ON SIX PLATONIC GRAPHS

T. KALAISELVI ${ }^{1}$ and YEGNANARAYANAN VENKATARAMAN ${ }^{2}$

Department of Mathematics, Kalasalingam Academy of Research and Education Krishnankovil-626126, e-mail: prof.yegna@gmail.com ${ }^{2}$, kalaiselvit23@gmail.com

Abstract

We have computed here the γ_{t} refereed as total domination number of the six platonic graphs. Incidentally we found that the octahedron graph is a counter example to the following result: If G is a connected graph of order at least two, then $\gamma_{t}(G) \geq \operatorname{ecc}(C(G))+1$ which appeared in [1].

Keywords: Domination set (DS), total domination set (TDS), Domination number (DN), total domination number (TDN), Platonic Graphs.

1 Introduction

Let $G=(V, E)$ be a (p, q) graph with $p=|V(G)|$ and $q=|E(G)|$. We adopt the standard notations for graph theoretic terms as per Bondy and Murty [2]. The distance $d(u, v)$ between u and v in G is the length of a least $u-v$ path in G. The eccentricity ecc(v) of v in G is the distance between v and a vertex at farthest from v in G. The minimum (maximum) eccentricity among the elements of $\mathrm{V}(\mathrm{G})$ is called the radius(diameter) of G and is denoted by $\operatorname{rad}(G)(\operatorname{diam}(G))$. The center $C(G)$ of G is the set of all vertices of least eccentricity and the periphery $B(G)$ is the set of all vertices of greatest eccentricity. A set $P \subseteq V(G)$ is called a $D S$ of G if every vertex in $V-P$ is adjacent to some vertex in D. The least number of elements in a DS of G is called the $\mathrm{DN} \gamma(G)$ of G . A DS P is called a TDS if the subgraph induced by P has no vertex of degree 0 . The TDN of G is the least number of elements in a TDS of G and is denoted by $\gamma_{t}(G)$ [2]. we define $\mathrm{P} \subseteq \mathrm{V}(\mathrm{G})$ and v in P, then $p n(v, P)=\{w \in V \mid N(w) \cap P=\{v\}\}$, ipn $(v, P)=p n(v, P) \cap P$ and epn (v, P) $=p n(v, P) \backslash P$.

2 Six Platonic Graphs

Fig 1(a) Tetrahedron Graph

Fig 1(b) Octahedron graph

Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ Journal of Tianjin University Science and Technology ISSN (Online): 0493-2137
E-Publication: Online Open Access
Vol:55 Issue:01:2022
DOI 10.17605/OSF.IO/5NX69
G_{3}

Fig 1(c) Hexahedron graph

Fig 1(d) The Square Pyramid graph

Fig 1(e) The Dodecahedron graph

Fig 1(f) The Icosahedron graph

3. Total domination number of six Platonic Graphs

Theorem 3.1 $\gamma_{\mathrm{t}}\left(\mathrm{G}_{1}\right)=2$
Proof: Consider the graph G_{1}. Let $\mathrm{V}\left(\mathrm{G}_{1}\right)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ and $\mathrm{E}\left(\mathrm{G}_{1}\right)=$ $\left\{\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{1}, \alpha_{3}\right),\left(\alpha_{1}, \alpha_{4}\right),\left(\alpha_{2}, \alpha_{3}\right),\left(\alpha_{2}, \alpha_{4}\right)\left(\alpha_{3}, \alpha_{4}\right)\right\}$. We see from Theorem 2 and Theorem 8 of Table 1 that $2 \leq \gamma_{t}\left(G_{1}\right) \leq 2$. Let $\mathrm{P}=\left\{\alpha_{1}, \alpha_{2}\right\}$. Then P is a DS as $\left(\alpha_{1}, \alpha_{3}\right),\left(\alpha_{1}, \alpha_{4}\right)$ are edges of G_{1}. Also $\left(\alpha_{1}, \alpha_{2}\right) \in E\left(G_{1}\right)$ implies P is a TDS of G_{1}. As $\mathrm{P}-$ $\left\{\alpha_{1}\right\}$ and $\mathrm{P}-\left\{\alpha_{2}\right\}$ are not TDS, we conclude that P is a minimal TDS.

Note 3.1.1 As one can find more minimal TDS of G_{1} like $\left\{\alpha_{1}, \alpha_{3}\right\},\left\{\alpha_{1}, \alpha_{4}\right\},\left\{\alpha_{2}, \alpha_{3}\right\}$ we can say that the minimum TDS for G_{1} does not exist.

