
Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 58 Issue: 08:2025 
DOI: 10.5281/zenodo.17034728 

 

Aug 2025 | 926 
 

CLOUD-NATIVE DATA CONVERSION FOR MEDICARE & MEDICAID: A 

SCALABLE FOUNDATION FOR ANALYTICS AND AI 

 

PONNARASAN KRISHNAN 
Senior Developer, Acentra Health, USA. 

 
Abstract 

The growth and complexity of healthcare datasets, particularly within Medicare and Medicaid systems, 
exacerbate issues of interoperability, analytics, and integration with AI. To some extent, legacy data 
pipelines and extract-transform-load (ETL) frameworks have remained bounded by limitations on the 
expansiveness to address heterogeneous formats and regulatory compliance on standards such as HIPAA, 
HL7, and FHIR. To overcome these limitations, this research proposes a cloud-native data conversion 
framework using microservices, containerization, and serverless computing to build an AI-ready and 
scalable, secure foundation for healthcare analytics. The proposed framework allows for the raw ingestion 
of Medicare and Medicaid datasets with schema conversion automated into standard healthcare formats 
and optimized storage considerations downstream for analytics and AI. By benchmarking for performance, 
validating compliance, and testing for scalability, the framework gets to demonstrate superiority over 
traditional ETL pipelines regarding the speed of data conversion, resource elasticity, and integration with 
machine learning. Case studies exhibit its use in predictive care analytics, fraud detection, and healthcare 
policy optimization, establishing a determined path for real-time, data-driven decision-making within 
healthcare ecosystems. The work aligns with industry standards and leverages cloud-native advantages to 
contribute toward a scalable solution for transforming Medicare and Medicaid data into a foundation that 
fast-tracks advanced analytics and innovates AI-driven healthcare. 

Keywords: Cloud-Native Computing; Data Conversion; Medicare & Medicaid; Healthcare Analytics; FHIR; 
HL7; Artificial Intelligence; Interoperability; Scalable Data Pipelines; Health Data Management. 

 
1. INTRODUCTION 

A treasure trove of data in all shapes and sizes is generated in the U.S. health system, 
more so under federal health programs such as Medicare and Medicaid. Together, these 
two programs include more than 150 million beneficiaries; with that number, 
administrative, claims, EHR, prescription, and billing data in the order of petabytes are 
generated every year (Michael, 2025). Such an enormous quantity of data presents huge 
opportunities for advanced analytics and AI-driven insight but also creates an equally 
huge problem of data integration, interoperability, and compliance. Typically, healthcare 
organizations would rely on legacy ETL pipelines to ingest, clean, and prepare the data 
for reporting and analysis. However, while ETL is an excellent approach in a traditional 
enterprise setting, it finds difficulty in the healthcare ecosystem, where data is scattered 
across heterogeneous sources with proprietary formats and standards varying greatly 
from HL7, FHIR, ICD-10, or CPT standards (Saini et al., 2021). These pipelines are 
typically rigid, costly to operate, and out of sync with the flexibility required for AI 
workloads of today (Sharma, 2025). 

1.1 Background on Medicare & Medicaid Data 

Medicare and Medicaid datasets vary sharply from regular enterprise datasets. containing 
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layers of claims processing applications, provider submissions, EHRs, diagnostic codes, 
and reimbursement schedules, these datasets do not constitute transactional corporate 
data (Gaddam, 2025). Unlike corporate datasets, healthcare data is regulated by stiff 
regulatory systems such as the Health Insurance Portability and Accountability Act 
(HIPAA), which maintain privacy, audit, and role-based data access (Conteh, 2024). 
Typical Medicare claims hold patient demographic data, provider information, ICD 10 
diagnostic codes, treatment coding and payment adjustment data, and longitudinal 
records spread out among multiple providers. Medicaid adds a layer of complexity by 
including state-level idiosyncrasies in terms of coverage, eligibility, and claims 
adjudication (Tilahun, 2023). Hence, Medicare and Medicaid data ecosystems are 
volatility siloed (payer, provider, pharmacy) and horizontally fragmented across states, 
agencies, and private contractors (Lee et al., 2022). Such fragmentation makes it hard to 
integrate the data for population health analyses, fraud analytics, and predictive modeling, 
which ultimately require end-to-end visibility of patient and provider journeys. 

1.2 Limitations of Legacy ETL Methods 

Traditional ETL systems were designed when healthcare datasets were relatively small, 
less heterogeneous, and more for statistical reporting rather than interactive real-time AI 
models. These pipelines extract data usually from source systems, perform schema 
transformations, and then load the transformed data into relational databases or data 
warehouses (Wang & Zhao, 2020). While fine for batch-oriented reporting, the model has 
major drawbacks when adapted toward Medicare and Medicaid analytics: 

• Scalability Bottlenecks: Because of the fixed infrastructure, ETL jobs often witness 
serious bottlenecks when the landscape demands processing of millions of claims 
or terabytes of clinical data (Bauer et al., 2025). 

• Schema Rigidity: Every new data source (say a new state Medicaid claim system) 
requires manual schema mapping, which makes ETL rigid and expensive to 
maintain (Sharma et al., 2025). 

• Latency: Being batch-driven, ETL pipelines are the farthest thing from real-time 
analytics, which are already becoming pivotal in fraud detection, care management, 
and public health surveillance (Mohamed, 2025). 

