

# PATIENT FLOW AND OPERATIONAL EFFICIENCY INTERVENTIONS IN PRIMARY HEALTH CARE CENTERS: EFFECTS ON WAITING TIME, SAFETY, AND SATISFACTION; A SYSTEMATIC REVIEW

**FARIS ATEEQ ALGHAMDI**

Public Health Specialist, Primary Health Care Center in Nakhal.

**IBTIHAL AHMED GHURMULLAH ALZAHHRANI**

Health Care Security, Al-Baha Health Cluster.

**ALI ABDULLAH SAAD ALGHAMDI**

Health Administration, AlBaha health Cluster.

**SALEH SAEED ALGHAMDI**

Nurse Specialist, Primary Health Care Center in Mashoqah.

**MUBARAK SAEED ABDULLAH ALGHAMDI**

Nursing Technician, Primary Health Care Center in Nakhal.

## Abstract

**Background:** Primary health care centers (PHCs) face increasing demand, constrained staffing, and complex patient needs, contributing to delays, overcrowded clinics, missed appointments, and compromised patient experience. Interventions targeting patient flow and operational efficiency, such as open, advanced access scheduling, Lean process redesign, targeted reminders, and community-based models, reduce waiting time and improve satisfaction while maintaining safety. **Objective:** To synthesize evidence from original studies on patient flow and operational efficiency interventions in PHC, ambulatory primary care settings and evaluate effects on waiting time, access, safety, and satisfaction. **Methods:** A PRISMA-aligned systematic review was conducted using electronic databases as the full-text source. We included original interventional or quasi-experimental studies in PHC, primary care, ambulatory settings evaluating operational interventions with outcomes related to waiting time, access, safety, satisfaction, experience, or attendance. Ten original studies were included for results synthesis. **Results:** In included studies, open access scheduling reduced short-term appointment wait times but effects on satisfaction were inconsistent. Lean implementation reduced service waiting times and increased satisfaction in an ambulatory setting. Predictive-model–driven reminder strategies improved attendance and reduced no-shows, supporting better clinic capacity utilization. Community paramedicine integrated with primary care showed system-level improvements in flow and safety-related processes in PHC. Interventions that combined demand–capacity matching (scheduling, access redesign) with targeted attendance supports (risk-based reminders) were most consistently associated with improved operational outcomes. **Conclusion:** PHC operational efficiency interventions can reduce waiting time and improve satisfaction or attendance, but effects vary by implementation stability, staffing resilience, and context. Risk-stratified reminders and structured process redesign are supported by consistent findings, while open access scheduling requires safeguards for sustainability and continuity.

**Keywords:** Primary Care; Patient Flow; Operational Efficiency; Waiting Time; Appointment Access; Satisfaction; Safety; Lean; Reminders; Open Access Scheduling.

## INTRODUCTION

Timely access to PHC is a core dimension of quality and patient-centeredness, yet many systems struggle with long lead times to appointments, high no-show rates, and clinic congestion that worsens staff workload and patient dissatisfaction (Ansell et al. 2017). Operational constraints in PHC, fixed staffing, variable demand, and administrative burden, can create bottlenecks in scheduling, registration, triage, and visit completion. These bottlenecks increase perceived waiting time and reduce satisfaction, which is frequently linked to service quality perceptions in PHC settings (Zhang et al. 2023).

“Advanced access” (also called open access or same-day access) was developed to reduce appointment delays by redesigning schedules to better match supply and demand. Evidence suggests outcomes can vary, and implementation barriers (such as clinician leave, demand surges, and continuity pressures) can limit sustainability (Rose et al. 2011; Mehrotra et al. 2008). In parallel, Lean and process-improvement approaches aim to remove non-value-added steps and reduce waste in clinic workflows, often targeting waiting and handoffs that frustrate patients and staff (Samadbeik et al. 2024).

No-shows and late cancellations are another major operational driver of inefficiency in ambulatory care; missed visits waste capacity and can undermine access for other patients. Evidence shows missed appointments are not only an operational issue but correlate with poorer preventive and chronic care performance, making attendance support relevant to safety and outcomes (Hwang et al. 2015). System-level interventions, such as reminder systems, behavioral “nudges,” and risk-stratified outreach, have been tested to improve attendance and protect appointment capacity (Habibi et al. 2024). Telemedicine is also increasingly used as an operational strategy to reduce waiting and expand capacity, with evidence summarized in recent systematic analyses (Capodici et al. 2025). Given the diversity of operational interventions, PHC leaders need a practical synthesis focused on measurable outcomes: waiting time, access, safety signals, and satisfaction. This systematic review therefore summarizes original intervention evidence from PMC-indexed full texts, with emphasis on PHC-relevant operational change.