Statements of Well Known Results	\boldsymbol{G}_{1}	\boldsymbol{G}_{2}	\boldsymbol{G}_{3}
1. If G is connected with $p \geq 3$, then $\gamma_{t}(G) \leq 2 p / 3 \quad[3]$.	$\begin{aligned} & \gamma_{t}\left(G_{1}\right) \leq(2 \times 4) / 3 \\ & =2.67 \end{aligned}$	$\begin{aligned} & \gamma_{t}\left(G_{2}\right) \leq \\ & (2 \times 6) / 3 \\ & =4 \end{aligned}$	$\begin{aligned} & \gamma_{t}\left(G_{3}\right) \leq \frac{2 \times 8}{3} \\ & =5.33 \end{aligned}$
2.If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ has maximum degree atmost 3 and of order p and size q, then $\gamma_{t}(G) \leq p-q / 3[4]$.	$\begin{aligned} & \gamma_{t}\left(G_{1}\right) \leq 4-\frac{6}{3} \\ & =2 \end{aligned}$	-	$\begin{aligned} & \gamma_{t}\left(G_{3}\right) \\ & \leq 8-\frac{12}{3}=4 \end{aligned}$
3. If G has no vertex of degree 0 , then $\gamma_{t}(G) \geq{ }^{p} / \Delta(G)$ [3].	$\gamma_{t}\left(G_{1}\right) \geq 4 / 3=1.33$	$\begin{aligned} & \gamma_{t}\left(G_{2}\right) \geq 6 / 4= \\ & 1.5 \end{aligned}$	$\begin{aligned} & \gamma_{t}\left(G_{3}\right) \geq 8 / 3= \\ & 2.67 \end{aligned}$
4. If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ with maximum degree at most n-2,then $\gamma_{t}(G) \leq p-$ $\Delta(G)$.	-	$\begin{aligned} & \gamma_{t}\left(G_{2}\right) \leq 6-4 \\ & =2 . \end{aligned}$	$\begin{aligned} & \gamma_{t}\left(G_{3}\right) \leq 8-3 \\ & =5 \end{aligned}$
5. If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ graph with $\mathrm{p} \geq 2$, then $\gamma_{t}(G) \geq \operatorname{rad}(G)[1]$.	$\gamma_{t}\left(G_{1}\right) \geq 1$	$\gamma_{t}\left(G_{2}\right) \geq 2$	$\gamma_{t}\left(G_{3}\right) \geq 3$
6. Let $\mathrm{G}(\mathrm{p}, \mathrm{q})$ with $\mathrm{p} \geq 2$ and let P be a γ_{t} set. Then necessary and Sufficient for $\gamma_{t}(G)=\operatorname{rad}(G)$ is $\mathrm{G}[\mathrm{P}]$ has $\operatorname{rad}(G) / 2$ edges [1] .	$\frac{-}{}$	$\gamma_{t}\left(G_{2}\right)=2$.	$\stackrel{-}{-}^{-}$
7. If $G(p, q)$, with $p \geq 2$ is connected then $(\operatorname{diam}(G)+1) / 2 \leq \gamma_{t}(G)[1]$	$\begin{aligned} & (1+1) / 2 \leq \gamma_{t}\left(G_{1}\right) \\ & =1 \end{aligned}$	$\begin{aligned} & (2+1) / 2 \leq \\ & \gamma_{t}\left(G_{2}\right) \\ & =1.5 \end{aligned}$	$\begin{aligned} & (3+1) / 2 \leq \\ & \gamma_{t}\left(G_{3}\right) \\ & =2 \end{aligned}$
8.If $G(p, q)$, with $p \geq 2$ is connected, then $\gamma_{t}(G) \geq$ $\operatorname{ecc}(C(G)+1$ [1].	$\gamma_{t}\left(G_{1}\right) \geq 2$	-	$\gamma_{t}\left(G_{3}\right) \geq 4$
9.If $G(p, q)$ with $p \geq 2$ is connected, then $(3 \operatorname{ecc}(B)+2) / 4 \leq \gamma_{t}(G)[5$]	$\frac{(3 \times 1)+2}{4} \leq \gamma_{t}\left(G_{1}\right)$	$\begin{aligned} & \frac{(3 \times 2)+2}{4} \leq \\ & \gamma_{t}\left(G_{2}\right)=2 \end{aligned}$	$\begin{aligned} & \frac{(3 \times 3)+2}{4} \leq \\ & \gamma_{t}\left(G_{3}\right)=2.75 \end{aligned}$
10.If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is graph of girth g , then $g / 2 \leq \gamma_{t}(G)[1] .$	$3 / 2 \leq \gamma_{t}\left(G_{1}\right)=1.5$	$\begin{aligned} & 3 / 2 \leq \gamma_{t}\left(G_{2}\right) \\ & =1.5 \end{aligned}$	$\begin{aligned} & 4 / 2 \leq \gamma_{t}\left(G_{3}\right) \\ & =2 \end{aligned}$
11.If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is connected with girth $\mathrm{g} \geq 3$ and with $\delta(G) \geq 2$, then $\frac{p}{2}+\max \left(1, \frac{p}{2(g+1)}\right) \geq \gamma_{t}[6] .$	$\begin{aligned} & \frac{4}{2}+\max \left(1, \frac{4}{2(3+1)}\right) \geq \\ & \gamma_{t}\left(G_{1}\right)=3 \end{aligned}$	$\begin{aligned} & \frac{6}{2}+ \\ & \max \left(1, \frac{6}{2(3+1)}\right) \geq \\ & \gamma_{t}\left(G_{2}\right)=4 \end{aligned}$	$\begin{aligned} & \frac{8}{2}+ \\ & \max \left(1, \frac{8}{2(4+1)}\right) \geq \\ & \gamma_{t}\left(G_{3}\right)=5 \end{aligned}$
12.If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is connected with minimum at least two and girth g ≥ 3, then $\left(\frac{1}{2}+\frac{1}{g}\right) p \geq \gamma_{t}[7]$.	$\begin{aligned} & \quad\left(\frac{1}{2}+\frac{1}{3}\right) 4 \geq \gamma_{t}\left(G_{1}\right) \\ & =3.35 \end{aligned}$	$\begin{gathered} \left(\frac{1}{2}+\frac{1}{3}\right) 6 \geq \\ \gamma_{t}\left(G_{2}\right)=5 \end{gathered}$	$\begin{aligned} & \left(\frac{1}{2}+\frac{1}{4}\right) 8 \geq \\ & \gamma_{t}\left(G_{3}\right)=6 \end{aligned}$