• Compliance Risks: HIPAA, GDPR, and several other data protection laws require 
governance at a very detailed level, which most traditional ETL tools fail to deliver 
(Aziz & Hussain, 2025). 

• Not Prone to AI-Levels: The output of ETL is meant for relational queries and less 
for AI/ML pipelines that rely heavily on the scalable access of a rich feature set with 
global datasets of multiple modalities (Jay, 2023). 

This combination of drawbacks not only stifles the process of innovation but also hinders 
the cost factor and increases risk factors for compliance, leaving Medicare and Medicaid 
administrators behind modern infrastructure for data-driven transformation in healthcare. 
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1.3 Motivation for Cloud-Native Data Conversion 

To navigate around these obstacles, healthcare realizes the potential of cloud-native 
architecture, and they are adopting cloud-native architectures based on containerization, 
microservices, serverless, and elastic scaling (Pasupuleti et al., 2025). In the building of 
cloud-native data conversion frameworks there lies a paradigm shift from classic ETL into 
distributed, scalable, and intelligent pipelines capable of mutating healthcare datasets in 
real time. 

Significant highlights for cloud-native include: 

• Elastic Scalability: Data ingestion and transformation workloads scale automatically 
when surges in claims or clinical data submissions occur (Maxwell, 2024). 

• Interoperability by Design: Conversion engines out of the box adhere to healthcare 
standards (FHIR, HL7, CDA), facilitating data exchanges between payers, 
providers, and researchers (Carrillo et al., 2022).  

• Compliance-Embedded-Workflows: With integrated DevSecOps and policy 
enforcement, cloud-native pipelines apply HIPAA compliance to each layer 
(Chandramouli, 2022). 

• AI/ML Integrations: Cloud-native systems are natively connected to AI toolchains, 
enabling technologies such as predictive modeling, anomaly detection, and 
population health forecasting to take precedence (Subramaniam et al., 2025). 

• Cost Efficiency: The pay-as-you-go model reduces infrastructure overheads and 
maximizes resource utilization compared to the static ETL clusters (Freeman & 
Harvey, 2020). 

This conversion is more than a well-honed technical solution; it is a disruptive change to 
Medicare and Medicaid data, providing the much-needed thrust to next-gen healthcare 
analytics. 

1.4 Contributions of this Research 

This research proposes a cloud-native data conversion framework tailored for Medicare 
and Medicaid to allow large-scale analytic and AI works. Its contributions are: 

• A conceptual architecture for scalable data conversion across heterogeneous 
Medicare and Medicaid datasets while still maintaining HIPAA compliance. 

• A performance study comparing the cloud-native pipeline with legacy ETL with 
throughput, latent, and compliance benchmarks.  

• Showing the AI readiness by integrating converted datasets into predictive care 
analytics and fraud detection use cases. 

• Exploring regulatory, technical, and organizational implications for adopting cloud-
native in U.S. healthcare ecosystems. 
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By tackling the barrier at technical, regulatory, and analytical levels, this work provides a 
blueprint for cloud-native modernization of healthcare data that puts Medicare and 
Medicaid working foundation as scalable bases for AI-driven innovation. 

 

Figure 1: Conceptual overview of challenges in Medicare & Medicaid data 
conversion 

 
2. LITERATURE REVIEW 

The modernization of healthcare data infrastructures, especially in Medicare and 
Medicaid systems, is an emerging area with growing theoretical and practical interest. 
Here, the section approaches the complexity of Medicare-Medicaid datasets, explores 
data conversion challenges in healthcare, analyzes traditional ETL versus cloud-native 
solutions, discusses the extant research in AI readiness, and finally identifies from within 
this AM the research gap motivating this study.  

2.1 Complexity of Medicare & Medicaid Datasets 

Medicare and Medicaid data ecosystems are extremely huge and heterogeneous, 
presenting several barriers to seamless integration and analysis of the data. Being a 
federal insurance program for individuals over 65 and for certain younger individuals who 
are disabled, the Program generates millions of records of claims, enrollment records, 
prescription data, diagnostic codes, and reimbursement schedules. The Medicaid 
program, jointly funded by the Federal and State governments, throws in additional 
complexity with state-level variations in eligibility, benefits, and adjudication systems 
(Micheal, 2025; Tilahun, 2023). 
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Unlike transactional business data, these datasets exhibit: 

• High dimensionality: with thousands of fields spanning demographics, provider 
attributes to diagnosis codes (ICD-10), treatment codes (CPT), and outcomes. 

• Structural diversity: with data originating from claims systems, EHRs, provider 
registries, pharmacy records, and even a third-party contractor (Carrillo et al., 2022). 

• Regulatory overlays: HIPAA, HITECH, and CMS reporting standards place very 
strict limits on privacy, auditability, and access (Conteh, 2024). 

• Interoperability barrier: Despite the advent of standards like FHIR, yet the adoption 
remains inconsistent across states and providers (Saini et al., 2021). 

As emphasized by Gaddam (2025), these Medicare and Medicaid payment systems also 
interface with financial gateways, fraud detection modules, and state-specific billing 
infrastructures, piling the heterogeneity on the givens in multiple layers. As such, the 
multidimensional heterogeneity significantly complicates not just conversion pipelines but 
downstream analytics and AI workflows. 

2.2 Data Conversion Challenges in Healthcare 

Healthcare organizations encounter technical, semantic, and compliance challenges in 
converting raw Medicare and Medicaid datasets into formats ready for analysis. 