## METHODS

### Design and reporting

This review followed PRISMA principles for systematic identification, eligibility assessment, and synthesis of evidence.

### Data source and search strategy

PMC, PubMed, WOS and Scopus were used as the full-text source. Searches combined terms related to primary care, primary health care, patient flow, operational efficiency, and outcomes (waiting time, access, satisfaction, safety, no-show). Example keywords included: primary care, primary health care, patient flow, waiting time, access scheduling, open access, advanced access, Lean, quality improvement, reminder, no-show, satisfaction.

## Eligibility criteria

### Inclusion:

Original studies (randomized trials, pragmatic trials, controlled before–after, interrupted time series, QI with evaluative outcomes). PHC, primary care, ambulatory primary-care–linked settings (including community and integrated models influencing PHC flow). Evaluated an operational or patient-flow intervention. Reported at least one outcome: waiting time, access metric, attendance, no-show, satisfaction, experience, or safety-related process, outcome.

### Exclusion:

Editorials, purely descriptive studies without an evaluated intervention. Non-PHC settings without relevance to primary care flow (unless the intervention was explicitly transferable to PHC operations and measured comparable outcomes). Non-PMC full text.

## Study selection

Titles, abstracts were screened for relevance, followed by full-text eligibility assessment in PMC. Ten original studies were included for results synthesis.

## Data extraction

From each included original study, we extracted: Setting, country, design, participants, volume, intervention components, comparator, usual care. Outcomes: waiting, access metrics (third next available), waiting time, attendance, no-show, satisfaction, and any safety, process indicators.

## Risk of bias

Given heterogeneous designs, risk of bias was assessed qualitatively by design features (randomization, allocation, baseline comparability, objective outcome measurement, missing data, and time-related confounding for before–after studies). Findings were interpreted cautiously when designs were uncontrolled.

## Synthesis approach

A narrative synthesis was performed due to intervention and outcome heterogeneity. Results are summarized by intervention type: scheduling, access redesign, reminder and attendance interventions, workflow, process redesign, and community-integrated service models affecting PHC flow.

## RESULTS

### Overview of included studies

The 10 included original studies evaluated operational interventions in primary care, PHC-linked ambulatory settings, including open access scheduling, reminder, outreach strategies (phone, text, risk-based targeting), Lean, process redesign, behavioral nudges, and community paramedicine integration.

**Table 1: Characteristics of included original studies**

| Study (year)              | Setting                                                              | Design                   | Intervention                                                 | Comparator              | Key outcomes reported                                                                |
|---------------------------|----------------------------------------------------------------------|--------------------------|--------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------|
| Mehrotra et al. (2008)    | 6 primary care practices (Boston, USA)                               | Case series              | Open access scheduling implementation                        | Pre–post                | 3rd next available appointment wait, no show, patient, staff ratings of availability |
| Sampson et al. (2008)     | General practice (UK)                                                | Observational evaluation | Same day appointment system component                        | Usual scheduling        | Patient satisfaction and access measures                                             |
| Naidoo et al. (2016)      | Rural outpatient clinic, hospital ambulatory services (South Africa) | Pre–post                 | Lean process changes                                         | Baseline                | Patient waiting time, staff satisfaction                                             |
| Shah et al. (2016)        | Hospital based primary care clinic (USA)                             | RCT                      | Targeted reminder phone calls for high risk no show patients | Automated reminder only | No show rate, reimbursement, efficiency measures                                     |
| Lin et al. (2016)         | Pediatric primary care clinic (USA)                                  | RCT                      | Text message reminders                                       | Usual reminder process  | Appointment adherence, no show                                                       |
| Hammoudeh et al. (2021)   | Ambulatory outpatient pharmacy (Jordan)                              | Pre–post QI              | Lean management redesign                                     | Baseline                | Waiting time, patient satisfaction, staff satisfaction                               |
| Ulloa Pérez et al. (2022) | Primary care & mental health visits (USA)                            | Pragmatic randomized QI  | 2 vs 1 targeted text reminders for high risk visits          | Single reminder         | No show, same day cancellations                                                      |
| Teo et al. (2023)         | Primary care (VA system, USA)                                        | Pragmatic trial          | Behavioral economics “nudge” messages                        | Standard messaging      | Missed appointments, cancellations                                                   |
| Tarabichi et al. (2023)   | Primary care ambulatory system (USA)                                 | Randomized QI            | Predictive model–driven live reminders for at risk patients  | Standard care           | No show and composite missed visit outcomes                                          |
| Elden et al. (2025)       | Primary health care (Sweden)                                         | Mixed methods evaluation | Community paramedicine integrated with PHC                   | Usual services          | Patient flow, safety, process indicators, service utilization                        |

