

DAMAGE CONTROL VERSUS EARLY DEFINITIVE SURGERY IN PEDIATRIC AND ADOLESCENT TRAUMA: A SYSTEMATIC REVIEW OF OUTCOMES AND STRATEGIES

Dr. ABDULLAH ALZAYEDI

HAD, Head of Pediatrics and PICU, Administration Department, First Health Cluster, Riyadh, Saudi Arabia.

SUBAHI OMER SUBAHI MOHAMED

General Surgical Resident, Emergency and Trauma Department, First Health Cluster, Riyadh, Saudi Arabia.

BAALQASIM NAJI ALSAHABI

Head Nurse, Emergency Department, First Health Cluster, Riyadh, Saudi Arabia.

ASHGAN MANSOUR ALDOSARI

Staff Nurse, Emergency Department, First Health Cluster, Riyadh, Saudi Arabia.

OHOUD AHMED ALASIRI

Staff Nurse, Emergency Department, First Health Cluster, Riyadh, Saudi Arabia.

MALAK MUSAAD ALQURASHI

Staff Nurse, Emergency Department, First Health Cluster, Riyadh, Saudi Arabia.

AFRAH MOHAMMED OTHMAN

Staff Nurse, Emergency Department, First Health Cluster, Riyadh, Saudi Arabia.

Abstract

Background: Whether damage control strategies (damage control surgery/laparotomy [DCS/DCL] or damage control orthopedics [DCO]) confer outcome advantages over early definitive surgery (EDS/ETC) in pediatric and adolescent trauma remains uncertain. **Methods:** We conducted a targeted systematic review of eight original studies, including registry analyses, national database studies, single-center cohorts, an audit, a technique series, and a case report involving injured children/adolescents requiring operative care. Outcomes included mortality, complications, length of stay (LOS), closure outcomes for open abdomen, and health-care utilization. Narrative synthesis was performed due to heterogeneity. Risk of bias was appraised qualitatively. **Results:** Across cohorts, DCL/DCS utilization in operative pediatric abdominal trauma ranged from 11–15% and was associated with worse presenting physiology and higher injury severity; compared with definitive laparotomy, DCL/DCS carried higher mortality (9% vs 2%) and longer LOS (17 vs 8 days) in national data, consistent with confounding by indication [13]. A national cohort of pediatric TBI with femur fracture reported DCO use in 14.9% with higher odds of inpatient death (OR=2.8) and resource utilization versus ETC after adjustment [7]. Open-abdomen series showed high survival (=93%) and feasible primary closure in many cases [10]. Registry data on long-bone/orthopedic stabilization suggested ETC predominance in younger children with no clear outcome detriment versus adults [6]. **Conclusions:** In pediatric trauma, DCL/DCS/DCO are used selectively for sicker patients and, unsurprisingly, track with higher crude adverse outcomes versus EDS/ETC. Evidence remains observational; standardized outcomes and pediatric-specific indications are needed.

Keywords: Pediatric Trauma; Damage Control Surgery; Damage Control Orthopedics; Early Definitive Surgery; Open Abdomen; Outcomes.

INTRODUCTION

Damage control (DC) concepts, rapid control of hemorrhage/contamination with delayed reconstruction, are integral to modern trauma care but remain variably applied and studied in children [1–5].

Inconsistency in reporting has hampered pooled inferences; a modified Delphi process recently defined a core outcome set for DCL (mortality, 30-day mortality, fascial closure and time to closure, abdominal complications, reoperation/unplanned re-exploration, GI anastomotic leak, secondary intra-abdominal sepsis, enterocutaneous fistula, and 12-month function), enabling more comparable future research [1].

Concurrently, pediatric blunt solid-organ injury (SOI) management has evolved toward non-operative strategies under APSA-aligned guidance; when operative intervention is required, emphasis is placed on judicious imaging, transfusion thresholds, and minimizing resource use in stable children [2].

Physiologic differences in children heighten susceptibility to the “lethal triad” and rapid heat loss; DC surgery in pediatrics therefore borrows adult principles but adapts technical details (exposure, packing, temporary closure) to pediatric anatomy and thermoregulation [3,4].

DC resuscitation emphasizes early hemostatic transfusion, limitation of crystalloids, and avoiding hypocalcemia/hypothermia; pediatric shock recognition relies on indices beyond hypotension, given late blood-pressure changes in children [5].

