension $\left(k_{1}+k_{2}+k_{3}\right) \times\left(k_{1}+k_{2}+k_{3}\right)$

$$
\left[\begin{array}{cccccccc}
0 & 1 & \mathrm{I} & 0 & 0 & \mathrm{l} & 0 & 0 \tag{6.5}\\
0 & 0 & \mathrm{I} & 1 & 0 & \mathrm{I} & 0 & 0 \\
- & - & \mathrm{I} & - & - & \mathrm{I} & - & - \\
0 & 0 & \mathrm{I} & 0 & 1 & \mathrm{I} & 0 & 0 \\
0 & 0 & \mathrm{I} & 0 & 0 & \mathrm{I} & 1 & 0 \\
- & - & \mathrm{I} & - & - & \mathrm{I} & - & - \\
0 & 0 & \mathrm{I} & 0 & 0 & \mathrm{I} & 0 & 1 \\
-d_{1} & -d_{2} & \mathrm{I} & -d_{3} & -d_{4} & \mathrm{I} & -d_{5} & -d_{6}
\end{array}\right]
$$

The characteristics polynomial in this case is:

$$
\begin{equation*}
A_{d}(s)=s^{6}+d_{6} s^{5}+d_{5} s^{4}+d_{4} s^{3}+d_{3} s^{2}+d_{2} s+d_{1} \tag{6.6}
\end{equation*}
$$

Case 2: we choose K_{c} so that $\left(A_{c}-B_{c} K_{c}\right)$ has 2 block of companion forms on the diagonal, with dimensions $\left(k_{1}+k_{2}\right) \times\left(k_{1}+k_{2}\right)$ and $\left(k_{1} x k_{3}\right)$ respectively.

$$
\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \text { । } & 0 & 0 \tag{6.7}\\
0 & 0 & 1 & 0 & \text { I } & 0 & 0 \\
0 & 0 & 0 & 1 & \text { । } & 0 & 0 \\
-\alpha_{1} & -\alpha_{2} & -\alpha_{3} & -\alpha_{4} & \text { । } & 0 & 0 \\
- & - & - & - & \text { । } & - & - \\
0 & 0 & 0 & 0 & \text { I } & 0 & 1 \\
0 & 0 & 0 & 0 & \text { । } & -c_{1} & -c_{2}
\end{array}\right]
$$

The characteristics polynomial is:

$$
\begin{aligned}
& A_{d}(s)=\left(s^{4}+\alpha_{4} s^{3}+\alpha_{3} s^{2}+\alpha_{2} S+\alpha_{1}\right)\left(s^{2}+c_{2} s+c_{1}\right)(6.8) \\
& \text { and } \quad C=\left[\begin{array}{cccc}
0 & 1 & -12 & 0.80 \\
0 & 1 & -2.5 & 0
\end{array}\right]
\end{aligned}
$$

We want to set the closed loop poles -8; -9; - and -6.50. Since rank $\Phi_{c}=\left[B A B A^{2} B A^{3} B\right]=$ 4, the pair (A, B) is completely state controllable. Thereforethe pair (A, B) can be converted to multivariable controllable companion form $\left(A_{B}, B_{c}\right)$. In this example controllability indices are $k_{1}=2$ and $k_{2}=2$. The pair $\left(A_{c}, B_{c}\right)$ and C_{c} are as follows:
Case 3: we choose K_{c} so that $\left(A_{c}-B_{c} K_{c}\right)$ has 2 block of companion forms on the diagonal, with dimension $\left(k_{1} \times k_{1}\right)$ and $\left(k_{2}+k\right)\left(k_{2}+k_{3}\right)$ respectively.

$$
\left[\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 \tag{6.9}\\
-\alpha_{1} & -\alpha_{2} & : & 0 & 0 & 0 & 0 \\
- & - & 1 & - & - & - & - \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & & -\beta_{1} & -\beta_{2} & -\beta_{3} & -\beta_{4}
\end{array}\right]
$$

The characteristic polynomial is:

$$
\begin{equation*}
A_{d}(s)=\left(s^{2}+a_{2} s+a_{1}\right)\left(s^{4}+\beta_{4} s^{3}+\beta_{3} s^{2}+\beta_{2} s+\beta_{1}\right) \tag{6.10}
\end{equation*}
$$

Case 4: we choose K_{c} so that $\left(A_{c}-B_{c} K_{c}\right)$ has 3 blocks of companion forms on the diagonal, with dimension $\left(k_{1} \times k_{1}\right)$, $\left(k_{2} \times k_{2}\right)$ and $\left(k_{3} \times k_{3}\right)$ respectively.