13.For every $\mathrm{G}(\mathrm{p}, \mathrm{q})$ graph with no vertex of degree $0, \gamma(G) \leq$ $\gamma_{t}(G) \leq 2 \gamma(G)[8]$.	$\begin{aligned} & \gamma\left(G_{1}\right)=1 \leq \\ & \gamma_{t}\left(G_{1}\right) \leq 2 \gamma\left(G_{1}\right) \\ & =2 \end{aligned}$	$\begin{aligned} & \gamma\left(G_{2}\right)=2 \leq \\ & \gamma_{t}\left(G_{2}\right) \leq \\ & 2 \gamma\left(G_{1}\right)=4 \end{aligned}$	$\begin{aligned} & \gamma\left(G_{3}\right)=3 \leq \\ & \gamma_{t}\left(G_{3}\right) \leq \\ & 2 \gamma\left(G_{3}\right)=6 \end{aligned}$
14.If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is connected with $\delta(G) \geq 2$, then $\left\lfloor\left.\frac{4}{7}(n+1) \right\rvert\, \geq \gamma_{t}\right.$ [9].	$\begin{aligned} & {\left[\left.\frac{4}{7}(4+1) \right\rvert\, \geq\right.} \\ & \gamma_{t}\left(G_{1}\right)=3 \end{aligned}$	$\begin{aligned} & \left\lfloor\frac{4}{7}(6+1)\right\rfloor \geq \\ & \gamma_{t}\left(G_{2}\right)=4 \end{aligned}$	$\begin{aligned} & \left\|\frac{4}{7}(8+1)\right\| \geq \\ & \gamma_{t}\left(G_{3}\right)=5 \end{aligned}$
15.If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is connected with $\delta(G) \geq 3$, then $n / 2 \geq \gamma_{t}[9]$.	$4 / 2 \geq \gamma_{t}\left(G_{1}\right)=2$	$\begin{gathered} 6 / 2 \geq \\ \gamma_{t}\left(G_{2}\right)=3 . \end{gathered}$	$\begin{aligned} & 8 / 2 \\ & \geq \gamma_{t}\left(G_{3}\right)=4 \end{aligned}$
16.If a planar graph G with $\operatorname{diam}(G)=2$, then the domination number $\gamma(G)$ is at most 3. [10].	-	$\gamma\left(G_{2}\right)=2 \leq 3$	-
17.If a planar graph G with $\operatorname{diam}(G)=2$, then the total domination number $\gamma_{t}(G)$ is at most 3.[10].	-	$\gamma_{t}\left(G_{2}\right)=2 \leq 3$	-

Table 1 Upper and lower bounds of $\gamma_{t}\left(G_{i}\right)$ for $i=1,2$, 3 with reference to various structural parameters.

Statements of Well Known Results	G_{4}	G_{5}	G_{6}
1. If G is connected with $p \geq 3$, then $\gamma_{t}(G) \leq 2 p / 3 \quad[3]$.	$\begin{aligned} & \gamma_{t}\left(G_{4}\right) \leq(2 \times 5) / 3 \\ & =3.33 \end{aligned}$	$\begin{aligned} & \gamma_{t}\left(G_{5}\right) \leq \\ & (2 \times 20) / 3 \\ & =13.33 \end{aligned}$	$\begin{aligned} & \gamma_{t}\left(G_{6}\right) \leq \frac{2 \times 12}{3} \\ & =8 \end{aligned}$
2. If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ has maximum degree atmost 3 and of order p and size q , then $\gamma_{t}(G) \leq p-q / 3$ [4].	-	-	${ }^{-}$
3. If G has no vertex of degree 0 , then $\gamma_{t}(G) \geq p / \Delta(G)$ [3].	$\gamma_{t}\left(G_{4}\right) \geq 5 / 4=1.25$	$\begin{aligned} & \gamma_{t}\left(G_{5}\right) \geq 20 / 3 \\ & =6.67 \end{aligned}$	$\begin{aligned} & \gamma_{t}\left(G_{6}\right) \geq 12 / 5 \\ & =2.4 \end{aligned}$
4. If $G(p, q)$ with maximum degree at most n -2,then $\gamma_{t}(G) \leq$ $p-\Delta(G)$.	${ }^{-}$	$\begin{aligned} & \gamma_{t}\left(G_{5}\right) \leq 20- \\ & 3=17 \end{aligned}$	$\begin{aligned} & \gamma_{t}\left(G_{6}\right) \leq 12- \\ & 5=7 \end{aligned}$
5. If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ graph with $\mathrm{p} \geq 2$, then $\gamma_{t}(G) \geq \operatorname{rad}(G)[1]$.	$\gamma_{t}\left(G_{4}\right) \geq 1$	$\gamma_{t}\left(G_{5}\right) \geq 5$	$\gamma_{t}\left(G_{6}\right) \geq 3$
6. . Let $\mathrm{G}(\mathrm{p}, \mathrm{q})$ with $\mathrm{p} \geq 2$ and let P be a γ_{t} set. Then necessary and Sufficient for $\gamma_{t}(G)=$ $\operatorname{rad}(G)$ is $\mathrm{G}[\mathrm{P}]$ has $\operatorname{rad}(G) / 2$ edges [1].	-	-	-

