ISSN (Online):0493-2137

E-Publication: Online Open Access Vol: 58 Issue: 11:2025

DOI: 10.5281/zenodo.17569767

# THE ROLE OF ARTIFICIAL INTELLIGENCE INTO ENHANCING QUALITY MANAGEMENT PERFORMANCE INTO THE GULF INDUSTRIAL SECTOR

### **MOHAMMAD ALOSTA\***

Department of Industrial Engineering (M.Sc.), University of Aleppo, Aleppo, Syria.

Doctoral Student (Professional Doctorate into Quality Management), Vern University, Zagreb, Croatia.

Research Collaborator with the Syrian Virtual University (SVU), Damascus, Syria.

\*Corresponding Author Email: eng.mohammadalosta@yahoo.com, ORCID: 0009-0004-5739-4351

### **Abstract**

The industrial sector into the GCC nations has seen rapid technical evolution. Artificial intelligence (AI) has become a crucial strategic facilitator for improving the effectiveness of quality management systems, this paper systematically examines contemporary literature about "AI" applications into quality management, emphasising its role into enhancing quality tools and its influence on manufacturing processes, quality control, and mistake mitigation, the results show that "AI" speeds up the use of quality procedures, makes data more accurate, helps people make decisions based on facts, and lets people detect problems before they happen, this all leads to better operational efficiency into the industrial sector, the research also talks about the problems that come with using AI, such the high cost of getting started, problems with integrating data, making sure the workforce is ready, and making sure "AI" works with older systems. It indicates that using "AI" technology into quality management is an essential factor for attaining lasting competitive advantage into the changing industrial environment.

**Keywords:** Artificial Intelligence, Quality Management, Industrial Sector, Gulf Countries, Performance Improvement.

### 1. INTRODUCTION

Artificial Intelligence (AI) and its many uses, especially into industry, have been getting more and more attention throughout the world into the last few years. into the Gulf Cooperation Council (GCC) area, improving quality and productivity has become a strategic focus for businesses that want to stay competitive (Abduvaxidov et al., 2025; AlJarallah, 2023). Quality management essentially depends on data accuracy, processing speed, and performance analysis—dimensions that "AI" may considerably boost using sophisticated algorithms and machine learning approaches.

These changes have made "AI" a game-changing tool for changing how industries maintain quality.

Companies into the Gulf Cooperation Council (GCC) countries are dealing with a lot of problems, for example, production processes are becoming more complicated and difficult to manage, global markets have strict standards, and customers want better quality products at lower prices. into this situation, Artificial Intelligence (AI) is a key tool for improving quality and making operations more efficient. It makes quality management procedures more effective by making them more accurate, quicker to respond, better at

ISSN (Online):0493-2137

E-Publication: Online Open Access Vol: 58 Issue: 11:2025

DOI: 10.5281/zenodo.17569767

making decisions, and more proactive into looking for quality problems before they happen (Heric et al., 2021; Lee et al., 2021).

Nonetheless, notwithstanding these developments, empirical research on Al-driven quality management into the GCC continues to be constrained.

The study seeks to accomplish the following objectives:

- Review and compile the latest "Al" applications into quality management within the industrial sector of the GCC countries.
- Study the impact of "AI" technologies on improving quality, operational performance, and reducing errors.
- Identify and evaluate the most significant challenges and obstacles hindering the adoption of "AI" applications into the Gulf industrial sector.

Collectively, these objectives aim to provide an integrated understanding of how "AI" technologies can enhance quality management performance and sustainability across the Gulf industrial sector.

### 2. LITERATURE REVIEW

### 2.1 Research Method

This research utilises a theoretical literature review technique, it looks at peer-reviewed research from 2021 to 2025 that look at how "AI" may be used into quality management, especially into the Gulf industrial sector, the specified timeline was determined to include the most recent advancements into AI-driven quality systems research, the goal of this research is to find out what the most common trends are, how well "AI" interacts with quality management frameworks, and what the main problems and chances are that affect the use and effectiveness of AI-driven quality management methods. Previous evaluations have mostly looked at industrial settings into the West or throughout the world, this research, on the other hand, takes a closer look at these results into light of the Gulf region's unique organisational, cultural, and infrastructural traits, this comparative viewpoint facilitates a more contextually nuanced appraisal of AI's prospects into rising industrial economies.