$$
\left[\begin{array}{cc:cc:cc}
0 & 1 & 0 & 0 & 0 & 0 \tag{6.11}\\
-a_{1} & -a_{2} & 0 & 0 & 0 & 0 \\
\hdashline 0 & - & - & - & - & - \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -b_{1} & -b_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & - \\
0 & 0 & 0 & 0 & -c_{1} & -c_{2}
\end{array}\right]
$$

The characteristic polynomial is:

$$
\begin{equation*}
A_{d}(\mathbf{s})=\left(s^{2} a_{2} s+a_{1}\right)\left(s^{2}+b_{2} s+b_{1}\right)\left(s^{2}+c_{2} s+c_{1}\right) \tag{6.12}
\end{equation*}
$$

There is great deal of freedom in the choice of K_{c}, because we can define serval different matrices ($A_{c}-B_{c} K_{c}$) with the same characteristic polynomial $\alpha(\mathrm{s})$. However this freedom of choice in the selection of the gain matrix should ideally be used to achieve some other desirable properties of the closed-loop system besides selecting the closed loop eigenvalues
For every chosen structure of $\left(A_{c}-B_{c} K_{c}\right)$ (one, two, three, or more companion - from blocks on the diagonal), the step response of the closed loop system

$$
\begin{equation*}
\dot{x}_{c}(\mathrm{t})=\left(A_{c}-B_{c} K_{c}\right) x_{c}(\mathrm{t})+B_{c} \mathrm{r}(\mathrm{t}) \tag{6.13}
\end{equation*}
$$

$\mathrm{y}=C_{c} x_{c}(\mathrm{t})$
is plotted and the time response characteristics
(Maximum overshoot, settling time, Rise time, Peak time, and steady -state error) computed. The above results are then compared to select a feedback gain matrix K_{c} meeting the required criteria (small transient response, small feedback gain, good

Illustrative Example

Consider the system below given its matrices:

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
-2 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 \\
0 & 4 & 0 & -2
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
1 & 1
\end{array}\right] \\
& A_{c}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
13.00 & -3.00 & -5.00 & 3.00 \\
0 & 0 & 0 & 1 \\
-9.00 & -7.00 & 3.00 & 2.00
\end{array}\right]
\end{aligned}
$$

$$
B_{c}=T_{c} B=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] \text {, and } C_{c}=\left[\begin{array}{cccc}
-0.60 & 0.80 & 7.60 & 1.80 \\
2.50 & 0 & 0.50 & 1.00
\end{array}\right]
$$

It then follows that:
$A_{c}-B_{c} K_{c}=A_{c}-E b c \bar{K}=A_{D}\left\{\begin{array}{c}\text { Adesiredclosed }- \text { loopmatrixwith the } \\ \text { givensetofdesiredeigvalues }\end{array}\right\}$.
Where $K_{c}=D^{-1} \bar{K}$ and the original feedback gain matrix given by
$K=K_{c} T_{c}$.

$$
\begin{gathered}
E b c=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] \text { And the matrix } \mathrm{D} \text { is chosen such that } \\
B_{c}=E b c D .
\end{gathered}
$$

The matrix D is found to be:

$$
\begin{gathered}
D=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
E b c \bar{K}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\bar{K}_{13} & \bar{K}_{12} & \bar{K}_{13} & \bar{K}_{14} \\
0 & 0 & 0 & 0 \\
\bar{K}_{21} & \bar{K}_{22} & \bar{K}_{23} & \bar{K}_{24}
\end{array}\right] \\
A_{c}-E b c \bar{K}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
13.00-\bar{K}_{11} & -3.00-\bar{K}_{12} & -5.00-\bar{K}_{13} & 3.00-\bar{K}_{14} \\
0 & 0 & 0 & 1 \\
-9.000 \bar{K}_{21} & -7.000-\bar{K}_{22} & 3.00-\bar{K}_{23} & 2.00-\bar{K}_{24}
\end{array}\right] \\
=A_{D}\left\{\begin{array}{l}
\text { A desired closed - loop matrix with the } \\
\text { given set of desired eignvalues }
\end{array}\right\}
\end{gathered}
$$

With different combinations of the controllability indices k_{i} for $(i=1,2)$, two cases can arise.