7.If $G(p, q)$, with $p \geq 2$ is connected then $(\operatorname{diam}(G)+1) / 2 \leq \gamma_{t}(G)$ [1].	$\begin{aligned} & (2+1) / 2 \leq \gamma_{t}\left(G_{4}\right) \\ & =1.5 \end{aligned}$	$\begin{aligned} & (5+1) / 2 \\ & \leq \gamma_{t}\left(G_{5}\right) \\ & =3 \end{aligned}$	$\begin{aligned} & (3+1) / 2 \leq \\ & \gamma_{t}\left(G_{6}\right) \\ & =2 \end{aligned}$
8. .If $G(p, q)$, with $p \geq 2$ is connected,then $\operatorname{ecc}(C(G)+1$ [1].	$\gamma_{t}\left(G_{4}\right) \geq 2$	$\gamma_{t}\left(G_{5}\right) \geq 6$	$\gamma_{t}\left(G_{6}\right) \geq 4$
9.If $G(p, q)$ with $p \geq 2$ is connected, then $(3 \operatorname{ecc}(B)+2) / 4 \leq \gamma_{t}(G)[5$	$=2{ }^{\frac{(3 \times 2)+2}{4}} \leq \gamma_{t}\left(G_{4}\right)$	$\begin{aligned} & \frac{(3 \times 5)+2}{4} \leq \\ & \gamma_{t}\left(G_{5}\right)=4.25 \end{aligned}$	$\begin{aligned} & \frac{(3 \times 3)+2}{4} \leq \\ & \gamma_{t}\left(G_{6}\right)=2.75 \end{aligned}$
10.If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is graph of girth g , then $g / 2 \leq \gamma_{t}(G)[1]$	$3 / 2 \leq \gamma_{t}\left(G_{4}\right)=1.5$	$\begin{aligned} & 4 / 2 \leq \gamma_{t}\left(G_{5}\right) \\ & =2 \end{aligned}$	$\begin{aligned} & 3 / 2 \leq \gamma_{t}\left(G_{6}\right) \\ & =1.5 \end{aligned}$
11. If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is connected with girth $\mathrm{g} \geq 3$ and with $\delta(G) \geq 2$, then $\frac{p}{2}+\max \left(1, \frac{p}{2(g+1)}\right) \geq \gamma_{t}[6] .$	$\begin{aligned} & \frac{5}{2}+\max \left(1, \frac{5}{2(3+1)}\right) \geq \\ & \gamma_{t}\left(G_{4}\right)=3.5 \end{aligned}$	$\begin{aligned} & \frac{20}{2}+ \\ & \max \left(1, \frac{20}{2(4+1)}\right) \geq \\ & \gamma_{t}\left(G_{5}\right)=12 \end{aligned}$	$\begin{aligned} & \frac{12}{2}+ \\ & \max \left(1, \frac{12}{2(3+1)}\right) \geq \\ & \gamma_{t}\left(G_{6}\right)=7.5 \end{aligned}$
12.If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is connected with minimum at least two and girth g ≥ 3, then $\left(\frac{1}{2}+\frac{1}{g}\right) p \geq \gamma_{t}[7]$.	$\begin{gathered} \left(\frac{1}{2}+\frac{1}{3}\right) 5 \geq \\ \gamma_{t}\left(G_{4}\right)=4.16 \end{gathered}$	$\begin{aligned} & \left(\frac{1}{2}+\frac{1}{4}\right) 20 \geq \\ & \gamma_{t}\left(G_{5}\right)=15 \end{aligned}$	$\begin{aligned} & \left(\frac{1}{2}+\frac{1}{3}\right) 12 \geq \\ & \gamma_{t}\left(G_{6}\right)=10 \end{aligned}$
13. For every $\mathrm{G}(\mathrm{p}, \mathrm{q})$ graph with no vertex of degree $0, \gamma(G) \leq$ $\gamma_{t}(G) \leq 2 \gamma(G)[8]$.	$\begin{aligned} & \gamma\left(G_{4}\right)=1 \leq \\ & \gamma_{t}\left(G_{4}\right) \leq 2 \gamma\left(G_{4}\right) \\ & =2 \end{aligned}$	$\begin{aligned} & \gamma\left(G_{6}\right)=6 \leq \\ & \gamma_{t}\left(G_{5}\right) \leq \\ & 2 \gamma\left(G_{5}\right)=12 \end{aligned}$	$\begin{aligned} & \gamma\left(G_{6}\right)=3 \leq \\ & \gamma_{t}\left(G_{6}\right) \leq \\ & 2 \gamma\left(G_{6}\right)=6 \end{aligned}$
14. If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is connected with $\delta(G) \geq 2$,then $\left\lfloor\frac{4}{7}(n+1)\right\rfloor \geq \gamma_{t}$ [9].	$\begin{aligned} & {\left[\frac{4}{7}(5+1)\right] \geq} \\ & \gamma_{t}\left(G_{4}\right)=3 \end{aligned}$	$\begin{aligned} & \left\|\frac{4}{7}(20+1)\right\| \geq \\ & \gamma_{t}\left(G_{5}\right)=12 \end{aligned}$	$\begin{gathered} \left\|\frac{4}{7}(12+1)\right\| \geq \\ \gamma_{t}\left(G_{6}\right)=7.42 \end{gathered}$
15.If $\mathrm{G}(\mathrm{p}, \mathrm{q})$ is connected with $\delta(G) \geq 3$, then $n / 2 \geq \gamma_{t}$ [9].	$5 / 2 \geq \gamma_{t}\left(G_{4}\right)=2.5$	$\begin{gathered} 20 / 2 \geq \\ \gamma_{t}\left(G_{5}\right)=10 \end{gathered}$	$\begin{gathered} 12 / 2 \geq \\ \gamma_{t}\left(G_{6}\right)=6 \end{gathered}$
16.If a planar graph G with $\operatorname{diam}(G)=2$, then the domination number $\gamma(G)$ is at most 3. [10].	$\gamma\left(G_{4}\right)=1 \leq 3$	-	-
17. If a planar graph G with $\operatorname{diam}(\mathrm{G})=2$, then the total domination number $\gamma_{t}(G)$ is at most 3.[10].	$\gamma_{t}\left(G_{4}\right)=2 \leq 3$	-	-