# 2.2 Artificial Intelligence Applications into Quality Management

Al is becoming an essential tool for making products better and streamlining industrial operations. It improves performance by using big data analytics, predictive modelling, automated fault identification, and pre-market product optimisation (Sadyraliev et al., 2025; Collins et al., 2025), for example, Qi (2025) said that using "Al" technology into factories cut faults by 20–30% and made operations 15% more efficient, when "Al" has made important contributions into service-oriented fields like healthcare, its use has been very successful into making monitoring more accurate, helping with clinical and administrative decisions, and raising the overall quality of care (America, 2025; Jacobs, 2024; García-García, 2025), these examples show how "Al" may improve quality

ISSN (Online):0493-2137

E-Publication: Online Open Access Vol: 58 Issue: 11:2025

DOI: 10.5281/zenodo.17569767

management procedures into several fields by using data from real-world situations to make decisions, but the human aspect is still quite important since professional interpretation and correct data entry are necessary to get the best outcomes, even though there are a lot of applications out there, much previous research has focused on technical aspects, including how well algorithms work, rather than how well they fit into management, this research adopts a more critical perspective, contending that Al's efficacy into quality management is contingent upon human, organisational, and sociotechnical dimensions, factors often overlooked into contemporary literature.

Table 1: summarizes key "AI" applications into quality management across various sectors, highlighting their benefits and corresponding studies.

| , , ,                                                                                            |                                           |                                                                                                                                                         |                                         |
|--------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Application Area                                                                                 | Field of Study                            | Key Benefit                                                                                                                                             | Source                                  |
| Production Error<br>Prediction                                                                   | Manufacturing                             | Reduce defects by 20 –30%                                                                                                                               | (Qi, 2025)                              |
| Quality control and defect detection                                                             | Machine Learning (ML) and Computer Vision | Automated detection of surface defects, pattern recognition, as well as visual inspection                                                               | (Collins et al., 2025)                  |
| Quality data management                                                                          | Food Industry                             | Supporting data accuracy and informed decision-making, and automatically detect non-conforming products                                                 | (Abduvaxidov<br>et al., 2025)           |
| Data Analytics                                                                                   | Healthcare                                | Improve clinical decision-making                                                                                                                        | (AlJarallah,<br>2023)                   |
| Equipment<br>Maintenance<br>Prediction                                                           | Heavy Industry                            | Ensuring the reactivity of the management system, machine learning, predictive analytics, and integration of data.                                      | (Sadyraliev et al., 2025)               |
| An Applied Study of<br>Al-Powered Defect<br>Detection<br>Techniques, and<br>Process optimization | Manufacturing                             | Improving production efficiency, process stability, and resource utilization. "AI" Tools Improved Defect Detection Rate by 35% and Reduced Human Errors | (Lee et al.,<br>2021)                   |
| A Field Analysis of "AI" Adoption                                                                | Small and Medium<br>Enterprises           | Al Systems Enhanced the Effectiveness of Quality Processes and Reduced Operating Costs                                                                  | (Ormaza<br>Cevallos et<br>al., 2024)    |
| A Legislative<br>Analysis                                                                        | European Union –<br>Quality Systems       | Integration of European Legislation into AI-Based Quality Management Systems                                                                            | (Mustroph<br>and Rinderle-<br>Ma, 2024) |
| A Comparative Study<br>Between SAP and<br>Infor                                                  | ERP Systems                               | Results Show that Integrating "AI" Modules into ERP Improves Real-Time Quality Tracking                                                                 | (Heric et al., 2025)                    |
| Customer satisfaction analysis                                                                   | Healthcare                                | Analyzing customer feedback for continuous service quality improvement                                                                                  | (García-<br>García,<br>2025)            |
| Big Data                                                                                         | College Sports Management                 | Enhancing Safety and Quality                                                                                                                            | (Jiang, et al.,<br>2024)                |

Source: Compiled by the authors based on reviewed studies between 2021 and 2025.