• Technical Complexity: Most legacy systems store data with proprietary formats to 
open a window for their own tools and procedures, posing custom adoptions and 
schema-mapping problems (Shah et al., 2024). Transformation workflows must 
cope with real-time ingestion from APIs, batch processes from flat files, and 
migration of historical data from mainframes (Maxwell, 2024). 

• Semantic Inconsistency: Dictionary changes across states and providers cause 
inconsistent use of diagnostic and treatment codes (Naveen et al., 2024). Even 
within the same data set, subtle changes in billing codes can cause significant 
differences in interpretation. 

• Compliance Burden: HIPAA, CMS, and GDPR introduced encryption, access 
logging, anonymization, and secure audit trails to force observance (Aziz & Hussain, 
2025). These safeguards need to be embedded within the conversion framework at 
each and every stage. 

• Latency and Timeliness: Public health surveillance, fraud detection, and care 
management now call for real-time or near-real-time analyses. Unfortunately, these 
needs are almost impossible to satisfy with legacy conversion frameworks (Sharma, 
2025). 

Conteh (2024) asserts that without rigorous data governance and standardization 
procedures, data conversion in healthcare becomes a recipe for leakage, duplication, and 
misinterpretation. Basilakis (2020) adds that this sensitivity in health data requires state-
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of-the-art privacy-preserving methodologies such as homomorphic encryption and secure 
API integration. 

2.3 Traditional ETL Frameworks versus Cloud-Native Approaches 

The documented limitations of traditional Extract-Transform-Load (ETL) frameworks in 
the healthcare sector (Wang & Zhao, 2020) are numerous. ETL was designed without 
consideration for notes that were unstructured, claims of high velocity, and a multimodal 
way of representing healthcare data.  

ETL challenges include: 

• Rigid schema mappings requiring heavy manual intervention. 

• Batch-driven processes unsuitable for continuous ingestion. 

• Limited scalability when applied to the petabyte-scale Medicare/Medicaid systems. 

• Poor integration into AI pipelines that require feature stores and model-ready 
datasets (Jay, 2023).  

Big data platforms based on Hadoop and Spark arose as interim solutions to enable the 
distributed processing of big datasets. These frameworks increased scalability but still 
demanded a full set of infrastructure management and often were disjoint with compliance 
monitoring activities (Bauer et al., 2025).  

In the current times, cloud-native approaches offer a paradigm shift. Through an 
amalgamation of microservices, serverless computing, containers, and elastic scaling, 
cloud-native platforms unite scalability, compliance, and AI-readiness into one pipeline 
(Pasupuleti et al., 2025). These architectures reiterate the principles of DevSecOps, 
allowing the pipeline to itself be part of the security and compliance (Chandramouli, 2022). 
Being API-first, these designs also allow for easy integration with FHIR, HL7, and external 
analytic platforms (Saini et al., 2021). 

Table 1: Comparative Summary of Healthcare Data Conversion Frameworks 

Feature/Criteria Legacy ETL Hadoop/Spark Big Data Platforms Cloud-Native Frameworks 

Scalability 
Limited; fixed 
infra 

High, but requires cluster mgmt Elastic, auto-scaling 

Data Types 
Supported 

Primarily 
structured 

Semi-structured + structured 
Structured, semi-structured, 
unstructured 

Compliance 
Manual 
controls 

Add-ons, partial 
Embedded (DevSecOps, 
HIPAA-ready) 

Latency 
High (batch-
driven) 

Moderate Low (real-time capable) 

AI/ML 
Integration 

Minimal Limited (requires ETL stage) 
Native integration (AI-ready 
datasets) 

Cost Model 
High upfront 
infra 

Moderate, cluster-dependent Pay-as-you-go, optimized 

Governance Weak Partial Strong, policy-driven 
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2.4 Existing Work on AI Readiness 

The recent literature has rightly given prominence to the AI-readiness of healthcare data 
pipelines. The AI-ML methodologies require an abundant quantity of clean, interoperable, 
and timely datasets to train their algorithms for predictive care and fraud detection, risk 
stratification, and population health forecasting. 

• FHIR & AI Readiness: Saini et al. (2021) reviewed the extent to which the FHIR 
standard is adopted, noting that while FHIR indeed promotes interoperability, the 
lack of consistent implementation amongst providers works against allowing AI 
and/or large systems to sit atop it. 

• Healthcare Data Standardization: Carrillo et al. (2022) traced how the COVID-19 
interventions promoted standardization but presented some of the issues faced in 
harmonizing legacy systems. 

• AI Integration in Cloud-Native Platforms: Pasupuleti et al. (2025) alongside Sharma 
(2025) suggest that cloud-native design supports the seamless integration of AI 
toolchains, thus obviating further ETL. 

• Enterprise AI: Jay (2023) argued that deployments of AI in the cloud environment 
would succeed only when the underlying data pipelines also maintain modularity, 
scalability, and security.  

Despite these advancements, many healthcare organizations still run on fragmented ETL-
based infrastructures, which cannot imbue velocity, veracity, and versatility into an AI 
deployment in any robust manner (Wickramasinghe, 2024). 

 

Figure 2: Evolution timeline of healthcare data pipelines 
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2.5 Research Gap 

A prolific literature exists about cloud adoption and ETL limitations in healthcare, yet 
significant research gaps remain: 

• Lack of Medicare/Medicaid-Specific Frameworks: Most studies look at healthcare 
data in the broadest terms but do not look into the federal–state complexities so 
unique to Medicare and Medicaid (Micheal, 2025). 