Table 2 Upper and lower bounds of $\gamma_{t}\left(G_{i}\right)$ for $i=4,5,6$ with reference to various structural parameters.

Theorem 3.2 $\gamma_{\mathrm{t}}\left(\mathrm{G}_{2}\right)=2$.
Proof Consider the graph G_{2}. Let $\mathrm{V}\left(G_{2}\right)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right\}$ and $\mathrm{E}\left(G_{2}\right)=\left\{\left(\alpha_{1}, \alpha_{2}\right)\right.$, $\left(\alpha_{1}, \alpha_{3}\right),\left(\alpha_{1}, \alpha_{4}\right),\left(\alpha_{1}, \alpha_{5}\right),\left(\alpha_{2}, \alpha_{3}\right),\left(\alpha_{2}, \alpha_{4}\right),\left(\alpha_{2}, \alpha_{6}\right),\left(\alpha_{3}, \alpha_{5}\right),\left(\alpha_{3}, \alpha_{6}\right),\left(\alpha_{4}, \alpha_{5}\right),\left(\alpha_{4}, \alpha_{6}\right)$, $\left.\left(\alpha_{5}, \alpha_{6}\right)\right\}$. We see from Theorem 4 and Theorem 5 of Table 1 that $2 \leq \gamma_{t}\left(G_{2}\right) \leq 2$. Hence $\gamma_{t}\left(\mathrm{G}_{2}\right)=2$. Let $\mathrm{P}=\left\{\alpha_{1}, \alpha_{2}\right\}$. Then P is a DS as $\left(\alpha_{1}, \alpha_{3}\right),\left(\alpha_{1}, \alpha_{4}\right),\left(\alpha_{1}, \alpha_{5}\right),\left(\alpha_{2}, \alpha_{6}\right)$ are edges of G_{2}. Also $\left(\alpha_{1}, \alpha_{2}\right) \in E\left(G_{2}\right)$ implies P is a TDS. As $\mathrm{P}-\left\{\alpha_{1}\right\}$ and $\mathrm{P}-\left\{\alpha_{2}\right\}$ are not TDS, we conclude that P is a minimal TDS.

Note 3.2.1 As one can find more minimal TDS of G_{2} like $\left\{\alpha_{1}, \alpha_{3}\right\}\left\{\alpha_{1}, \alpha_{4}\right\},\left\{\alpha_{2}, \alpha_{3}\right\}$ we can say that the minimum TDS for G_{2} does not exist.

Theorem $3.3 \gamma_{\mathrm{t}}\left(\mathrm{G}_{3}\right)=4$.
Proof Consider the graph G_{3}. Let $\mathrm{V}\left(G_{3}\right)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}\right\}$ and $\mathrm{E}\left(G_{3}\right)=\{$ $\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{1}, \alpha_{4}\right),\left(\alpha_{1}, \alpha_{5}\right),\left(\alpha_{2}, \alpha_{3}\right),\left(\alpha_{2}, \alpha_{6}\right),\left(\alpha_{3}, \alpha_{4}\right),\left(\alpha_{3}, \alpha_{7}\right),\left(\alpha_{4}, \alpha_{8}\right)\left(\alpha_{5}, \alpha_{6}\right),\left(\alpha_{5}, \alpha_{8}\right)$, $\left.\left(\alpha_{6}, \alpha_{7}\right),\left(\alpha_{7}, \alpha_{8}\right)\right\}$.We see from Theorem 2 and Theorem 8 of Table 1 that $4 \leq \gamma_{t}\left(G_{3}\right) \leq$ 4. Hence $\gamma_{t}\left(\mathrm{G}_{2}\right)=4$. Let $\mathrm{P}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{7}, \alpha_{8}\right\}$. Then P is a DS as $\left(\alpha_{1}, \alpha_{4}\right),\left(\alpha_{1}, \alpha_{5}\right)$, $\left(\alpha_{2}, \alpha_{3}\right),\left(\alpha_{2}, \alpha_{6}\right)$ are edges of G_{3}. Also $\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{7}, \alpha_{8}\right) \in E\left(G_{3}\right)$. Therefore P is a TDS. Now
$\mathrm{G}\left[\mathrm{P}-\left\{\alpha_{1}\right\}\right]$ contains isolated vertex $\mathrm{u}_{2} ; \mathrm{G}\left[\mathrm{P}-\left\{\alpha_{2}\right\}\right]$ contains isolated vertex $\mathrm{u}_{1}, \mathrm{G}\left[\mathrm{P}-\left\{\alpha_{7}\right\}\right]$ contains isolated vertex $u_{8} ; G\left[P-\left\{\alpha_{8}\right\}\right]$ contains isolated vertex u_{7}. So we conclude that P is a minimal TDS.
Note 3.3.1 As one can find more minimal TDS of G_{3} like $\left\{\alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right\}$ we can say that the minimum TDS for G_{3} does not exist.