ISSN (Online):0493-2137

E-Publication: Online Open Access Vol: 58 Issue: 11:2025

DOI: 10.5281/zenodo.17569767

# 2.3 Integration of Artificial Intelligence and Quality Management Systems

Artificial Intelligence (AI) may be used with Enterprise Resource Planning (ERP) and Total Quality Management (TQM) systems to monitor processes into real time, make better predictions about problems, and help people make decisions based on data (Jiang et al., 2024; Anshori et al., 2025), this integration makes it easier for the organisation to make long-lasting gains into quality and efficiency, these smart systems use complex algorithms and machine learning to look at operational data and come up with useful insights that help managers make better choices quicker, when "Al" integration also speeds up the usage of sophisticated quality techniques like root cause analysis and statistical process control, this makes performance more reliable and cuts down on mistakes into the workplace. (Gómez et al., 2025; Mosteanu, 2022), for example, Industry 5.0 is the next step into industrial development that focusses on how people and smart equipment may work together, shukla et al. (2024) say that combining artificial intelligence with smart manufacturing and sustainability methods improves both productivity and quality, cuts down on waste, and makes customers more happier, the integration of "AI" has emerged as a pivotal facilitator for Total Quality Management (TQM), predictive maintenance, and process optimisation, this aligns with the conclusions of Kottara (2025), Ormaza Cevallos et al. (2024), and Krasulja et al. (2023), who collectively emphasise that the amalgamation of "AI" analytics and quality frameworks enhances operational efficiency and product quality within industrial settings, a thorough examination of previous research indicates that several conceptual models presuppose optimal data circumstances and advanced digital infrastructures, this research challenges that assumption, highlighting that the practical use of Al-driven Total Quality Management must include data inaccuracies, human supervision, and context-specific limitations, especially into emerging or transitional industrial economies like the Gulf area, an overreliance on automated decision tools may unintentionally impair management intuition and experienced judgement, consequently, this research promotes a balanced integration paradigm Whereby "Al" enhances, rather than supplants, human knowledge into quality-related decision-making, a subtlety often neglected into contemporary literature.

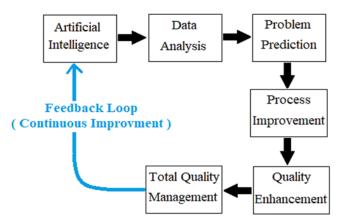



Figure 1: Proposed conceptual model for integrating Artificial Intelligence (AI) with Total Quality Management (TQM)

ISSN (Online):0493-2137

E-Publication: Online Open Access Vol: 58 Issue: 11:2025

DOI: 10.5281/zenodo.17569767

Figure 1 Compiled by author based on Lee (2021), Qi (2025), Heric et al., (2025), Mustroph and Rinderle-Ma, (2024), for integrating "Al" principles with Total Quality Management components, this model synthesizes common elements identified into the literature and reflects the cyclical feedback nature of Al-enabled TQM.

# 2.4 The Impact of Artificial Intelligence on Operational Performance

Many studies have shown that Artificial Intelligence (AI) directly improves important parts of how industries work. It makes processing data more faster, especially when working with big datasets, thanks to smart monitoring systems that are designed to increase quality and cut down on mistakes (Ramaliba and Jacobs, 2024; Neo et al., 2023), predictive "AI" models let companies identify issues coming before they happen, this cuts down on production downtime and makes it easier to undertake maintenance ahead of time, which lowers defect rates and makes the production line more efficient (Ramovha et al., 2024), big data showed that after adding AI-powered predictive maintenance modules to various GCC manufacturing lines, unscheduled stoppages were down by 10–15%. Younis, (2025). Abduvaxidov et al. (2025) saw quantifiable increases into productivity when "AI" was used into predictive maintenance and quality monitoring systems.

Al also helps make customers happier by increasing the quality of products and services, making it easier to analyse consumer input intelligently, and making it easier to quickly respond to changing customer demands. Organisations may keep improving quality by constantly collecting and analysing data, for instance, Grylitska (2024) showed that using "Al" into restaurants made customers happier by using adaptive feedback analysis, but you need be careful when looking at these quantitative improvements since the case studies that support them are different sizes and have different levels of data maturity, so they can't be used to make generalisations about all Gulf businesses.

Table 2: Comparative Indicators of Artificial Intelligence Adoption and Investment into GCC Countries (2024)

| Country                       | Oxford "AI" Readiness<br>Index (Score 0 –100,<br>Oxford Insights 2024) | Global "Al" Index<br>Overall Rank (Tortoise<br>reported 2024) | Venture Capital Funding<br>(USD Million, MAGNiTT<br>reported 2024) |
|-------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
| Saudi Arabia<br>(KSA)         | 72.36                                                                  | 14                                                            | 750                                                                |
| United Arab<br>Emirates (UAE) | 75.66                                                                  | 26                                                            | 613                                                                |
| Qatar                         | 68.22                                                                  | 40                                                            | 31.6                                                               |
| Oman                          | 62.91                                                                  | 50                                                            | 12                                                                 |
| Bahrain                       | 54.33                                                                  | 52                                                            | 9                                                                  |
| Kuwait                        | 51.26                                                                  | 54                                                            | 8                                                                  |

Table 1 presents a comparative overview of Gulf Cooperation Council (GCC) countries into terms of artificial intelligence (AI) readiness, global "AI" ranking, and venture capital (VC) investment for the year 2024, the Oxford "AI" Readiness Index (Oxford Insights, 2024) measures institutional capacity, governance, and data infrastructure, when the

ISSN (Online):0493-2137

E-Publication: Online Open Access Vol: 58 Issue: 11:2025

DOI: 10.5281/zenodo.17569767

Global "Al" Index (Tortoise Media, 2024) reflects national performance across talent, infrastructure, and innovation dimensions. VC funding data were derived from MAGNiTT's FY2024 MENA Venture Investment Report, representing total disclosed investment volumes into Al-related and digital transformation sectors.

