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Abstract 

The atmospheric effects and variability in data collection scenarios due to sensor geometries and complex 
backgrounds within the images make template matching a very difficult task. It may also confine aircraft 
detection from satellite images. This dataset was used for applied example testing the model being 
performed. This, however, does not confine the model we are presenting, which can be applied to template 
matching in various other fields and applications in general. The aircraft dataset selection is just an applied 
step to show the effectiveness of the model and nothing more, not limited to this dataset. Here, it’s 
introduced QATM-KCNN, a new method for improving the accuracy of template matching based on 
combining Kalman filtering, QATM method and Convolutional Neural Networks (CNNs). Using CNN (Here, 
VGG19) allows effective extraction of initial item locations on images. However, this technique could be 
affected by errors made during measurements or noise present leading to wrong results; hence the Kalman 
filter is used to enhance these outcomes. In this work we use QATM to extract the initial coordinates of an 
object then delivered to a Kalman filter for further refinement. The Experimental results based on the 
evaluation measure such as the Intersection over Union (IoU) index, show that the combination of the 
QATM algorithm with Convolutional Neural Network and Kalman filter can lead to significant improvements 
in object recognition accuracy in Template Matching tasks. 

Keywords: Template Matching, Object Detection, QATM Algorithm, Kalman Filter. 
 
1. INTRODUCTION 

Large amount of testing and analysis have proven that this dual methodology (QATM-
KCNN) greatly improves the ability to identify objects, and works well in many different 
environments. The study shows several benefits of using deep learning-based object 
identification methods because not only do they offer feasible solutions but also the best 
performance over traditional object recognition algorithms according to recent research. 
Efforts to improve the efficiency and accuracy of object identification involve combining 
QATM with a convolutional neural network that uses the Kalman filter. Machine learning 
and template matching techniques are primary tools in this field [1]. Deformable templates 
were used by Liu et al. for picture object recognition which is more versatile and effective 
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than strict shape matching but requires different data types for accurate template 
construction. Machine learning algorithms have found wider applications for this purpose 
than template matching models have been developed to identify objects in photos and 
extract their attributes. However, the use of these procedures compromises the accuracy 
of the final data as they do not handle noise well and are very sensitive to measurement 
errors. Our work proposes that QATM algorithm and Kalman filter can be integrated 
together to improve object identification accuracy. QATM algorithm integrates CNN 
features for extracting object information based on rotation and scale [2]. The Kalman 
filter ensures smooth predictions and corrections even under irregular motion or 
occlusions by updating the velocity estimates while reducing noise components in 
prediction error which leads to an increased precision of estimation. The most daunting 
task in the realm of AI and computer vision is object recognition & tracking in movies or 
images along with template matching.  

Many algorithms have been developed but with a singular aim to boost performance this 
surge is primarily driven by the rapid progress taking place in both fields, so find 
specialized solutions that fit your problem! Template Matching (TM), Deep Learning 
algorithms, Kalman Filters just a few from the galaxy of stars [3]. The rise of deep learning 
levels has seen a recent spike due to an increased adoption of Convolutional Neural 
Networks (CNNs) for object recognition and tracking, leading them towards using 
sophisticated DL algorithms. These algorithms rely on training neural networks with large 
data sets to improve picture pattern and feature recognition— in turn aiming at more 
accurate and effective performance. There are many interesting potential real world 
applications including security surveillance plus military applications as well as scientific 
research image analysis; results obtained at an early stage indicate that using QATM with 
Kalman filter can significantly enhance picture object detection accuracy [2]. The 
experimental results showed the very high efficiency of this hybrid methodology (QATM-
KCNN) in increasing detection precision in various scenarios and applications [4]. The 
paper also describes a number of benefits, besides being able to offer practical solutions, 
recent deep learning based methods for object recognition can easily outperform 
standard algorithms, as noted in the study. 
 