Theorem 3.4 $\gamma_{\mathrm{t}}\left(\mathrm{G}_{4}\right)=2$.
Proof Consider the graph G_{4}. Let $\mathrm{V}\left(G_{4}\right)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right.$, $\}$ and $\mathrm{E}\left(G_{4}\right)=\left\{\left(\alpha_{1}, \alpha_{2}\right)\right.$, $\left.\left(\alpha_{1}, \alpha_{4}\right),\left(\alpha_{1}, \alpha_{5}\right),\left(\alpha_{2}, \alpha_{3}\right),\left(\alpha_{2}, \alpha_{5}\right),\left(\alpha_{3}, \alpha_{4}\right),\left(\alpha_{3}, \alpha_{5}\right),\left(\alpha_{4}, \alpha_{5}\right)\right\}$.We see from Theorem 8 and Theorem 13 of Table 2 that $2 \leq \gamma_{t}\left(G_{1}\right) \leq 2$. Hence $\gamma_{t}\left(\mathrm{G}_{4}\right)=2$. Let $\mathrm{P}=\left\{\alpha_{1}, \alpha_{2}\right\}$. Then P is a DS as $\left(\alpha_{1}, \alpha_{4}\right),\left(\alpha_{1}, \alpha_{5}\right),\left(\alpha_{2}, \alpha_{3}\right)$ are edges of G_{4}. Also $\left(\alpha_{1}, \alpha_{2}\right) \in E\left(G_{4}\right)$. Therefore P is a TDS. Now $\mathrm{P}-\left\{\alpha_{2}\right\}$ and $\mathrm{P}-\left\{\alpha_{1}\right\}$ are not TDS. So we conclude that P is a minimal TDS.

Note 3.4.1 As one can find more minimal TDS of G_{4} like $\left\{\alpha_{1}, \alpha_{4}\right\},\left\{\alpha_{1}, \alpha_{5}\right\}$ we can say that the minimum TDS for G_{4} does not exist.

Theorem 3.5 Let P be a TDS in a graph G . Then P is a minimal TDS if and only if $|e p n(v, P)| \geq 1$ or \mid ipn $(v, P) \mid \geq 1$ for every v in $P[4]$.

Theorem $3.6 \gamma_{\mathrm{t}}\left(\mathrm{G}_{5}\right)=8$.