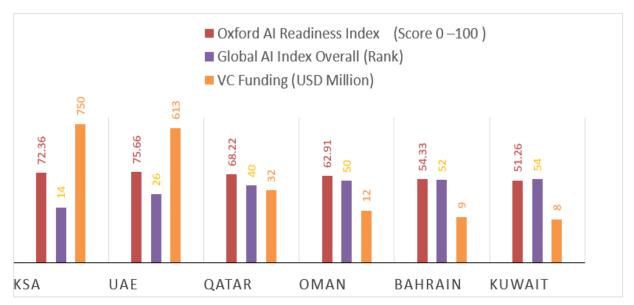



Figure 2: Comparative Visualization of Artificial Intelligence Readiness, Global Ranking, and Venture Capital Investment into GCC Countries (2024)

This figure graphically represents the data summarized into Table 1 (Oxford Insights, 2024; Tortoise Media, 2024; MAGNiTT, 2024), the UAE and Saudi Arabia have made progress into "AI" readiness into terms of investment, research and development and integrating "AI" into vital sectors such as health, industry, education and security, while the rest of the Gulf countries are seeking to strengthen their infrastructure and develop their skills to keep pace with the digital future.

# 2.5 Challenges and Obstacles

Even though Artificial Intelligence (AI) has many benefits for quality management, industrial companies still have trouble putting it into practice, the first problem is that intelligent systems are very expensive to buy, and the digital infrastructure isn't strong enough, which means that a lot of money has to be spent (Ormaza Cevallos et al., 2024). Another problem is that data integration is hard and people don't want to adapt. When "AI" systems are added to older platforms, managers and employees sometimes oppose because they are afraid of losing their jobs or making the system too complicated, this means that companies need to work harder to get people to use "AI" (Yu, 2022), furthermore, worker skills provide a significant barrier; "AI" cannot replace qualified experts across all tiers, and personnel need ongoing training to accommodate the changing requirements of industrial production (Semenova et al., 2022). Even though these hurdles are well-known into the literature, they are typically presented as fixed

ISSN (Online):0493-2137

E-Publication: Online Open Access Vol: 58 Issue: 11:2025

DOI: 10.5281/zenodo.17569767

problems. Another big problem has to do with the quality and compatibility of the data. "Al" systems need a lot of accurate and well-organised data to work well, yet many businesses still have problems with fragmented databases and inconsistent data formats (Olteanu and Gheorghe, 2025), while most studies characterise these issues as static constraints, this research presents a key reexamination, suggesting that these obstacles need to be seen as dynamic learning opportunities that foster organisational adaptation and the enhancement of digital capabilities over time.

Table 3 summarizes the key technological, human, financial, and regulatory challenges that hinder "AI" adoption into quality management, along with corresponding opportunities and academic recommendations drawn from recent literature.

Table 3: Key Challenges and Opportunities of "AI" Implementation into Quality

Management

| Category           | Challenges                                                    | Opportunities                                                                 | Academic Recommendations                                                   | Representative Reference               |
|--------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|
| Technology         | Weak data<br>integration<br>between quality<br>systems and Al | Accelerated digital transformation into factories                             | Development of a unified digital infrastructure                            | (America, 2025)                        |
| Human<br>Resources | Employee resistance to change                                 | Continuous<br>training<br>programs into<br>artificial<br>intelligence         | Preparing qualified<br>human resources to<br>manage intelligent<br>systems | (Methuku, 2025)                        |
| Financial          | High costs of intelligent systems                             | Availability of government support into the banking industry                  | Adoption of public-<br>private partnerships                                | (Ramaliba and<br>Jacobs, 2024)         |
| Regulatory         | Lack of unified standards for smart quality                   | Unified initiatives towards Industry 5.0                                      | Adoption of unified regional policies for Al-powered quality               | (Mustroph and<br>Rinderle-Ma,<br>2024) |
| Organizational     | Resistance to change                                          | training needs                                                                | Training staff on a culture of not being afraid of change                  | (Abduvaxidov et al., 2025)             |
| Technical          | Weakness into<br>5G network<br>maintenance                    | Enhanced efficiency                                                           | predictive<br>maintenance                                                  | (Onyiagha et al., 2022)                |
| Medical            | Lack of "AI"<br>policies                                      | Improving the effectiveness of artificial intelligence into the health sector | Training doctors on the uses of artificial intelligence                    | ( Dania's and<br>Koukopoulos,<br>2025) |
| Marketing          | Data quality and integration issues                           | Ensures<br>competitive<br>marketing                                           | Improved decision-<br>making capability                                    | (Vasilieva et al., 2023)               |