Together, these frameworks argue that DC should be reserved for physiologically exhausted children while maintaining a low threshold to abort prolonged operations in deteriorating patients.

Despite this conceptual clarity, pediatric evidence remains dominated by observational cohorts, registry analyses, and institutional experiences. Reported DCL rates in children undergoing urgent laparotomy are modest, and outcomes appear strongly confounded by indication, i.e., DCL is performed in the sickest children.

Similarly, for long-bone stabilization in polytrauma, the tension between DCO (temporary external fixation) and early total care (ETC) persists, with pediatric-specific data limited.

This review synthesizes original pediatric studies to compare outcomes of DC approaches versus early definitive strategies and to describe open-abdomen results in children. We interpret findings in light of contemporary pediatric trauma guidance and DC resuscitation principles [1–5].

METHODS

Protocol and eligibility. Following PRISMA guidance, we predefined the question: in pediatric trauma patients, what are the outcomes of damage control approaches (DCL/DCS/DCO) versus early definitive strategies (definitive laparotomy/ETC)?

Inclusion criteria: (i) original studies (any design) with pediatric/adolescent participants (typically $\leq 18-21$ years as defined in each study); (ii) trauma requiring operative care (abdominal/thoracic/laparotomy and/or long-bone/fracture stabilization); (iii) report of DC strategy (DCL/DCS/DCO) and at least one clinical outcome (mortality, LOS, complications, closure metrics, utilization). Exclusion: non-trauma, adult-only cohorts, editorials without data.

Data items and extraction. We extracted: design/setting, population/age, mechanism, DC/definitive strategy definitions, primary/secondary outcomes (mortality, LOS, complications; for open abdomen, primary fascial closure, days to closure; for fracture management, death, complications, LOS, charges). Where adjusted analyses were available, adjusted estimates were captured.

Risk of bias. Given heterogeneous observational designs (national/registry datasets, single-center cohorts, audit, case series/report), we qualitatively appraised risk: selection bias (case-mix, inclusion windows), misclassification (surrogate definitions of DCL), confounding by indication (sicker children receive DC), and outcome ascertainment.

Newcastle-Ottawa criteria were considered for cohorts; case series/report were not formally graded but treated as very low-certainty.

Synthesis. A meta-analysis was not attempted due to design heterogeneity (definitions of DCL, populations, outcomes).

We conducted a structured narrative synthesis, highlighting comparative findings (DCL/DCS/DCO vs definitive) where available, and describing open-abdomen outcomes. Summary tables present study characteristics and key outcomes.

RESULTS

Study Overview and Characteristics

Eight studies spanning 2002–2025 met criteria: two national database cohorts of urgent pediatric laparotomy and of pediatric TBI with femur fracture [13,7]; one multinational/registry analysis including pediatric orthopedics [6]; one single-center pediatric DCL cohort [12]; one regional audit of pediatric trauma laparotomies from South Africa [9]; one open-abdomen outcomes series [10]; one pediatric DCL wound-vac technique series [8]; and a pediatric case report of DC for grade IV hepatic injury [11].

Across urgent laparotomy datasets, DCL prevalence was approximately 12–15% among children requiring emergent abdominal operation [12,13], with DCL patients consistently exhibiting worse presenting physiology (higher ISS, tachycardia, lower SBP and temperature) and greater transfusion needs [13].

For long-bone fractures in pediatric TBI, DCO (temporary external fixation) was employed in =15% [7].

Table 1 summarizes designs, settings, strategies, and populations.