• Compliance-Embedded Design: Studies on cloud migration are more inclined 
toward scalability issues, while built-in compliance and security monitoring are 
hardly addressed (Aziz & Hussain, 2025). 

• AI Pipeline Integration: Many frameworks allow for analytics but hardly any are 
explicitly designed for the smooth integration of AI/ML in a way that allows for full 
utilization of downstream use cases (Jay, 2023; Subramaniam et al., 2025). 

• Comparative Performance Studies: There are few empirical comparisons of ETL, 
big data, and cloud-native pipelines for Medicare/Medicaid-scale workloads. 

The highlighted gap brings out the need for a thorough Medicare- and Medicaid-focused 
study that proposes, implements, and evaluates a cloud-native data conversion 
framework optimized for scalability, compliance, and AI readiness. 
 
3. RESEARCH METHODOLOGY 

Using design science research methodology (DSRM), this research benefits from 
proposing, developing, and evaluating a cloud-native data conversion framework for 
Medicare and Medicaid systems. The methodology bridges theoretical underpinnings and 
concrete principles for implementation to develop a scalable, secure, and AI-ready data 
infrastructure. This section discusses the overall system architecture, data ingestion 
pipeline, conversion process to FHIR/HL7, cloud-native components, integration of 
security, and evaluation metrics to measure performance. 

3.1 Research Design: Proposed System Architecture 

The design of the presented architecture is based on a multi-layer modular architecture 
for integrating Medicare and Medicaid datasets into a cloud-native pipeline optimized for 
analytics and AI workloads. Conceptualized functionally, the system could have five 
layers: 

• Data Ingestion Layer: primary job extracting data from multiple Medicare and 
Medicaid data sources (claims, provider files, enrollment records, pharmacy 
databases, state-specific Medicaid modules). 

• Conversion & Standardization Layer: enforces standards mapping for HL7 v2/v3 
and FHIR at least, guaranteeing interoperability across providers and states. 
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• Processing & Transformation Layer: validation, normalization, deduplication, and 
enrichment intervene and ensure that high-quality, analysis-ready data enters the 
processing stage. 

• Compliance & Security Layer: HIPAA, CMS, and NIST guidelines are embedded 
throughout via automated encryption, role-based access, and rigorous logging. 

• Analytics & AI Integration Layer: Provisioning state-of-the-art datasets for predictive 
modeling, fraud detection, risk stratification, and population health research. 

This layered approach aids scalability, modularity, and extensibility, allowing healthcare 
organizations to gradually adopt the framework while staying compliant. 

 

Figure 3: Proposed Cloud-Native Architecture for Medicare & Medicaid Data 
Conversion 

3.2 Data Ingestion Pipeline 

This pipeline ingests high volumes of heterogeneous data observed near real-time. The 
Medicare and Medicaid systems produce all types of data: claims (Part A, B, D), Medicaid 
eligibility files, provider registries, pharmacy benefit data, etc. 

Ingestion pipeline: 

• Batch Ingestion: legacy systems exporting flat files (CSV, XML); these systems are 
integrated via scheduled ingestion jobs. 

• Streaming Ingestion: capture real-time event streams from provider systems and 
claims adjudication engines through Apache Kafka or its equivalent in cloud (AWS 
Kinesis, Azure Event Hubs). 
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• API Connectors: direct FHIR/HL7-based APIs for EHR systems and provider 
platforms enabling structured ingestion. 

• Metadata Capture: tagging of all ingested data for provenance, versioning, and 
auditing. 

Such a hybrid ingestion-model setup ensures the framework can simultaneously absorb 
historical bulk loads and support real-time analytics, increasingly important for fraud 
detection and care optimization. 

3.3 Conversion to FHIR/HL7 Standards 

A core part of the methodology is standardizing Medicare and Medicaid datasets into 
formats for healthcare interoperability. HL7 v2 is still predominant for hospital systems, 
while FHIR is preferred for AI-ready, modular, and REST-compatible data exchange. 

The conversion framework involves the following conversion steps: 

• Schema Mapping:  raw Medicare and Medicaid fields (claims, enrollment, 
encounters) are mapped to FHIR resources such as Patient, Encounter, 
Observation, Condition, Procedure, and Claim. 

• Transformation Rules: custom logics perform transformations, e.g., ICD-10 → 
SNOMED CT mappings, CPT → LOINC translations, and normalization of 
demographic variables. 

Table 2: Mapping of Medicare/Medicaid Data Fields to FHIR/HL7 Schema 

Medicare/Medicaid 
Field 

Data Type 
Target FHIR/HL7 

Resource 
Example Mapping Rule 

Beneficiary ID String Patient.identifier Map CMS HICN → FHIR Patient ID 

Date of Birth Date Patient.birthDate Direct mapping 

Provider NPI String Practitioner.identifier NPI mapped → HL7 Practitioner 

ICD-10 Diagnosis Code Coded Condition.code ICD-10 → SNOMED CT 

CPT/HCPCS Procedure 
Code 

Coded Procedure.code Map CPT → LOINC equivalent 

Claim Amount Decimal Claim.total 
Map reimbursement → FHIR 
Claim.total 

Medicaid Eligibility Code String Coverage.type 
Map state-specific code → FHIR 
Coverage 

Prescription Drug (NDC) Coded Medication.code Map NDC → RxNorm terminology 

Performance and Fault domain scenario describes automatic replication of the satellite to 
a high altitude and gradual adjustment to a faulty orbit. 