ISSN (Online):0493-2137

E-Publication: Online Open Access Vol: 58 Issue: 11:2025

DOI: 10.5281/zenodo.17569767

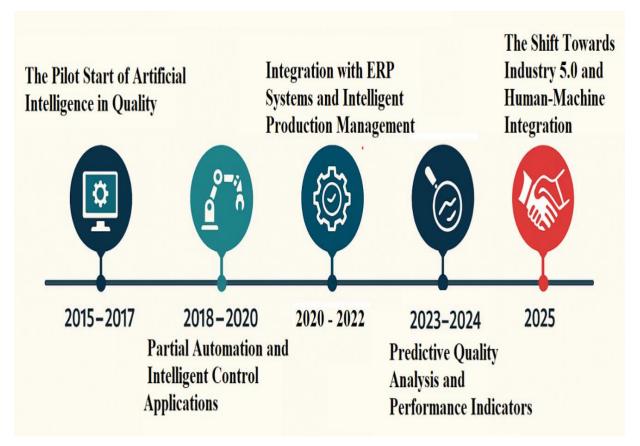



Figure 3: Development Timeline of artificial intelligence application into quality management into 2015–2025

Figure 3 demonstrates the chronological development of "AI" applications into quality management between 2015 and 2025, showing the gradual evolution from pilot implementations to full integration with Industry 5.0 frameworks, timeline events compiled from published case study dates and analyses, and developed by author based on (Lee et al., 2021; Onyiagha et al., 2022; Qi, 2025; Danias and Koukopoulos, 2025; Semenova et al., 2022; Ormaza Cevallos et al., 2024).

### 2.6 Future Trends

Recent study highlights a notable transition from mere technological innovation to human—Al collaboration, particularly into relation to the forthcoming Industry 5.0 paradigm (Shukla et al., 2024), future quality management frameworks are expected to include "Al" technologies that support rather than replace human decision-making, therefore creating hybrid intelligence environments where computers manage data complexity while humans retain strategic and ethical oversight, this shift indicates a growing consensus among academics that "Al" should enhance human productivity rather than pursue complete automation, furthermore, the harmonisation of regional policies has emerged as a significant research and strategic objective across the Gulf States.

ISSN (Online):0493-2137

E-Publication: Online Open Access Vol: 58 Issue: 11:2025

DOI: 10.5281/zenodo.17569767

Oman Vision 2040 and Saudi Vision 2030 are two national strategies designed to establish high-quality standards, foster trust into Al-driven analytics, and enhance regional competitiveness. Integrating Al-driven quality management with sustainability objectives aligns with Gulf development strategies that emphasise environmentally sustainable industrial growth. Recent research indicates that the integration of "Al" with the Internet of Things (IoT) and cloud computing significantly advances industrial quality management (Rane, 2023; Sadyraliev et al., 2025).

As deep learning algorithms improve, firms will be able to analyse more datasets with greater precision, this will result into continuous improvements into product quality and operational efficiency, future research should explore methods to reduce the financial and infrastructural expenses associated with "Al" adoption, facilitating its broader use across many sectors. Over the next decade, the impact of "Al" on performance outcomes is expected to manifest across several domains, contemporary literature primarily relies on conceptual or case-based evidence; forthcoming research should employ standardised key performance indicators (KPIs) to enable systematic comparisons across the manufacturing, petrochemical, and service sectors (Vasilieva et al., 2023; Methuku, 2025; Siladjaja et al., 2022).

Although these improvements are promising, current forecasts may not include the distinct differences across the Gulf States, the GCC states exhibit significant disparities regarding the preparedness of their institutions, the proficiency of their workforce, and the sophistication of their regulations, therefore, more research must use a comparative analytical approach to discern the structural and organisational factors that most profoundly influence Al's contribution to achieving quality excellence into certain national contexts. Table 4 delineates emerging pathways for "Al" research, emphasising its integration with IoT, deep learning, and cloud computing as essential elements into the future of quality management, future trends derived from a comparative analysis of literature published between 2021 and 2025; figures represent authors' synthesis of anticipated developments into "Al" quality research.