Table 1: Characteristics of included studies

Study (year)	Design/setting	Population	DC strategy vs comparator	Key outcomes reported
Horst et al. 2019 [6]	Registry (TR-DGU), Germany	Severe trauma with extremity fractures; children vs adults	DCO vs ETC (orthopedics)	Strategy use by age/severity; LOS, complications, mortality; factors for DCO
Feingold et al. 2025 [7]	National inpatient sample, USA	Pediatric TBI with femur fracture (≤ 21 y)	DCO vs ETC	Inpatient death, prolonged LOS, high charges (adjusted ORs)
Markley et al. 2002 [8]	Technique series, two centers (USA)	6 pediatric open-abdomen cases (sepsis/ACS)	Vacuum-packing temporary closure; corset approximation	Days with VAC, survival, primary closure feasibility
Reid et al. 2022 [9]	Single-center audit, South Africa	136 pediatric trauma laparotomies	DCS subset (n=16) vs overall	ICU use, complications, mortality overall and in DCS group
Spencer et al. 2024 [10]	Single-center cohort, USA	41–42 pediatric open-abdomen cases (2015–2022)	Open abdomen; “prolonged OA” subgroup	Survival, primary closure rate, infections, mesh use
Kobayashi et al. 2016 [11]	Case series, Japan	8-year-old, grade IV blunt liver injury	DCL with packing, temporary closure, TAE, delayed hepatectomy	Survival; rationale based on lethal triad/ACS
Villalobos et al. 2017 [12]	Single-center cohort, USA	371 pediatric trauma laparotomies	DCL (n=56) vs definitive laparotomy	Mortality, LOS, complications; predictors of death
Polites et al. 2017 [13]	NTDB (2010–2014), USA	2,989 pediatric urgent laparotomies	DCL (surrogate) vs definitive	DCL rate, physiology, transfusion, LOS, mortality

Comparative Outcomes: DCL/DCS vs Definitive Laparotomy (Abdominal Trauma)

Two large datasets compared DCL with definitive laparotomy among children requiring urgent abdominal operation. In the NTDB analysis (2010–2014), DCL (defined as a second laparotomy within 5–48 hours) occurred in 12%. DCL patients had higher ISS (median 25 vs 18), higher heart rate, lower SBP and temperature, and were more likely transfused pre-operatively [13].

Outcomes favored definitive laparotomy on crude comparison: longer LOS for DCL (17 vs 8 days) and higher mortality (9% vs 2%), consistent with sicker case-mix and confounding by indication [13]. Similarly, a single-center cohort (1996–2013) found 15% underwent DCL; overall survival in DCL was =55%, with median LOS 26 days, and DCL-associated complications including surgical site infection =18%, dehiscence 2%, and enterocutaneous fistula 2%. Multivariable analysis identified only higher ISS and lower arrival SBP as independent mortality predictors, not DCL per se [12].

A regional audit from South Africa reported a DCS rate =11% among pediatric trauma laparotomies with high mortality in the DCS subset (=37%), reflecting severe injury burden and penetrating mechanisms; overall mortality in the cohort was =5% [9].

Taken together, these studies indicate that DCL/DCS is reserved for physiologically deranged children and is not demonstrated to improve crude outcomes versus definitive laparotomy in unselected pediatric cohorts; rather, worse outcomes track with baseline severity [12,13]. Importantly, adjusted models (where available) suggest physiology and injury burden, not the label of DCL, drive mortality [12].

Open Abdomen Outcomes and Closure

Pediatric open-abdomen (OA) experience is limited but growing. In a modern series (2015–2022), overall survival was =93%; primary tissue closure was achieved in =58%, with the remainder requiring mesh; wound vac was the most common temporary closure, and secondary infections were frequent, especially among those with prolonged OA [10].

Historic pediatric technique reports describe vacuum-packing and innovative bedside “corset-like” fascial approximation, enabling primary closure within days in two children and survival in 5/6 cases [8]. These experiences underscore that temporary abdominal closure is feasible and often reversible in children when guided by resuscitative goals.

Orthopedic Damage Control Vs Early Total Care

In the TR-DGU registry spanning 2009–2014, among severe multiple-trauma patients with major extremity injury, children most often underwent ETC (=49% with AISExtremity \geq 3), whereas DCO increased with age and injury severity, including polyregional extremity injury; conservative care was used least.

Notably, the study reported no clear outcome differences between children and adults, and identified injury severity and age as independent drivers of DCO use in children [6]. In a national pediatric cohort with TBI plus femur fracture, DCO was applied in =14.9%; DCO patients had greater illness severity and complications and, after multivariable adjustment, higher odds of inpatient death (OR =2.8), prolonged LOS (OR =1.26), and higher total charges (OR =1.79) compared with ETC [7].

While these association signals persisted after adjustment, residual confounding and coding constraints (timing, indications) remain plausible.

Indications and Technical Application of Pediatric DCL

A detailed pediatric case illustrated multimodal DC in an 8-year-old with grade IV hepatic injury and lethal triad emergence: perihepatic packing + temporary negative-pressure closure, immediate hepatic artery embolization, and planned delayed hepatectomy achieved recovery and timely discharge, showcasing cross-disciplinary DC pathways tailored to pediatric physiology [11].