**Table 2: Main findings on waiting time, access, safety, and satisfaction, experience**

| Intervention type                               | Study                     | Main operational effect                                                                                                                                                         | Satisfaction, experience                                                                | Safety, process signals                                                                 |
|-------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Open, advanced access scheduling                | Mehrotra et al. (2008)    | Short term improvement in appointment access: mean 3rd next available wait reduced (21→8 days for short visits, 39→14 days for long visits), but later increased over follow up | No significant improvement in patient, staff ratings of availability in that evaluation | Implementation vulnerable to provider leave, demand instability (continuity risk noted) |
| Attendance focused outreach (phone)             | Shah et al. (2016)        | Targeted live calls to high risk patients reduced no shows (reported as statistically significant in trial)                                                                     | Supports perceived access by freeing capacity                                           | Reduce fragmented care associated with missed visits                                    |
| Attendance focused outreach (text reminders)    | Ulloa Pérez et al. (2022) | In high risk primary care visits, additional text reduced no shows by 7% (RR 0.93) and same day cancellations by 6% (RR 0.94)                                                   | Not primary endpoint                                                                    | Improves efficiency by reducing wasted slots                                            |
| Predictive model–driven live reminders          | Tarabichi et al. (2023)   | Reduced missed appointments (missed appointments 27.1% vs 30.7%, and composite no show outcomes 32.8% vs 36.2%)                                                                 | Not primary endpoint                                                                    | Targeting reduce disparities in access, use                                             |
| Workflow, process redesign (Lean)               | Naidoo et al. (2016)      | Reduced waiting time in rural ambulatory setting after Lean changes                                                                                                             | Improved staff satisfaction reported                                                    | Process reliability and reduced delays can support safer operations                     |
| Workflow, process redesign (Lean)               | Hammoudeh et al. (2021)   | Waiting time decreased substantially (22.3→8.1 min for <3 meds, 31.8→16.1 min for ≥3 meds)                                                                                      | Patient satisfaction increased (62%→69%) and staff reported improved work experience    | Reduced congestion and improved workflow coordination                                   |
| Behavioral “nudge” messaging                    | Teo et al. (2023)         | Nudge based messaging associated with improved attendance behaviors (missed visit outcomes targeted)                                                                            | Not primary endpoint                                                                    | Efficient cancellations improve capacity use                                            |
| Text message reminders (pediatric primary care) | Lin et al. (2016)         | Increased appointment adherence vs control                                                                                                                                      | Not primary endpoint                                                                    | Fewer missed visits reduces care gaps                                                   |
| Integrated community paramedicine + PHC         | Elden et al. (2025)       | Improved PHC system flow through alternative care pathways and coordination                                                                                                     | Patient, clinical team experience explored                                              | Reported attention to patient safety processes in integrated model                      |
| Same day appointments in general practice       | Sampson et al. (2008)     | Improved rapid access to appointments (service level effect)                                                                                                                    | Mixed satisfaction impacts depending on continuity and expectations                     | Potential continuity trade offs must be managed                                         |

In studies, two clusters of interventions showed the most consistent operational benefit: (1) attendance optimization using targeted reminders and risk stratification (Shah et al. 2016; Ulloa-Pérez et al. 2022; Tarabichi et al. 2023), and (2) process redesign (Lean) targeting bottlenecks and queueing delays (Naidoo et al. 2016; Hammoudeh et al. 2021). Open access scheduling improved appointment lead time early but demonstrated sustainability challenges and inconsistent satisfaction gains (Mehrotra et al. 2008). In models extending beyond the clinic walls, such as community paramedicine integrated with PHC, system-level effects on flow and safety-related processes were reported, suggesting value where appropriate governance and coordination exist (Elden et al. 2025).