Case1: when $r=1$, that is we have just one block of companion form with order $k_{1}=4$, the desired characteristic polynomial and the desired closed-loop matrix A_{D} are as follows:

$$
\begin{gathered}
\alpha(s)=s^{4}+31.50 s^{3}+370.50 s^{2}+1928 s+3744 A_{D} \\
=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-3744 & -1928 & -370.50 & -31.50
\end{array}\right]
\end{gathered}
$$

The required feedback gain matrix in the original coordinate system for this case is

$$
k_{1}=\left[\begin{array}{cccc}
4.00 & 10.00 & -1.00 & -7.00 \\
166.00 & -1721.50 & -2527.50 & 1755.00
\end{array}\right]
$$

The following simulation results are obtained for this case:
Table 1: Results of the Simulation Obtained for $r=1$

Transient \& Steady- State Specifications	$\boldsymbol{M}_{\boldsymbol{P}}$	$\boldsymbol{E}_{\boldsymbol{s} \boldsymbol{s}}$	POS	$\boldsymbol{t}_{\boldsymbol{r}}$	$\boldsymbol{t}_{\boldsymbol{s}}$	$\boldsymbol{t}_{\boldsymbol{p}}$
Output y_{1}	0.81	0.00	80.87	1	7	3
Output y_{2}	0.33	0.00	29.59	3	10	5

Figure 1: Step Response of the Outputs $y_{1}(\mathrm{t})$ and $y_{2}(\mathrm{t})$
case 2: when $r=2$, that is we have 2 blocks of companion forms with orders $k_{1}=2$ and $k_{2}=2$ respectively, the desired characteristic polynomial and the desired closed-loop system matrix A_{D} are as follows:

$$
\begin{aligned}
\alpha(s) & =\left(s^{2}+17 s+72\right)\left(s^{2}+\right) 14.50 s+52 \\
A_{D} & =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-72 & -17 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -52 & -14.50
\end{array}\right]
\end{aligned}
$$

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 57 Issue: 02:2024
DOI: 10.5281/zenodo. 10650019
The required feedback gain matrix in the original coordinate system for this case

$$
k_{22}=\left[\begin{array}{llll}
43.00 & 32.00 & -58.00 & -29.00 \\
10.50 & 34.00 & -91.50 & -17.50
\end{array}\right]
$$

The following simulation results are obtained for this case:
Table 2: Results Of the Simulation Obtained for $\mathbf{r = 2}$

Transient \& Steady- State Specification	$\boldsymbol{M}_{\boldsymbol{P}}$	$\boldsymbol{E}_{\boldsymbol{s} \boldsymbol{s}}$	POS	$\boldsymbol{t}_{\boldsymbol{r}}$	$\boldsymbol{t}_{\boldsymbol{s}}$	$\boldsymbol{t}_{\boldsymbol{p}}$
Output y_{1}	0.24	0.00	24.48	1	6	2
Output y_{2}	1.81	0.00	0.00	5	6	NO

Figure 2: Step Response of the Outputs $y_{1}(t)$ and $y_{2}(t)$
For the sensitivity of closed-loop system subjected to the following random perturbation

$$
\Delta A=\left[\begin{array}{cccc}
0.05 & 0.01 & 0 & 0.03 \\
0.04 & -0.06 & 0.01 & 0 \\
0 & 0.03 & 0.02 & 0.01 \\
-0.04 & -0.04 & 0.05 & 0.02
\end{array}\right]
$$

The following simulation results are obtained for each case.
For case 1: when $r=1$, we have obtained the following results.

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology
ISSN (Online):0493-2137
E-Publication: Online Open Access
Vol: 57 Issue: 02:2024
DOI: 10.5281/zenodo. 10650019
Table 3 : Results of the Simulation Obtained for $r=1$

Transient \& Steady- State Specifications	$\boldsymbol{E}_{\boldsymbol{s} \boldsymbol{s}}$		POS	$\boldsymbol{t}_{\boldsymbol{r}}$	$\boldsymbol{t}_{\boldsymbol{s}}$	$\boldsymbol{t}_{\boldsymbol{p}}$
Output y_{1}	0.66	0.33	146.80	1	8	2
Output y_{2}	0.07	0.67	49.05	2	6	4

Figure 3: Step Response of the Outputs $y_{1}(t)$ and $y_{2}(t)$
For case2: when $r=2$, that is we have 2 blocks of companion form on the diagonal with orders $k_{1}=2$ and $k_{2}=2$ respectively.
We have obtained the following simulation results.
Table III. 4 : Results of the Simulation for $r=2$