These technical principles mirror adult DC while accounting for smaller cavities, heat loss, and tissue fragility [8,11].

Table 2: Key outcomes comparing DC strategies vs definitive approaches

Domain	Abdominal trauma (DCL/DCS vs definitive)	Long-bone stabilization (DCO vs ETC)	Open abdomen
Utilization	DCL =12–15% in urgent pediatric laparotomy cohorts [12,13]	DCO =15% in pediatric TBI+femur [7]; DCO increases with age/severity in registry [6]	Contemporary pediatric OA cohorts (n=41–42) reported
Severity at baseline	DCL/DCS cohorts had higher ISS, tachycardia, lower SBP/temp; more transfusion [13]	DCO cohort: more extreme illness severity [7]	Indications: second-look/discontinuity, resuscitation, ACS
Mortality	Higher crude mortality with DCL (9% vs 2%) and in DCS subset of audit (=37%) [9,13]; ISS & SBP predicted death, not DCL per se [12]	DCO associated with higher adjusted odds of death (OR =2.8) vs ETC [7]	Survival =93% overall; closure achieved in majority [10]
LOS/resource use	Longer LOS with DCL (17 vs 8 days) [13]	Prolonged LOS and higher charges with DCO (adjusted) [7]	Days to closure varied; mesh required in =42% [10]
Complications	SSI =18%, ECF =2% in DCL cohort [12]	Higher early complications with DCO [7]	Secondary infections higher with prolonged OA [10]
Determinants	Physiology/injury burden drive DCL use and outcomes [12,13]	Severity and TBI likely drive DCO selection and outcomes [7]	Technique (VAC), timely closure influence results [8,10]

DISCUSSION

This review of eight pediatric/adolescent studies indicates that DC strategies (DCL/DCS/DCO) are applied to the sickest children, consistent with DC principles, and that crude outcomes appear worse than early definitive strategies due to case-mix rather than a demonstrable causal harm from DC itself. National and single-center datasets show higher ISS, deranged physiology, and greater transfusion among DCL recipients, with mortality and LOS correspondingly higher than definitive laparotomy; where modeled, ISS and hypotension, not the DCL label, predicted mortality [12,13]. For fractures, a national pediatric TBI cohort suggested DCO carried higher adjusted odds of death and resource use than ETC, but selection for DCO likely reflected unmeasured severity and neurologic trajectories [7]. Hence, pediatric DC should remain selective and physiology-guided, aligning with pediatric damage control fundamentals and hemostatic resuscitation practices [4,5].

The open-abdomen literature supports safety and feasibility in children, with high survival and primary closure in many cases when negative-pressure systems and staged approximation are used [8,10]. These findings dovetail with broader WSES guidance emphasizing early fascial closure, mitigation of infection/fistula risk, and cautious OA

indications [14]. Standardized outcome reporting is needed; the core outcome set for DCL proposes a pragmatic minimum (mortality at defined intervals, fascial closure and timing, abdominal/major complications, fistula, and functional outcomes) to reduce reporting bias and facilitate meta-analysis [1].

Within pediatric trauma systems, variation in DCL usage mirrors adult practice heterogeneity and underscores the need for center-level performance feedback and prospective pediatric registries capturing DC indications and time-stamped physiology [15]. Pediatric SOI guidelines emphasize non-operative care for stable children; when operative damage control is necessary, integration with TEG-guided transfusion, limited crystalloids, and temperature maintenance is essential to avoid the lethal triad [2,5]. Classic pediatric DC surgical adaptations, transverse exposure in small children, gentle packing, rapid contamination control, and temporary closure, remain relevant [3,4].

Implications: (1) Pediatric DC should be reserved for physiologically compromised patients with clear triggers (persistent acidosis, coagulopathy, hypothermia, escalating transfusion), (2) when DC is undertaken, plan for early re-look and closure, (3) studies should adopt the core outcome set and report adjusted analyses controlling for pre-operative physiology, and (4) in orthopedic polytrauma, consider ETC when safely feasible in children, with DCO for unstable physiology or competing priorities (severe TBI), while acknowledging residual confounding in current data [6,7].

Limitations of the evidence include retrospective designs, surrogate DCL definitions, coding constraints, center variation, and limited pediatric RCTs. Nonetheless, convergent findings across datasets support selective, physiology-first pediatric DC application aligned with contemporary pediatric trauma and resuscitation guidance [1–5,14,15].