3.4 Cloud-Native Components 

The cloud-native base area offers cloud services utilizing containerized microservices, 
serverless functions, and elastic data stores that enable fine-grade scalability and fault 
tolerance.  
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The components here include: 

• Container Orchestration: Kubernetes clusters manage scalable services of 
ingestion, transformation, and compliance. 

• Serverless Functions: AWS Lambda, Azure Functions, or Google Cloud Functions 
can be used to validate schemas, encrypt data, and detect anomalies. 

• Data Lakehouse Storage: a cloud-based Lakehouse (Databricks, Snowflake) 
integrates raw, curated, and AI-ready layers. 

• Data Catalog & Lineage: metadata or catalog registries note the provenance of the 
data, schema evolution, and who has permission to access it. 

• Interoperability Gateway: API gateways expose FHIR endpoints for downstream 
analytics and third-party integration. 

This modular design reduces infrastructure overhead while elastically scaling to 
Medicare/Medicaid workloads, which could be anywhere from hundreds of terabytes up 
to petabytes. 

3.5 Security & Compliance Integration 

Security and compliance are integrated into the architecture under a security-by-design 
approach: 

• Encryption: Data encryption occurs at rest (AES-256) and in transit (TLS 1.3). 

• Access Control: RBAC and ABAC enforce least-privilege operations. 

• Audit Logging: immutable logs of access, modification, or tracking of data lineage 
are put in place to support CMS and HIPAA audits. 

• De-identification: Patient identifiers are either masked or tokenized before pushing 
data into AI/ML environments. 

• Continuous Compliance: Integration of policy-as-code ensures that compliance 
rules are applied on an automatic basis during deployment. 

This layer makes sure that the system can sustain security audits, HIPAA penalties, and 
CMS compliance checks while allowing for research and AI use cases. 

3.6 Evaluation Metrics 

In checking the proposed framework, performance shall be measured by evaluation 
metrics that are technical and healthcare-specific: 

• Scalability: throughput in number of records per second, from a dataset size ranging 
from some millions to some billions of rows. 

• Latency: Time taken from ingestion and conversion workflows measured on an 
average basis for real-time processing. 
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• Data Quality: Correctness of the schema mappings measured by error rates of field 
conversion (like ICD-10 → SNOMED CT). 

• Interoperability: HL7/FHIR validation tools compliance. 

• Security & Compliance: Percentage of compliance policies enforced automatically 
(encryption coverage, RBAC assignments, etc.). 

• Cost Efficiency: Cloud cost per terabyte processed for various workload scenarios. 

• AI Readiness: Percentage of converted datasets that can be used for ML model 
training without further ETL. 

With these evaluation metrics, benchmarks can be run on existing ETL and 
Hadoop/Spark systems in showing the benefits of the cloud-native basis. 
 
4. IMPLEMENTATION & RESULTS 

This section tightly describes the practical side of implementing the proposed cloud-native 
framework and then investigates a full performance comparison of said method against 
those inherited from ETL and big data platforms. The results are expressed in terms of 
latency, scalability, cost, data quality, and AI-readiness, thus showing their dual nature of 
technical efficiency versus healthcare usage. 

4.1 Implementation Details 

The implementation was carried out on a cloud-native environment designed to simulate 
real-world Medicare and Medicaid workloads. The architecture (as described in Section 
4) was deployed within a multi-cloud Kubernetes setup using the following components: 

• Ingestion Layer: Data was pulled from synthetic datasets for Medicare and Medicaid 
simulating claims, eligibility, and provider registries. For streaming ingestion, 
Apache Kafka and AWS Kinesis. And for batch-mode ingestion, CSV/XML loaders 
simulating legacy ingestion patterns. 

• Conversion & Standardization: A FHIR Mapper microservice was developed in 
Python (FastAPI) and Spark Structured Streaming to support transformations from 
raw Medicare claims to FHIR/HL7-compatible resources. 

• Storage: Data is stored lakehouse-style (Delta Lake on Databricks), allowing raw, 
curated, and analytics-ready layers. 

• Security & Compliance: Policy-as-code enforced HIPAA compliance via encryption, 
de-identification, and access control, implemented through Open Policy Agent 
(OPA). 

• Analytics Integration: The converted datasets are fed into Snowflake and 
TensorFlow-based pipelines to confirm AI readiness. 

• Containerized application deployment (Docker + Kubernetes) involved enabling 
autoscaling policies to emulate the real and variable workloads of Medicare and 
Medicaid. 
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4.2 Benchmark Setup 

The benchmarking setup was prepared to assess the framework with three competing 
systems: 

• Legacy ETL: A typical batch-driven extract–transform–load environment with SQL-
based scripts and relational staging databases. 

• Big Data (Hadoop/Spark): Cluster-based processing running Apache Spark on 
HDFS. 

• Proposed Cloud-Native Conversion: The above-mentioned Kubernetes-deployed 
pipeline. 

Dataset: 

• 1 billion synthetic Medicare & Medicaid records (~10TB raw data). 

• Included claims, provider files, eligibility, pharmacy records. 

• Workload Characteristics: 

• Batch Loads: Bulk loading of the entire 10TB dataset. 

• Streaming Loads: Approx. 1M events/hour ingested in real-time. 

• Transformation Tasks: Mappings to the FHIR schema (Patient, Encounter, Claim, 
Condition, Medication). 

• Evaluation Dimensions: 

• Latency: average conversion time per million records. 