Transient \& Steady- State Specifications	$\boldsymbol{M}_{\boldsymbol{P}}$	$\boldsymbol{E}_{\boldsymbol{s} \boldsymbol{s}}$	POS	$\boldsymbol{t}_{\boldsymbol{r}}$	$\boldsymbol{t}_{\boldsymbol{s}}$	$\boldsymbol{t}_{\boldsymbol{p}}$
Output y_{1}	0.21	0.02	24.98	1	5	2
Output y_{2}	0.00	0.00	0.00	6	7	NO

Figure 4: Step Response of the outputy $y_{1}(t)$ and $y_{2}(t)$

Summary of Simulation

The following tableau is a summary of the simulation results obtained for this example:
Table 5 : Summary of Simulation

		One block withorder4	Two blocks with orders $k_{2}=1$ and $k_{2}=2$
y_{1}	M_{P}	0.81	0.24
	$E_{S S}$	0.00	0.00
	Pos	80.87	24.48
	t_{r}	1	1
	t_{s}	7	6
	y_{p}	3	2
	M_{P}	0.33	0.00
	$E_{S S}$	0.00	0.00
	PoS	29.59	0.00
	t_{r}	3	5
	t_{s}	10	6
	t_{p}	5	No

VII. DISCUSSIONS AND INTERPRETATION OF THE RESULTS

The feedback gain matrix that results in the greatest number of blocks of companion forms on the closed-loop system matrix's diagonal $\left(A_{c}-B_{c} K_{c}\right)$ represents the best approach under consideration, the feedback gain matrix that best places the closed-loop system's eigenvalues in the desired positions and best satisfies the stated desired criteria:
\checkmark Best possible time response: The gain matrix is optimized to achieve the best possible time response for the control system. This involves minimizing settling time, rise time, overshoot, and other performance metrics.
\checkmark Small feedback gains: The gain matrix is designed to have small individual gain values. This is desirable because it reduces the sensitivity of the closed-loop system to measurement noise and disturbances. Smaller gains also help in mitigating control effort and actuator saturation issues.
\checkmark Insensitivity to small random perturbations: The gain matrix is chosen to make the closed-loop system less sensitive to small random perturbations or modeling uncertainties. This improves the robustness and stability margins of the control system.

VIII. CONCLUSION

Multivariable system means a system that involves multiple variables that are interdependent and affect the behaviour of the others. These systems are widespread in various fields, including engineering. The analysis and understanding of multivariate systems is crucial to making informed decisions and accurately predicting their behaviour. Interactions between variables can be non-linear, and small changes in one variable can have significant effects on others. This complexity often requires sophisticated
mathematical tools and computational techniques to effectively study and analyze these systems. The behaviour of these systems often depends on time, which means that variables change over time due to internal and external influences. The study of the flexibility of selecting the feedback gain matrix in multivariate systems is an important aspect in control theory and system design. Also, it is observed from the simulation results that the magnitude of the dynamical mode is decreased as the number of blocks of companion forms on the diagonal of is increased. However, we get less overshoot, hence less settling time which gives rise to better time response. In addition, it is noticed that the norm of the left eigenvector (for $\mathrm{i}=\mathrm{l}, \ldots, \mathrm{n}$) decreased as the number of companion blocks on the diagonal of the matrix () is increased. Thus, the eigenvalues of the closed loop system are less sensitive to perturbations in the case we have a maximum number of blocks of companion form on the diagonal of the closed loop system matrix.

References

1) Basile, G., \&Marro, G. (1992). Controlled and conditioned invariants in linear system theory. Englewood Cliffs: Prentice Hall.
2) Friedland, B. (2012). Control system design: an introduction to state-space methods. Courier Corporation.
3) Postlethwaite, I., \& MacFarlane, A. G. (Eds.). (1979). A complex variable approach to the analysis of linear multivariable feedback systems. Berlin, Heidelberg: Springer Berlin Heidelberg.
4) Ding, F., Zhang, X., \& Xu, L. (2019). The innovation algorithms for multivariable state-space models. International Journal of Adaptive Control and Signal Processing, 33(11), 1601-1618.
5) Houpis, C. H., \& Sheldon, S. N. (2013). Linear Control System Analysis and Design with MATLAB®. CRC Press.
6) Xiang, L., Chen, F., Ren, W., \& Chen, G. (2019). Advances in network controllability. IEEE Circuits and Systems Magazine, 19(2), 8-32.
7) Chen, C. T. (1984). Linear system theory and design. Saunders college publishing.
8) Åström, K. J., \& Murray, R. M. (2021). Feedback systems: an introduction for scientists and engineers. Princeton university press.
9) Jiang, J. (1994). Design of reconfigurable control systems using eigenstructure assignments. International Journal of Control, 59(2), 395-410
10) Marx, B. IS2_ENSGSI_POLY: Industrial Systems - Concepts and Methods [PDF document]. Available: Http: //w3.cran.univ-lorraine.fr/perso/benoit.marx/IS2_ENSGSI_POLY.pdf.
11) Keshmiri, M., Jahromi, A. F., Mohebbi, A., Amoozgar, M. H., \& Xie, W. F. (2012). Modeling and control of ball and beam system using model based and non-model based control approaches. International Journal on smart sensing and intelligent systems, 5(1), 14-35.
12) Bounar, N. System lineaires multivariables [PDF document].