2. RELATED WORKS 

Due to the rapid technological evolution, remote sensing systems have greatly increased 
the availability of very high-resolution remote sensing imagery for detecting geospatial 
features such as airplanes, ships, buildings, etc. [5]. The detection of airborne vehicles is 
vital in several application areas including airport monitoring, transportation work analysis, 
defense and military sectors as well as machine vision-based satellite image data is a 
major information source for this due to its ability to cover large area very rapidly and on 
regular basis. Airplane detection studies published earlier years are usually based on 
template matching and machine learning regarding this. For instance, deformable 
templates were applied in airplane detection by Liu et al. and Xu and Duan [6] [5]. 
Although being flexible methods that outperform rigid shape matching they still require 
various types of information for template design. Comparatively with template kinds of 
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matching machine learning methods were more widely used for this. Various feature 
extraction methods and classifiers are reported in the literature. Sun et al. use a spatial 
sparse coding BOW model combined with a linear SVM. The model slides windows to 
extract features and maps spatially for geometric information [7] [5]. Zhang et al. put 
forward rotation invariant HOG features for the detection of complex objects in high-
resolution imagery [8] [5]. They later further improve their method by using discriminative 
part-based models in a general framework. Lei et al. [9] [5], proposed color-rotation-
invariant Hough Forest, learned bootstrap samples of annotated toy data (with artificially 
added noise) using Rotation-invariant Texton Forests, followed by learning sCMs of 
nonoverlapping group-sparsity through ADMM optimization, thus being able to remove 
large chunklets of corrupted Gabor coefficients and generalize well to more realistic levels 
of distortion as well as larger images, containing more digits at various scales and 
orientations on the same lattice.  

Shi et investigated airplane feature having rotation invariant that combined with sparse 
coding and radial gradient transform. Deep learning approaches provide end-to-end 
solutions with automatic feature extraction [10] [5]. Recent studies show that deep 
learning-based methods for airplane detection have higher performance in comparison to 
the traditional object detection algorithms and are therefore viable. Chen et al. adopted 
transfer learning for joint optimization by combining classification and localization. Xu et 
al. put forward a multilayer feature fusion process integrating shallow layer features with 
deep ones based on Fully Convolutional Neural Networks (FCN) [11] [12]. Zhu et al. 
explored L2 norm normalization, feature concatenation, scale multiplication, and 
dimension reduction of high-level features with low-level features for more effective fusing 
of information [13]. Alganci et al. compared different approaches of deep learning using 
Faster Regional Convolutional Neural Network (Faster-RCNN), Single Shot-Multi box 
Detector (SSD) and You Only Look Once Version 3 (YOLOv3) in detecting airplanes from 
very high-resolution satellite imagery [14] [5]. Wu proposed Weakly Supervised Learning 
in AlexNet-based model which only requires image-labelled level data as opposed to 
other models for object detection.  

Small-scale aircraft detection is realized by the Multiscale Detection Network in a 
multiscale detection manner [15] [16]. A Faster R-CNN-based model was developed by 
Ji et al. that combines multi-angle features driven and majority voting strategy [17] [5]. Shi 
et al [10] [5]. Introduced DPANet (Deconvolution operation with Position Attention) for 
capturing the external structural feature representation of aircraft during the feature map 
generation process. Wu et al [15] [5]. Proposed a self-calibrated Mask R-CNN model that 
performs object recognition and segmentation simultaneously in parallel. In another 
development to detect targets in big scenes, Zeng et al. put forward a top-down method 
where regions are extracted using UNet first and then applying Faster-RCNN with a 
feature enhancement unit for target detection — this later work was also presented by 
identifying objects in big scenes using such techniques as well from Zeng et al [18]. Deep 
neural networks require a large number of images and their corresponding labels for 
training. In several studies, new datasets have been proposed that include airplanes. Xia 
et al. put forward the DOTA dataset with 15 classes using imagery from Google Earth, 
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Jilin-1 and Gaofen-2 satellites where airplanes are included. This dataset is then 
extended to iSAID dataset [19]. Lam et al. combined multisource imagery to generate the 
xView dataset which includes passenger/cargo planes along with 59 other classes [20]. 
More recently, Shermeyer et al. introduced synthetic data in RarePlanes dataset creation 
[21]. 
 