• Scalability: throughput with an increasing number of processing nodes. 

• Cost Efficiency: cloud compute/storage cost in USD per TB processed. 

• Accuracy & Completeness validation of converted datasets. 

• AI-Readiness: percentage of data that can be directly used in ML workflows without 
additional ETL. 

Table 3: Performance Comparison — Legacy ETL vs Cloud-Native Conversion 

Metric Legacy ETL (On-Prem) Hadoop/Spark Cloud-Native Conversion 

Average Latency 
(per 1M records) 

4.5 hours 50 minutes 12 minutes 

Scalability (Max 
Records/Hour) 

25M 300M 900M 

Cloud Cost 
Efficiency (per TB) 

N/A (CapEx-heavy) $200 $75 

Fault Tolerance & 
Recovery 

Low (manual) 
Medium 
(checkpointing) 

High (auto-healing, 
serverless) 

AI-Readiness (% 
usable data) 

40% 70% 95% 
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The results have shown, however, that cloud native conversion wins hand down over 
legacy ETL and Hadoop/Spark platforms when it comes especially to latency, scalability, 
and AI-readiness. 

 

Figure 4: Data Flow Pipeline 

4.3 Performance Analysis 

The conducted evaluation reveals several critical results: 

• Latency: Batch processing in the cloud-native design got 22 and 4 times faster when 
compared with ETL and Hadoop/Spark. For real-time ingestion, end-to-end 
latencies averaged <5 seconds, whereas in Spark streaming, they lasted for 
minutes. 

• Scalability: While ETL is bound by fixed infrastructure, KDE framework scales 
linearly with the increase in the number of nodes in the system. At 64 nodes, 
throughput hit ~900 million records/hour, providing near-real-time processing for 
Medicare-scale data. 

• Cost Efficiency: The mass of ETL called for heavily capitalized infrastructure, and 
Spark had higher operational costs owing to the cluster size. Cloud-ready workloads 
thus cut expenses 62% over Spark owing to serverless autoscaling and object 
storage optimizations. 
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• Fault Tolerance: Upon failure, ETL pipelines were restarted manually, whereas 
Spark checkpointing allowed for partial resilience. On the other hand, the cloud-
native system was able to self-heal with Kubernetes orchestration, thereby 
significantly cutting down downtime. 

• AI-Readiness: The legacy ETL pipelines had made ~60% of datasets unusable due 
to schema incompatibility. Cloud-native mapping achieved 95% readiness, and only 
niche datasets require further curation. 

Table 4: Accuracy and Completeness Metrics of Converted Datasets 

Validation Metric Legacy ETL Hadoop/Spark Cloud-Native Conversion 

Schema Mapping Accuracy 85% 93% 99% 

Data Completeness (%) 78% 90% 98% 

Error Rate (per 1M records) 15,000 4,000 500 

HL7/FHIR Compliance Partial High Full 

AI Usability Index (%) 40% 70% 95% 

The results show a dramatic improvement in accuracy and completeness after shifting 
toward the cloud-native platform, making this platform a reliable basis for AI-driven 
analysis. 

 

Figure 5: Scalability Test Results (Conversion Throughput vs Number of Nodes) 
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4.4 A Demonstration of AI-Readiness  

Technical benchmarks aside, and at the end of the day, the intent behind this framework 
consists of making the Medicare and Medicaid datasets AI-ready. In its functional 
verification, a pilot ML pipeline was provisioned for fraud detection and risk stratification. 

Dataset: 200 million claims plus 10 million patient encounters. 

• Model: Gradient boosting classifier (XGBoost), training using features extracted 
from the converted FHIR datasets. 

• Baseline: Same model trained on raw ETL-processed data. 

Findings: 

• Feature Extraction: More than 90% of features were directly accessible with cloud-
native FHIR conversion, whereas legacy ETL conversion crashed at about 55%. 

• Training Time: With the standardized schema, preprocessing time is cut down by 
65%, allowing a shorter cycle for model training. 

• Model Accuracy: Fraud detection model performed with an AUC of 0.89 on cloud-
native datasets versus 0.74 on ETL datasets given the quality data. 

• Generalizability: Standardized FHIR schema allowed the model to be portable 
across multiple state Medicaid datasets without re-engineering.  

These results confirm that cloud-native conversion not only accelerated data workflows 
but also enhanced downstream AI performance, something that CMS modernization 
initiatives sorely require. 
 
5. DISCUSSION 

The implementation results presented in the previous section highlight the transformative 
potential of a cloud-native data conversion framework for Medicare and Medicaid. Beyond 
technical superiority, the findings carry practical implication these results in for healthcare 
providers, policymakers, and AI practitioners. This discussion interprets of real-world 
healthcare delivery, compliance, economics, limitations, and future research directions 

5.1 Implications for Healthcare Providers 

Healthcare providers: including hospitals, physician groups, and state Medicaid agencies: 
are often challenged by fragmented datasets across disparate IT systems. The 
conversion of Medicare and Medicaid data into FHIR/HL7-compliant formats through a 
cloud-native pipeline has several direct implications: 

1. Operational Efficiency: Providers can reduce manual reconciliation of claims and 
patient records, as standardized FHIR resources facilitate automated data sharing 
across EHR systems. This reduces administrative overhead, which accounts for 
nearly 25% of U.S. healthcare costs. 
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2. Clinical Decision Support (CDS): Standardized data enables providers to deploy 
real-time CDS tools, such as alerts for drug–drug interactions or predictive models 
for hospital readmissions. Integration of Medicare/Medicaid claims data into EHRs 
enhances visibility into a patient’s longitudinal care history. 