Table 2: Future Trends into Artificial Intelligence Applications

| Emerging Trend                           | Expected Impact                                              | Supporting Reference      |  |
|------------------------------------------|--------------------------------------------------------------|---------------------------|--|
| Integrating "AI" with IoT                | Continuous Process Monitoring and Quality Improvement        | (Rane, 2023)              |  |
| Deep Learning                            | Analyzing Larger Data with Higher Accuracy                   | (Sadyraliev et al., 2025) |  |
| Cloud Computing                          | Real-Time Decision Support                                   | (Collins et al., 2025)    |  |
| Cross-sector empirical validation        | Test "AI" impact on different industrial scales              | (Abduvaxidov et al. 2025) |  |
| Human–Al collaboration into Industry 5.0 | Develop adaptive frameworks for balanced human–machine roles | (Shukla et al., 2024)     |  |
| Standardized "AI" governance             | Create regional policies for data and algorithmic ethics     | (Heric et al., 2025)      |  |
| Integration with sustainability metrics  | Link "AI" quality systems to environmental performance       | (Ramovha et al., 2024)    |  |

ISSN (Online):0493-2137 E-Publication: Online Open Access

Vol: 58 Issue: 11:2025 DOI: 10.5281/zenodo.17569767

### 3. CONCLUSION

The study's results show that Artificial Intelligence (AI) is an important part of enhancing quality management into all of the Gulf Cooperation Council (GCC) countries' industrial sectors. Using this technology improves product quality, operational performance, data accuracy, and processing speeds. Artificial intelligence also makes it easier to make smart decisions, cuts down on production errors, and promotes preventive maintenance, to fully benefit from artificial intelligence technology, however, businesses need to get beyond the same problems again and over again, such as high costs, system integration, poor data quality, and staff training. This research underscores that the efficacy of artificial intelligence is contingent not only on the degree of technological complexity but also on human adaptability and institutional readiness. Prior studies often generalise the beneficial effects of AI, so, future work should focus on finding a good balance between human expertise and smart systems, this will make sure that "AI" helps with continuing advancement instead of merely being a technological substitute.

### 4. RECOMMENDATIONS

This research offers several strategic recommendations designed to enhance Al-driven quality management within the Gulf industrial sector, the suggestions that follow are based on the outcomes that were spoken about and looked at into the last section, when first, it is a good idea to set up large-scale training and educational programs to help workers become more skilled at using artificial intelligence technology effectively, this would be done to help these workers go forward into their careers. I

mproving the analytical and digital skills of the workforce is important for making sure that the project is carried out correctly, when companies need to make clear strategies on how to combine smart technologies with their current quality control processes, this will make sure that AI-based and traditional methods can work together, which will keep operations running smoothly, it is necessary to increase funding for research and development to strengthen governance frameworks that ensure transparency, ethical usage, and data dependability, as well as to make the artificial intelligence algorithms used into quality control perform better, this is necessary to improve the quality of management, when it is important to make frequent performance monitoring and data analysis a priority so that they can keep up with changes into technology and help improve quality over the long run, this is the fourth most important thing on the list, it is essential to prioritise the enhancement of human-machine interaction as a strategic priority because of its considerable importance, the main goal of automation shouldn't be to fully automate everything, but to find a balance between human judgement and the precision of AI, this approach, which puts people first, is into line with the ideas of Industry 5.0, which says that technology should improve human intelligence instead of replacing it, this method puts people first, the study determined that the advancement of Al-driven quality management into the Gulf area relies on a unified policy-technology-human framework that harmonises innovation and flexibility, hence maintaining continuous competitiveness across all business sectors, the study's findings led to this conclusion.