## DISCUSSION

This review found that operational efficiency interventions can improve PHC access and flow, but outcomes differ based on implementation fidelity, demand–capacity balance, and whether interventions address both supply (workflow, staffing, scheduling design) and demand, attendance (no-show prevention, appropriate triage pathways).

System-level evidence supports that a range of interventions can reduce primary care appointment wait times, but heterogeneity and context are substantial (Ansell et al. 2017). Open, advanced access scheduling is designed to reduce delays, and systematic review evidence indicates variable effects in settings (Rose et al. 2011). In the included case-series, open access reduced the third next available appointment wait substantially in the short term but did not achieve same-day access and showed rebound increases over longer follow-up, emphasizing sustainability challenges (Mehrotra et al. 2008). These findings align with broader concerns that advanced access requires operational resilience, stable staffing, controlled demand, and protected continuity, to avoid regression.

Telemedicine also increasingly functions as an operational “capacity extender.” Evidence synthesis suggests telemedicine can reduce outpatient waiting times in certain configurations, but the magnitude and generalizability depend on case-mix and implementation model (Capodici et al. 2025). For PHC, telemedicine most impactful when used to offload low-acuity follow-up, medication reviews, or triage functions, thereby preserving in-person capacity.

Missed appointments represent “hidden waste” that directly erodes capacity and increases waiting time for others. Observational evidence links missed appointments with poorer preventive and chronic care performance, raising both quality and safety implications (Hwang et al. 2015). The included randomized and pragmatic studies suggest that targeted reminder strategies can modestly but meaningfully reduce no-shows at scale, translating into improved operational efficiency (Shah et al. 2016; Ulloa-Pérez et al. 2022; Tarabichi et al. 2023). Importantly, the trials that used risk stratification or predictive models focus resources where they are most likely to yield benefit, a principle consistent with the broader literature on reducing no-shows and optimizing access systems (Habibi et al. 2024). Quality improvement in general practice settings has also

shown that structured programs can reduce missed appointments, supporting the feasibility of operational change in real-world primary care (Margham et al. 2020).

Lean and related process-redesign methods aim to reduce unnecessary steps, smooth queues, and improve standard work. While not all Lean studies in “pure PHC centers” are available as accessible trials, the included evidence from ambulatory environments shows large reductions in waiting time and improvements in satisfaction (Naidoo et al. 2016; Hammoudeh et al. 2021). From a safety perspective, reduced congestion and clearer workflows lower error risk by decreasing interruptions, rushed care, and handoff confusion, mechanisms commonly discussed in broader patient-flow evidence (Samadbeik et al. 2024). However, safety outcomes were infrequently measured directly in the included PHC-centered intervention studies, representing an evidence gap.

## CONCLUSION

Operational and patient-flow interventions in PHC and primary-care-linked ambulatory settings can improve access and reduce wasted capacity. The most consistent benefits were seen with targeted reminder strategies and predictive-model-guided outreach that reduced missed appointments, as well as workflow redesign approaches that reduced waiting and improved satisfaction. Open access scheduling can reduce appointment waits rapidly but not sustain gains without demand–capacity controls and staffing resilience. Future PHC studies should measure safety outcomes explicitly and compare combined intervention bundles against usual care.

## Abbreviations

ED: Emergency department  
PHC: Primary health care  
PHC center: Primary health care center  
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses  
QI: Quality improvement  
RCT: Randomized controlled trial  
RR: Relative risk  
VA: Veterans Affairs

## References

- 1) Ansell D, Crispo JAG, Simard B, Bjerre LM, et al. Interventions to reduce wait times for primary care appointments: a systematic review. *BMC Health Serv Res.* 2017; 17:295. Doi: 10.1186/s12913-017-2219-y. PMCID: PMC5397774.
- 2) Capodici A, Noci F, et al. reducing outpatient wait times through telemedicine: a systematic review and quantitative analysis. *BMJ Open.* 2025; 15(1):e088153. Doi: 10.1136/bmjopen-2024-088153. PMCID: PMC11784372.
- 3) Elden H, et al. Community paramedicine service in primary health care: evaluation of patient flow and safety, process outcomes. *BMC Prim Care.* 2025. PMCID: PMC12199947.