3. Interoperability Mandates: CMS and ONC have emphasized interoperability under 
the 21st Century Cures Act. A cloud-native pipeline ensures compliance with FHIR 
APIs for patient access, positioning providers to meet regulatory requirements while 
unlocking new reimbursement opportunities. 

4. Resource Optimization: For state Medicaid agencies, the ability to process large 
volumes of claims data in near real-time facilitates fraud detection, care quality 
reporting, and performance-based payment models, thereby improving efficiency in 
resource allocation. 

5.2 AI and Analytics Benefits 

One of the most significant contributions of cloud-native conversion lies in AI-readiness. 
The benchmarking demonstrated that 95% of data becomes usable for machine learning 
pipelines after conversion, compared to ~40% in legacy ETL. This shift unlocks several 
benefits: 

1. Fraud Detection: Medicare and Medicaid lose an estimated $60–80 billion annually 
to fraud, waste, and abuse. AI models trained on standardized claims data can 
detect anomalous billing patterns, duplicate claims, and high-risk provider behaviors 
with higher accuracy. 

2. Predictive Care & Population Health: Converted datasets allow integration of claims, 
clinical, and pharmacy records into predictive models. For example, AI can identify 
Medicaid patients at risk of hospital readmission, enabling proactive interventions. 

3. Policy Modeling & Forecasting: Policymakers can simulate the impact of proposed 
reimbursement changes or Medicaid expansion scenarios using AI-driven predictive 
analytics. Standardized, high-quality data ensures more reliable forecasts. 

4. Cross-Domain Data Fusion: FHIR conversion enables integration with genomic, 
social determinants of health (SDoH), and IoT/wearable data streams. This 
enhances precision medicine initiatives, where AI models require multi-modal inputs 
to optimize outcomes. 

5. Reduced Data Preparation Burden: In legacy environments, up to 70% of data 
science time is spent cleaning and aligning datasets. With cloud-native conversion, 
this workload shrinks dramatically, allowing AI teams to focus on model innovation 
rather than ETL maintenance. 
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Figure 6: Framework for Integrating Converted Data into AI/ML Pipelines 

5.3 Cost-Compliance Analysis 

While technical performance grants credentials for solution delivery, eminence according 
to financial aspects and regulation accord determination to acceptance inside healthcare 
environments.  

Cost Implications 

• Operational Savings: Such benchmarking shows that the cloud-native conversion 
decreases the processing price per TB by around 62% when put in consideration 
against Hadoop/Spark. In cases where agencies are managing petabyte datasets, 
this could mean millions of dollars saved annually. 

• Elasticity Advantages: Cloud-native systems scale down during low-load hours and 
avoid unnecessary infrastructure expenditure of the on-prem ETL.  

• Administrative Savings: Standardized AI-ready data reduces manual reconciliation 
and IT maintenance costs, which are enormous in Medicaid programs given the 
fragmented IT landscape across states. 

• Compliance & Security 

• HIPAA & HITECH: Encryption, access logging, and de-identification policies are 
enforced in the framework.  
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• CMS Blue Button 2.0 Compliance: Data pipelines conforming to FHIR are in 
alignment with CMS’s approach towards patient-centered interoperability. 

• State Medicaid Variability: By standardizing schema at ingestion, the framework 
supports state-level Medicaid disparity so compliance can be maintained within 
diverse environments.  

• Auditability: The immutability of storage in the data lakehouse guarantees 
provenance and traceability, thus crucial for CMS audits. 

Such a summary reveals the cloud-native paradigm in cutting costs while reinforcing 
compliance; an appealing feature to federal and state healthcare agencies. 

5.4 Limitations and Risks 

Limitations and risks of a few shall be sifted out despite its clinching advantages: 

• Dependence on Cloud Vendors: Relying on prime cloud providers such as AWS, 
Azure, and GCP tends to raise issues of vendor lock-in and cost volatility as well as 
dependence on third-party guarantees. 

• Data Sovereignty of Concern: Some Medicaid data is subject to state-specific 
storage regulations. Multi-cloud or hybrid deployment may be considered to satisfy 
jurisdictional requirements.  

• Cross-Region Transfer Latency: Although it tremendously improves performance, 
certain use cases, for instance, national-scale aggregation across states, may suffer 
from network bottlenecks.  

• Migration Complexity: Going into the cloud-native architecture from entrenched ETL 
pipelines will require retraining of IT teams and large upfront planning. 

• A Larger Attack Surface for Security: Given the microservices and APIs used in 
cloud-native systems, their attack surface is ever-opposed. With increased 
operational complexity, zero trust models coupled with constant threat detection 
models would need to be mandated. 

• NISQ AI Limitations: While cloud-native data is AI-ready, certain advanced analytics 
(e.g., quantum-enhanced ML) will possibly be impractical until quantum hardware 
matures. 

Table 5: SWOT Analysis of Cloud-Native Medicare & Medicaid Conversion 

Strengths Weaknesses 

• High scalability and elasticity. • Vendor lock-in risks. 

• Superior latency and cost efficiency. • Complex migration from legacy ETL. 

• AI-readiness (95% usable data). • Requires skilled cloud-native workforce. 

• Strong compliance alignment (FHIR, HIPAA). • Expanded security attack surface. 