Available :https ://www.google.com/url ?sa=t\&rct=j\&q=\&esrc=s\&source=web\&cd=\&cad=rja\&uact=8\& ved=2ahUKEwjz7aWFhaf_AhVCgf0HHYMDBXMQFnoECBcQAQ\&url=https\%3A\%2F\%2Ffr.scribd.c om\%2Fdocument\%2F445904074\%2Fcours-SYSTEMES-LINEAIRESMULTIVARIABLES\&usg=AovVaw3fzftvKuxd_SvtqHeT2TWs
13) Naim R ,Robust control Par H multivariable systems, end-of-study project memory, Annabauniversity
14) Wonham, W. (1967). On pole assignment in multi-input controllable linear systems. IEEE transactions on automatic control, 12(6), 660-665.
15) Shieh, L., \&Tsay, Y. (1982). Transformations of a class of multivariable control systems to block companion forms. IEEE Transactions on Automatic Control, 27(1), 199-203.
16) Wonham, W.M (1967). "On pole assignment in multi-input controllable linear systems". IEEE Transactions on Automatic Controlrealizations," Mathematics of Control, Signals, and Systems, vol. 19, no. 2, pp. 123-149, 2007.
17) B. Bekhiti, A. Dahimene, B. Nail, and K. Hariche, "On The Order Reduction of MIMO Large Scale Systems Using Block-Roots of Matrix Polynomials," Ed.
18) H. Zabot and K. Hariche, "On solvents-based model reduction of MIMO systems," International Journal of Systems Science, vol. 28, no. 5, pp. 499-505, 1997.
19) I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials (Classics in Applied Mathematics). Society for Industrial and Applied Mathematics, p. 423, 2009.
20) K. Hariche and E. D. Denman, "Interpolation theory and λ-matrices," Journal of Mathematical Analysis and Applications, vol. 143, no. 2, pp. 530-547, 1989.
21) K. Hariche and E. D. Denman, "On solvents and Lagrange interpolating λ - matrices," Applied Mathematics and Computation, vol. 25, no. 4, pp. 321-332, 1988.
22) M. Yaici and K. Hariche, "On solvents of matrix polynomials," international journal of modeling and optimization, vol. 4, no. 4, pp. 273-277, 2014.
23) W. H. Schilders, H. A. Van Der Vorst, and J. Rommes, Model Order Reduction: Theory, Research Aspects and Applications (The European Consortium for Mathematics in Industry). Springer-Verlag Berlin Heidelberg, 2008, pp. XI, 471.
24) L. Montier, T. Henneron, S. Clénet, and B. Goursaud, "Robust model order reduction of an electrical machine at startup through reduction error estimation," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 31, no. 2, 2018, Art. no. e2277.
25) S. S. Mohseni, M. J. Yazdanpanah, and A. Ranjbar N, "New strategies in model order reduction of trajectory piecewise-linear models," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 29, no. 4, pp. 707-725, 2016.
26) H. Wu and A. C. Cangellaris, "Krylov model order reduction of finite element approximations of electromagnetic devices with frequency- dependent material properties," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 20, no. 5, pp. 217-235, 2007.
27) P. J. Heres, D. Deschrijver, W. H. A. Schilders, and T. Dhaene, "Combining Krylov subspace methods and identification-based methods for model order reduction," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 20, no. 6, pp. 271-282, 2007.
28) M. V. Ugryumova, J. Rommes, and W. H. A. Schilders, "Error bounds for reduction of multi-port resistor networks," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 26, no. 5, pp. 464-477, 2013.
29) J. S. H. Tsai, C. M. Chen, and L. S. Shieh, "A computer-aided method for solvents and spectral factors of matrix polynomials," Applied Mathematics and Computation, vol. 47, no. 2, pp. 211-235, 1992.