Proof

Let
$\mathrm{V}\left(\mathrm{G}_{5}\right)$
=
$\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}, \alpha_{9}, \alpha_{10}, \alpha_{11}, \alpha_{12}, \alpha_{13}, \alpha_{14}, \alpha_{15}, \alpha_{16}, \alpha_{17}, \alpha_{18}, \alpha_{19}, \alpha_{20}\right\}$ and $\mathrm{E}\left(\mathrm{G}_{5}\right)$ $=\left\{\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{1}, \alpha_{5}\right),\left(\alpha_{1}, \alpha_{15}\right),\left(\alpha_{2}, \alpha_{3}\right),\left(\alpha_{2}, \alpha_{7}\right),\left(\alpha_{3}, \alpha_{4}\right),\left(\alpha_{3}, \alpha_{9}\right),\left(\alpha_{4}, \alpha_{5}\right),\left(\alpha_{4}, \alpha_{11}\right)\left(\alpha_{5}, \alpha_{13}\right)\right.$, $\left(\alpha_{6}, \alpha_{7}\right),\left(\alpha_{6}, \alpha_{15}\right),\left(\alpha_{6}, \alpha_{16}\right),\left(\alpha_{7}, \alpha_{8}\right),\left(\alpha_{8}, \alpha_{9}\right),\left(\alpha_{8}, \alpha_{17}\right),\left(\alpha_{9}, \alpha_{10}\right),\left(\alpha_{10}, \alpha_{11}\right),\left(\alpha_{10}, \alpha_{18}\right)$, $\left(\alpha_{11}, \alpha_{12}\right),\left(\alpha_{12}, \alpha_{13}\right),\left(\alpha_{12}, \alpha_{19}\right),\left(\alpha_{13}, \alpha_{14}\right),\left(\alpha_{14}, \alpha_{15}\right),\left(\alpha_{14}, \alpha_{20}\right),\left(\alpha_{16}, \alpha_{17}\right),\left(\alpha_{16}\right.$, $\left.\alpha_{20}\right),\left(\alpha_{17}, \alpha_{18}\right),\left(\alpha_{18}, \alpha_{19}\right),\left(\alpha_{19}, \alpha_{20}\right)$. Consider the set $\mathrm{P}=\left\{\alpha_{2}, \alpha_{4}, \alpha_{7}, \alpha_{8}, \alpha_{10}, \alpha_{11}, \alpha_{14}\right.$, $\left.\alpha_{20}\right\}$. As $\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{3}, \alpha_{4}\right),\left(\alpha_{4}, \alpha_{5}\right),\left(\alpha_{6}, \alpha_{7}\right),\left(\alpha_{8}, \alpha_{9}\right),\left(\alpha_{11}, \alpha_{12}\right),\left(\alpha_{13}, \alpha_{14}\right),\left(\alpha_{14}, \alpha_{15}\right),\left(\alpha_{16}\right.$, $\left.\alpha_{20}\right),\left(\alpha_{8}, \alpha_{17}\right),\left(\alpha_{10}, \alpha_{18}\right),\left(\alpha_{19}, \alpha_{20}\right)$ in $E\left(G_{5}\right)$ we TDS see that P is a DS of G_{5}. Moreover $\left(\alpha_{2}, \alpha_{7}\right),\left(\alpha_{4}, \alpha_{11}\right),\left(\alpha_{7}, \alpha_{8}\right),\left(\alpha_{10}, \alpha_{11}\right),\left(\alpha_{14}, \alpha_{20}\right)$ in $\mathrm{E}\left(\mathrm{G}_{5}\right)$. So P is a TDS. Now we claim that P is a minimal TDS of G_{5}. This can be easily seen from the fact that P -
 P. Hence we conclude that P is a minimal TDS. We can also double check this assertion by verifying the following fact. Fact : If P is a minimal TDS of a graph G with n ≥ 3 vertices then every element α of P satisfies one of the two criteria given below: 1) there exist a w in V-P such that $\mathrm{N}(\mathrm{w})-\mathrm{P}=\{\alpha\} 2$) The subgraph induced by $\mathrm{P}-\{\alpha\}$ includes in it an isolated vertex. It is easy to verify that $\alpha_{2}, \alpha_{4}, \alpha_{8}, \alpha_{10}, \alpha_{14}, \alpha_{20}$ satisfies the criteria 1 and α_{7}, α_{11} satisfies the criteria 2. Hence $\gamma_{t}\left(\mathrm{G}_{5}\right)=8$.

Note 3.6.1 As $\left\{\alpha_{1}, \alpha_{2}, \alpha_{10}, \alpha_{11}, \alpha_{12}, \alpha_{16}, \alpha_{17}, \alpha_{20}\right\}$ is an alternative minimal TDS of G_{5}, we conclude that the minimum TDS does not exist for G_{5}.

Theorem $3.7 \gamma_{\mathrm{t}}\left(\mathrm{G}_{6}\right)=4$.
Proof Consider the graph G_{6}. Let $\mathrm{V}\left(G_{6}\right)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}, \alpha_{9}, \alpha_{10}, \alpha_{11}, \alpha_{12}\right\}$ and $\mathrm{E}\left(G_{6}\right)=\left\{\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{1}, \alpha_{3}\right),\left(\alpha_{1}, \alpha_{4}\right),\left(\alpha_{1}, \alpha_{5}\right),\left(\alpha_{1}, \alpha_{8}\right),\left(\alpha_{2}, \alpha_{3}\right),\left(\alpha_{2}, \alpha_{5}\right),\left(\alpha_{2}, \alpha_{9}\right)\right.$, $\left(\alpha_{2}, \alpha_{12}\right),\left(\alpha_{3}, \alpha_{8}\right),\left(\alpha_{3}, \alpha_{11}\right),\left(\alpha_{3}, \alpha_{12}\right),\left(\alpha_{4}, \alpha_{5}\right),\left(\alpha_{4}, \alpha_{6}\right),\left(\alpha_{4}, \alpha_{7}\right),\left(\alpha_{4}, \alpha_{8}\right),\left(\alpha_{5}, \alpha_{9}\right),\left(\alpha_{5}, \alpha_{6}\right)$, $\left(\alpha_{6}, \alpha_{7}\right),\left(\alpha_{6}, \alpha_{9}\right),\left(\alpha_{6}, \alpha_{10}\right),\left(\alpha_{7}, \alpha_{8}\right),\left(\alpha_{7}, \alpha_{10}\right),\left(\alpha_{7}, \alpha_{11}\right),\left(\alpha_{8}, \alpha_{11}\right)$, $\left.\left(\alpha_{9}, \alpha_{10}\right),\left(\alpha_{9}, \alpha_{12}\right),\left(\alpha_{10}, \alpha_{11}\right),\left(\alpha_{10}, \alpha_{12}\right),\left(\alpha_{11}, \alpha_{12}\right)\right\}$. We see from Theorem 8 and Theorem 13 of Table 2 that $4 \leq \gamma_{t}\left(G_{6}\right) \leq 6$. Let $\mathrm{P}=\left\{\alpha_{2}, \alpha_{3}, \alpha_{6}, \alpha_{7}\right\}$. Then P is a DS as $\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{4}, \alpha_{6}\right),\left(\alpha_{2}, \alpha_{5}\right),\left(\alpha_{7}, \alpha_{8}\right),\left(\alpha_{6}, \alpha_{9}\right),\left(\alpha_{6}, \alpha_{10}\right),\left(\alpha_{7}, \alpha_{11}\right),\left(\alpha_{2}, \alpha_{12}\right)$ are edges of G_{6}. Also $\left(\alpha_{2}, \alpha_{3}\right),\left(\alpha_{6}, \alpha_{7}\right) \in E\left(G_{6}\right)$. Therefore P is a TDS. We know from Theorem 3.5 [4] that P is a minimal TDS. This is because, $\mathrm{pn}\left(\alpha_{2}, \mathrm{P}\right)=\left\{\alpha_{3}\right\}$ as $\mathrm{N}\left(\alpha_{3}\right) \cap \mathrm{P}=\left\{\alpha_{2}\right\}$ implies ipn $\left(\alpha_{2}, \mathrm{P}\right)=\mathrm{pn}\left(\alpha_{2}, \mathrm{P}\right) \cap \mathrm{P}=\left\{\alpha_{3}\right\}$. Similarly $\operatorname{ipn}\left(\alpha_{3}, \mathrm{P}\right)=\left\{\alpha_{2}\right\} ; \operatorname{ipn}\left(\alpha_{6}, \mathrm{P}\right)=\left\{\alpha_{7}\right\} ; \operatorname{ipn}\left(\alpha_{7}, \mathrm{P}\right)=$ $\left\{\alpha_{6}\right\}$. Hence \mid ipn $(\alpha, \mathrm{P}) \mid \geq 1$ for every α in P of G_{6}. Hence P is a minimal TDS of G_{6}.