CONCLUSION

In pediatric and adolescent trauma, damage control strategies (DCL/DCS/DCO) are appropriately concentrated among children with severe physiologic derangement and higher injury burden. Compared with early definitive surgery, DC cohorts show higher crude mortality, complications, and LOS, reflecting confounding by indication more than intrinsic harm. Open-abdomen approaches achieve high survival with primary closure feasible in many children. Future pediatric research should apply standardized DC outcomes, control rigorously for pre-operative physiology, and clarify pediatric-specific indications and thresholds to optimize selection between damage control and early definitive strategies.

References

- 1) Byerly S, Nahmias J, Stein DM, Haut ER, Smith JW, Gelbard R, et al. A core outcome set for damage control laparotomy via modified Delphi method. *Trauma Surg Acute Care Open*. 2022;7: e000821.
- 2) Lytle BD, Williams RF, Stylianos S. Management of pediatric solid organ injuries. *Children*. 2024; 11:667.
- 3) Hamill J. Damage control surgery in children. *Injury*. 2004; 35:708–12.

- 4) Tran A, Campbell BT. The art and science of pediatric damage control. *Semin Pediatr Surg.* 2017; 26:21–6.
- 5) Russell RT, Leeper CM, Spinella PC. Damage Control Resuscitation in Pediatric Trauma: What You Need to Know. *J Trauma Acute Care Surg.* 2023; Epub ahead of print. doi:10.1097/TA.0000000000004081.
- 6) Horst K, Andruszkow H, Weber CD, Pishnamaz M, Knobe M, Bläsius FM, et al. Surgical treatment strategies in pediatric trauma patients: ETC vs. DCO, an analysis of 316 pediatric trauma patients from the TraumaRegister DGU®. *Eur J Trauma Emerg Surg.* 2019; doi:10.1007/s00068-019-01092-7.
- 7) Feingold CL, Dominguez J, Jacoby M, Patel HA, Delbello D, Salik I. Damage control orthopedics versus early total care of femur fracture in a national cohort of pediatric patients with traumatic brain injury. *Injury.* 2025;56(3):112210. doi: 10.1016/j.injury.2025.112210.
- 8) Markley MA, Mantor PC, Letton RW, Tugge DW. Pediatric vacuum packing wound closure for damage-control laparotomy. *J Pediatr Surg.* 2002;37(3):512–4.
- 9) Reid B, Kong V, Xu W, Thirayan V, Clarke DL, et al. An audit of trauma laparotomy in children and adolescents highlights the role of damage control surgery. *S Afr J Surg.* 2022;60(2):97–? doi:10.17159/2078-5151/SAJS3732.
- 10) Spencer BL, Lotakis DM, Carducci J, Hoff L, Gingrich D, Gadepalli SK, Speck KE. Outcomes of prolonged open abdomen in children. *J Surg Res.* 2024; doi: 10.1016/j.jss.2024.02.010.
- 11) Kobayashi T, Kubota M, Arai Y, Ohyama T, Yokota N, Miura K, et al. Staged laparotomies based on the damage control principle to treat hemodynamically unstable grade IV blunt hepatic injury in an eight-year-old girl. *Surg Case Rep.* 2016; 2:134.
- 12) Villalobos MA, Hazelton JP, Choron RL, Capano-Wehrle L, Hunter K, Gaughan JP, Ross SE, Seamon MJ. Caring for critically injured children: An analysis of 56 pediatric damage control laparotomies. *J Trauma Acute Care Surg.* 2017;82(5):901–9.
- 13) Polites SF, Habermann EB, Glasgow AE, Zielinski MD. Damage control laparotomy for abdominal trauma in children. *Pediatr Surg Int.* 2017; doi:10.1007/s00383-017-4061-z.
- 14) Cocolini F, Roberts D, Ansaloni L, Ivatury R, Gamberini E, Kluger Y, et al. The open abdomen in trauma and non-trauma patients: WSES guidelines. *World J Emerg Surg.* 2018; 13:7.
- 15) Roberts DJ, Faris PD, Ball CG, Kirkpatrick AW, Moore EE, Feliciano DV, et al. Variation in use of damage control laparotomy for trauma-by-trauma centers in the United States, Canada, and Australasia. *World J Emerg Surg.* 2021; 16:53.