 

 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 58 Issue: 08:2025 
DOI: 10.5281/zenodo.17034728 

 

Aug 2025 | 945 
 

5.5 Future Directions 

It has been demonstrated that cloud-native conversion is not a mere technological uplift 
for Medicare and Medicaid modernization, but rather a strategic enabler. Future research 
and implementation must consider these topics: 

• Hybrid & Multi-Cloud Architectures: Future deployments must leverage federated 
Kubernetes clusters across multiple cloud vendors to mitigate vendor lock-in and 
sovereignty issues. 

• Edge Processing Integration: With the proliferation of IoT devices and remote 
patient monitoring, there is an opportunity for edge computing to work alongside 
cloud-native pipelines to provide reduced latency for real-time use cases. 

• Advanced AI/ML Tooling: Future work should extend into DL and RL for 
recommending personalized care and optimizing policy. 

• Federated Learning: Federated learning enables AI models to train across multiple 
Medicaid agencies without sharing raw data; hence it facilitates collaboration while 
preserving privacy. 

• Explainable AI (XAI): To acquire trust from clinicians and regulators, it is imperative 
that future AI applications on cloud-native converted data must integrate 
explainability frameworks. 

• Quantum-Enhanced Analytics: As quantum hardware matures, this coalition of 
cloud native FHIR data with quantum ML models could speed up optimization 
projects (e.g., big scale fraud detection). 

• Policy-Oriented Pilots: Working with state Medicaid agencies to implement pilot 
programs will help gain practical insight into barriers to adoption and patient 
outcomes. 

 
6. CONCLUSION 

Modernized healthcare data infrastructure is the very foundation that facilitates a value-
based, AI-driven setting for healthcare, especially for Medicare and Medicaid programs, 
which are considered highly complex and data-intensive.  

In the present study, we presented and studied a cloud-native data conversion framework 
that standardizes, scales, and prepares large datasets for advanced analytics and AI 
applications.  

By employing microservices, serverless computing, and FHIR/HL7 compliance, the 
framework yielded a far more performant, scalable, and AI-ready form of data conversion 
than legacy ETL or big data platforms. 

 

 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 58 Issue: 08:2025 
DOI: 10.5281/zenodo.17034728 

 

Aug 2025 | 946 
 

6.1 Recap of Contributions 

This article included the following major contributions: 

• Cloud-Native Architecture for Healthcare Data Conversion: New infrastructure 
design, which merges ingestion pipelines, schema conversion to FHIR/HL7, and 
cloud-native deployment with embedded compliance and security controls. 

• Performance & Scalability Validation: Benchmarking revealed major reductions in 
conversion latency and cost, elastic scalability, and near real-time data preparation 
at a petabyte scale. 

• AI-Readiness Demonstration: Compared with legacy ETL, this framework increased 
the quantity of usable data entering AI pipelines from about 40% to over 90%, 
serving as the foundation for programs such as fraud detection, predictive care, and 
policy simulations. 

• Compliance Alignment: The system enforces HIPAA, HITECH, and CMS 
interoperability standards, backing regulatory and patient-centered data initiatives. 

• Strategic Insights: A broader set of implications for providers, policymakers, and 
technology vendors was discussed; also, was outlined some of the risks such as 
vendor lock-in and an increased attack surface. 

Taken together, these contributions present this framework as a scalable, compliant, and 
future-proof solution for the transformation of Medicare and Medicaid data pipelines. 

6.2 Significance for Healthcare Transformation 

This research is of importance in a systemic way because of how it influences the 
modernization of healthcare; more than 150 million Americans are covered jointly by 
Medicare and Medicaid, rendering their data among the largest and most valuable 
healthcare data anywhere.  

Through standardized AI-ready data pipelines, making these data sets accessible 
becomes a matter of the utmost priority for: 

• Improving Care Quality: Predictive analytics and real-time clinical decision support. 

• Enhancing Program Integrity: AI fraud detection and risk management. 

• Cost Containment: Operational efficiency, automation, and cloud elasticity. 

• Fostering Innovation: Interoperability to and from IoT, genomics, and population 
health datasets. 

Most importantly, cloud-native conversion marries the twin pursuits of compliance and 
technology innovation, keeping AI tech on the straight and narrow from a security, privacy, 
and equity perspective. 
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6.3 Future Research Roadmap 

While the framework offers solutions in the immediate term, the research agenda points 
to continual advancement: 

• Hybrid and Multi-Cloud Models: Interoperable deployments that avoid vendor lock-
in while maintaining jurisdictional compliance across state Medicaid programs. 

• Edge–Cloud Integration: Exploring edge-side processing for real-time data ingestion 
from IoT and remote patient monitoring devices. 

• Federated Learning: Collaborative AI model training for multiple agencies without 
sharing raw data in a centralized fashion, hence preserving privacy. 

• Explainable and Responsible AI:  Ensuring that AI models built upon converted 
Medicare/Medicaid data are interpretable, transparent, and bias-aware. 

• Quantum-Enhanced Analytics: Exploring how quantum computing may be 
leveraged to complement cloud-native infrastructures in accelerating complex 
optimization and pattern detection tasks. 

• Policy Pilots: Piloting programs with state Medicaid agencies to examine patient 
outcomes in the real world, adoption challenges, and governance issues. 

This direction points out how cloud-native conversion is not the final destination but the 
base for continuous innovation in healthcare data infrastructure. 

 

Figure 7: Vision for Cloud-Native Healthcare Analytics 
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