Note 3.7.1 As $\left\{\alpha_{2}, \alpha_{3}, \alpha_{5}, \alpha_{6}\right\}$ is an alternative minimal TDS of G_{6} the minimum TDS does not exist for G_{6}.

4. Counter Example

Note that the Octahedron G_{2} is a counter example for Theorem 8 [1] which says : " If G is a connected graph of order at least 2, then $\gamma_{t}\left(G_{2}\right) \geq \operatorname{ecc}\left(C(G)+1\right.$ ". In G_{2}, note that $\mathrm{C}\left(G_{2}\right)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right\}$ as all vertices of G_{2} have equal eccentricity. So ecc $\left(\mathrm{C}\left(G_{2}\right)\right)$ $=\max \left\{d_{G_{2}}\left(\alpha, C\left(G_{2}\right)\right): \forall \alpha \in V\left(G_{2}\right)\right\}=2$. This implies $\gamma_{t}\left(G_{2}\right) \geq 2+1=3$, a contradiction to the fact that $\gamma_{t}\left(G_{2}\right)=2$ indicated by Theorem 4 and Theorem 5 stated in Table. 1 .

5. Conclusion

For all the six platonic graphs we have verified the various bounds (both lower and upper) for the TDN provided by 17 different results of various authors found in the literature. we have found the exact TDN for all the six platonic graphs. Also we have incidentally found a counterexample to one of the results obtained by DeLaVina et.al [1].

Acknowledgement

The second author (Yegnanarayanan Venkataraman) acknowledge the National Board of Higher Mathematics, Department of Atomic Energy, Government of India, Mumbai for financial support by their grant no. 02011/10/21NBHM- (R.P)/R\&D-II/8007/Date:13-07-2021 The first author acknowledges Kalasalingam Academy of Research and Education for its financial support by means of a Research Fellowship.

References

[1] DeLaVina, E., Liu, Q., Pepper, R., Waller, B., West, D.B.: Some conjectures of graffiti.pc on total domination. Congressus Number. 185, 81 -95(2007).
[2] J.A.Bondy., and U.S.R Murty., Graph Theory with Applications 1976 by Elsevier science Publishing Co., Inc.
[3] Cockeyne, E.J., Dawes, R.M., Hedetniemi, S.T.: Total domination in graphs. Networks 10, $211-$ 219(1980).
[4] Henning, M.A.: A linear Vizing- like relation relating the size and total domination number of a graph. J. Graph Theory 49, 285-290(2005).
[5] Henning, M.A., Yeo, A.: A new lower bound for the total domination number n graphs proving a Graffiti Conjecture. Manuscript.
[6] Henning, M.A., Yeo, A.: Girth and total domination in graphs. Graphs combin. 28, 199-214 (2012)
[7] Henning, M.A., Yeo, A.: Total domination in graphs with given girth. Graphs combin. 24, 333348(2008).
[8] Bollobas, B., Cockayne, E.J.: Graph -theoretic parameters concerning domination, indepen-dence, and irredundance. J. Graph theory 3, 214-249(1979).
[9] Sun, L.: An upper bound for the total domination number. J. Beijing Inst. Tech. 4, 111-114(1995).
[10] MacGillivray, G., Seyffarth, K.: Domination numbers of planar graphs. J. Graph Theory 22, 213229(1996).