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 58 Issue: 11:2025

DOI: 10.5281/zenodo.17569767

### References

- 1) Abduvaxidov, F, t., Shadmanov, E, s., Saenko, I. I., Tikhomirov, K. Y. and Mkrtchyan, T. A. (2025) 'Product quality into the agrarian economy of artificial intelligence: Measuring and management with the help of management information systems', *Proceedings on Engineering Sciences*, 7(1). https://doi.org/10.24874/PES07.01A.013.
- 2) AlJarallah, N. A. (2023) 'Investigating the influence of artificial intelligence on quality management into healthcare centers', *F1000Research*, 12:110. https://doi.org/10.12688/f1000research.128739.1.
- 3) America, R. (2025) 'The synergistic imperative: Integrating artificial intelligence with master data management for enhanced data quality and governance', *Journal of Computer Science and Technology Studies*, 7(1). https://doi.org/10.32996/jcsts.2025.7.109.
- 4) Anshori, I., Yansyah, D., Nasiroh, U., Urfi, H. and Ismail, H. A, b. H. (2025) 'Integration of artificial intelligence into education management systems to improve the quality of Islamic education', *Thawalib: Jurnal Kependidikan Islam*, 6(2). https://doi.org/10.54150/thawalib.v6i2.616.
- 5) Collins, C. E., Giammanco, P. A., Guirgus, M., Kricfalusi, M., Rice, R, c., Nayak, R., Ruckle, D., Filler, R. and Elsissy, J. G. (2025) 'Evaluating the quality and readability of generative artificial intelligence (AI) chatbot responses into the management of Achilles tendon rupture', *Cureus*, 17(1), e78313. https://doi.org/10.7759/cureus.78313.
- 6) Danias, N. and Koukopoulos, A. (2025) *Artificial Intelligence and Regulation: Total Quality Management for Mental Health Services, sSRN Electronic Journal.* https://doi.org/10.2139/ssrn.4559787.
- García-García, R. E. (2025) 'Applications of artificial intelligence into hospital quality management: A review of digital strategies into healthcare settings', Revista Científica de Sistemas e Informática, 5(2), e928. https://doi.org/10.51252/rcsi.v5i2.928.
- 8) Grylitska, A. V. (2024) 'The impact of robots and artificial intelligence on service quality management and customer satisfaction into the restaurant business', *Bulletin of the Cherkasy National University: Economic Sciences*, 28(3–4). https://doi.org/10.31651/2076-5843-2024-3-4-166-171.
- 9) Heric, S., Bobek, S. and Sternad Zabukovšek, S. (2025) 'Artificial Intelligence into ERP Quality Management Modules: A Comparative Analysis of SAP and Infor', *Naše Gospodarstvo / Our Economy*, 71(3). https://doi.org/10.2478/ngoe-2025-0014.
- 10) Jacobs, C. (2024) Artificial Intelligence for Enhanced Master Data Quality Management into ERP Systems, master's dissertation, Faculty of Economic and Management Sciences, University of Pretoria, South Africa, supervisor: Prof, I. van der Merwe. 126 pages. Available at: https://repository.up.ac.za/handle/2263/93754 (Accessed: 1 October 2025).
- 11) Jiang, W., Nazarudin, M, n, b. and Mazalan, N, s. (2024) 'Enhancing safety and quality into college sports management through big data and artificial intelligence (AI)', *Journal of Information Systems Engineering and Management*, 9(3). https://doi.org/10.55267/iadt.07.14849.
- 12) Kottara, C. (2025) 'The impact of artificial intelligence into the shipping sector and the role of total quality management', *Journal of Research into Business and Management*, 13(7). https://doi.org/10.35629/3002-13074248.
- 13) Krasulja, N., Kašćelan, B., Dorošenko, J., Kirejenko, N. and Podbregar, I. (eds.) (2023) *Law, Economy and Management into Modern Ambience Artificial Intelligence (AI) LEMiMA 2023: Proceedings, Vol. 2, b*elgrade: Faculty of Business Studies and Law, University "Union Nikola Tesla". ISBN 978-86-6102-125-1. (Book, 2 volumes, approx. 443 pages.).
- 14) Lee, K. J., Kwon, J., Min, S. and Yoon, J. (2021) 'Deploying an Artificial Intelligence-based defect finder for manufacturing quality management', "Al" *Magazine*, 42. https://doi.org/10.1609/aaai.12001.