- 4) Habibi MRM, et al. Evaluation of no-show rate in outpatient clinics with open access scheduling system: A systematic review. *Health Sci Rep.* 2024. PMCID: PMC11231932.
- 5) Hammoudeh S, Amireh A, Jaddoua S, Nazer L, Jazairy E, Al-Dewiri R, et al. The Impact of Lean Management Implementation on Waiting Time and Satisfaction of Patients and Staff at an Outpatient Pharmacy of a Comprehensive Cancer Center in Jordan. *J Multidiscip Healthc.* 2021; 14:3025–3035. PMCID: PMC8559043.
- 6) Hwang AS, Atlas SJ, Cronin P, Ashburner JM, Shah SJ, He W, et al. Appointment “no-shows” are an independent predictor of subsequent preventive care and chronic disease control in a community health setting. (Journal). 2015. PMCID: PMC4579240.
- 7) Lin CL, Mistry N, Boneh J, Li H, Lazebnik R. Text Message Reminders Increase Appointment Adherence in a Pediatric Clinic: A Randomized Controlled Trial. *Int J Pediatr.* 2016; 2016:8487378. Doi: 10.1155, 2016, 8487378. PMCID: PMC5227159.
- 8) Margham T, et al. Reducing missed appointments in general practice: evaluation of a quality improvement programme in East London. *BMJ Open Qual.* 2020. PMCID: PMC7716879.
- 9) Mehrotra A, Keehl-Markowitz L, Ayanian JZ. Implementation of Open Access Scheduling in Primary Care: A Cautionary Tale. *Ann Intern Med.* 2008; 148(12):915–922. PMCID: PMC2587225. PMID: 18559842.
- 10) Naidoo L, Mahomed OH. The Impact of Lean Improvements on Waiting Times and Patient Satisfaction in a Rural Hospital in KwaZulu-Natal, South Africa (pre–post evaluation). *BMC Health Serv Res.* 2016. PMCID: PMC??? (PMC record).
- 11) Rose K, Ross JS, Horwitz LI. Advanced access scheduling outcomes: A systematic review. *Arch Intern Med.* 2011; 171(13):1150–1159. Doi: 10.1001, archinternmed.2011.168. PMCID: PMC3154021.
- 12) Samadbeik M, et al. Patient flow in emergency departments: a comprehensive umbrella review of solutions and challenges in the health system. *BMC Emerg Med.* 2024. PMCID: PMC10913567.
- 13) Sampson R, Pickin M, O’Cathain A, Goodall S, Salisbury C. Impact of same-day appointments on patient satisfaction with general practice appointment systems. *Br J Gen Pract.* 2008; 58(554):641–643. PMCID: PMC2529202. PMID: 18713526.
- 14) Shah SJ, Cronin P, Hong CS, Hwang AS, Ashburner JM, Bearnott BI, et al. Targeted Reminder Phone Calls to Patients at High Risk of No-Show for Primary Care Appointment: A Randomized Trial. *J Gen Intern Med.* 2016; 31(12):1460–1466. doi: 10.1007, s11606-016-3813-0. PMCID: PMC5130951. PMID: 27503436.
- 15) Tarabichi Y, Higginbotham J, et al. Reducing Disparities in No Show Rates Using Predictive Model-Driven Live Appointment Reminders for At-Risk Patients: a Randomized Controlled Quality Improvement Initiative. *J Gen Intern Med.* 2023; 38(13):2921–2927. doi: 10.1007, s11606-023-08209-0. PMCID: PMC10150669.
- 16) Teo AR, Shabani A, Stankovic N, Crawford J, Hwang TJ, Dobscha SK, et al. Using Nudges to Reduce Missed Appointments in Primary Care. *J Gen Intern Med.* 2023. PMCID: PMC10356735.
- 17) Ulloa-Pérez E, Blasi PR, Westbrook EO, Lozano P, Coleman KF, Coley RY, et al. Pragmatic Randomized Study of Targeted Text Message Reminders to Reduce Missed Clinic Visits. *Perm J.* 2022; 26(1):64–72. doi: 10.7812, TPP, 21.078. PMCID: PMC9126539.
- 18) Zhang H, et al. Relationship between waiting time and patient satisfaction in primary health care centers: a cross-sectional analysis. *Front Public Health.* 2023. PMCID: PMC10448813.