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 58 Issue: 11:2025

DOI: 10.5281/zenodo.17569767

- 15) Methuku, H. (2025) 'Total quality management with the integration of artificial intelligence into art and design pedagogy: An innovative era into creative fields', *Journal of Arts and Humanities (JAH)*, 14(1). https://doi.org/10.18533/journal.v14i1.2527.
- 16) Moşteanu, N. R. (2022) 'Improving quality of online teaching finance and business management using artificial intelligence and backward design', *Quality Access to Success*, 23(187). https://doi.org/10.47750/QAS/23.187.01.
- 17) Mustroph, H. and Rinderle-Ma, S. (2024) *Design of a Quality Management System based on the EU Artificial Intelligence Act, technical University of Munich, TUM School of Computation, Information and Technology, Garching, Germany. arXiv preprint arXiv:2408.04689 [cs.SE]. Available at: https://doi.org/10.48550/arXiv.2408.04689.*
- 18) Neo, E. X., Hasikin, K., Lai, K. W., Mokhtar, M. I., Azizan, M, m., Hizaddin, H, f., Razak, S. A. and Yanto. (2023) 'Artificial intelligence-assisted air quality monitoring for smart city management', *PeerJ Computer Science*, 9, e1306. https://doi.org/10.7717/peerj-cs.1306.
- 19) Olteanu, A.-D. and Gheorghe, S. (2025) 'The role of artificial intelligence on power quality management power quality indicators', *EMERG*, 10(3). https://doi.org/10.37410/emerg.2025.2.02.
- 20) Onyiagha, G., Anabi, H., Mbwahnche, R. and Achimugu, P. (2022) 'On concept of artificial intelligence for quality-of-service management into 5G network', *Academia Letters*, Article 4850. https://doi.org/10.20935/AL4850.
- 21) Ormaza Cevallos, M. G., Lozano Jaramillo, G. A., Bernardo Vélez, J, I., Ureta Zambrano, M. I., Zambrano Montesdeoca, L, d. and Bermúdez Palomeque, M. A. (2024) 'Implementation of Artificial Intelligence into Quality Management into SMEs: Benefits and Challenges', *Evolutionary Studies into Imaginative Culture*. https://doi.org/10.70082/esiculture.vi.1590.
- 22) Oxford Insights (2024), Government "AI" Readiness Index 2024 Report, Oxford Insights Ltd, London. Available at: https://oxfordinsights.com/government-ai-readiness-index-2024 (Accessed: 4 November 2025).
- 23) Qi, C. (2025) 'The impact of artificial intelligence on high-quality development of manufacturing enterprises: A cross-disciplinary perspective on management and technology', *Current Science*, 5(5). https://doi.org/10.52845/CS/2025-5-5-5.
- 24) Ramaliba, T. and Jacobs, L. (2024) 'Artificial intelligence technology to enhance data quality management practices into the banking industry into South Africa', South African Journal of Libraries and Information Science, 90(2). https://doi.org/10.7553/90-2-2392.
- 25) Ramovha, N., Chadyiwa, M., Ntuli, F. and Sithole, T. (2024) 'The potential of stormwater management strategies and artificial intelligence modeling tools to improve water quality: A review', *Water Resources Management*, 38. https://doi.org/10.1007/s11269-024-03841-9.
- 26) Rane, N, I. (2023) 'Integrating Building Information Modelling (BIM) and Artificial Intelligence (AI) for smart construction schedule, cost, quality, and safety management: challenges and opportunities', *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.4616055.
- 27) Sadyraliev, Z., Zhumanbayeva, T, k., Dybina, O. V., Krutilin, A. A. and Amirkhanyan, G, m. (2025) 'Big data and artificial intelligence into information systems of product quality management', *Proceedings on Engineering Sciences*, 7(1). https://doi.org/10.24874/PES07.01A.003.
- 28) Semenova, G, n., Mustafin, T. A., Telegina, Z. A. and Bodiako, A. V. (2022) 'Audit of quality management at a smart company: independent expertise vs. artificial intelligence', *International Journal for Quality Research*, 17(1). https://doi.org/10.24874/IJQR17.01-01.

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 58 Issue: 11:2025

DOI: 10.5281/zenodo.17569767

- 29) Shukla, B., Murthy, B, k., Hasteer, N., Kaur, H. and Van Belle, J.-P. (eds.) (2024) *Intelligent IT Solutions* for Sustainability into Industry 5.0 Paradigm: Select Proceedings of ICEIL 2023, lecture Notes into Electrical Engineering, Vol. 1185, singapore: Springer Nature. ISBN 978-981-97-1681-4. 517 pages.
- 30) Siladjaja, M., Anwar, Y. and Djan, I. (2022) 'The impact of real manipulation and tax management on future market value: An artificial intelligence simulation of high earnings quality', *ACRN Journal of Finance and Risk Perspectives*, 11. https://doi.org/10.35944/jofrp.2022.11.1.003.
- 31) Tortoise Media (2024), The Global "Al" Index 2024, Tortoise Intelligence Ltd, London. Available at: https://www.tortoisemedia.com/intelligence/global-ai-index (Accessed: 4 November 2025).
- 32) Vasilieva, I., Vișnevchi, A., Vasilieva, M. and Vasiliev, I. (2023) 'Total Quality Management as Predictor of Artificial Intelligence Ensures Competitive Marketing', *Special Journal of the Medical Academy and Other Life Sciences*, 1(8). https://doi.org/10.58676/sjmas.v1i8.47.
- 33) Younis, D. (2025) 'Using technical artificial intelligence modeling to forecast the management of the water quality index', *Journal of Contemporary Environmental Studies*, 16(1). https://doi.org/10.21608/jces.2025.419258.
- 34) Yu, C. (2022) 'Artificial Intelligence-Based Drug Production Quality Management Data', *Mathematical Problems into Engineering*, Article ID 4089917. *Hindawi*. https://doi.org/10.1155/2022/4089917.