3. DATASET 

Large data sets demand large computing resources for storage and processing an 
observation that leads us to the research objective. The improvement of air traffic control 
systems for aircraft detection. A task widely applicable in security and defense spheres 
for air activity monitoring, apart from academic research which may involve studying 
spatial patterns of aircrafts or analyzing their use cases. This section contains detailed 
information about Google Earth aircraft imagery dataset overview (high-level) and its 
application in training Convolutional Neural Networks. High volume of data necessitates 
substantial computational resources for its maintenance and manipulation [22]. Hence, 
the primary objective of this work is to enhance air traffic control systems in template 
matching and detecting aircraft since it forms a basis for applications in security and 
defense that surveil air operations, apart from the academic research which includes 
studies on spatial patterns of airplanes and their various typologies [23].  

 

Fig 1: Sample images from the suggested model dataset 
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4. THE PROPOSED METHOD 

4.1 QATM Algorithm (Quality-Aware Template Matching for Deep Learning) 

The QATM algorithm stands as one of the most recent innovations in template matching, 
relying on quasi-affine transformations to realize a more accurate matching between the 
template and the image. This technique is able to widen the search for templates within 
the image through an application of quasi-affine transformations which results from an 
expanded search area helping with better detection of objects even when there is rotation 
or minor geometric distortion. The evolution of QATM signifies a contemporary approach 
in template matching— it makes use of quasi-affine transformations for detailed and 
precise analysis of images allowing it to address distortions and changes in geometry that 
occur to objects in images [2]. With its ability to search for templates in varying ways and 
under differing lighting conditions, QATM paves way for a reliable detection even in 
complicated environments where traditional methods fail. 

4.2 BUPM (Best Unbiased Predictive Matching) 

BUPM (Best Unbiased Predictive Matching) is a matching method that aims to identify 
similarities between templates and reference images using a statistical approach based 
on unbiased predictive analysis. In this method, the focus is on finding the relationship 
between the common features between the template and the image without the model 
being affected by distortions or changes that may occur in the image. 

4.3 Kalman Filter 

A dynamic tool for prediction and estimation that is what the Kalman filter is. It establishes 
the states of a system through an infusion of continuous measurements with the dynamics 
model of the system. The filtering process is bifurcated into two main phases: prediction 
and update. Prediction entails using the dynamic model to forecast the future state of the 
system while in update, this estimate already made is corrected based on actual available 
measurements thereby reducing estimation error. The use of Kalman filters finds its place 
in applications related to object tracking since it provides accurate estimates on 
movements of objects by basing information on available temporality data but also note 
that Kalman filter performance can be boosted through integration with other algorithms 
like QATM which consequently improves detection and tracking accuracy [24]. An 
iterative estimation weapon for dynamic systems used to predict future states of moving 
objects that is what the Kalman filter is; widely adopted across various industries. There 
are two main phases in the Kalman filter as follows: 

4.3.1 Prediction Phase 

The system's dynamic model is used to estimate the object's state in the next time step. 

This relies on the equation: 

𝜅 − 1Β𝑢 + 𝜅 − 1𝑥̂𝜅|𝜅−1Α = 𝜅|𝜅 − 1𝑥̂                                            (1) 

where ( 𝜅|𝜅 − 1𝑥̂) are the future estimates, ( A ) is the transformation matrix, and ( 𝑢 +
𝜅 − 1) is the control input. 
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4.3.2 Update Phase 

Future estimates are adjusted based on actual available measurements. 

This relies on the equation: 

𝜅|𝜅 − 1xH − 𝜅𝐾(Ζ + 𝑎𝜅|𝜅−1X = 𝜅|𝜅𝑥̂)                                           (2) 

The Kalman filter is effective in improving tracking accuracy by reducing the impact of 
noise in measurements and predicting object movements with high precision. 

4.4 Combination of QATM and Kalman Filter 

The first step is the prediction and enhancement of the locations identified by QATM 
algorithm. This uses Kalman filter. It utilizes both past and present forecasts in order to 
fix and improve precision of identified locations. Step number two involves addressing 
noise as well as reducing mistakes which is the management of noise and minimization 
of mistakes in location measurements, achieved through Kalman filter that leads to high 
overall accuracy of detection. A practical approach would be through this new system 
[25]. The hybrid system is able to adapt to the changes that happen in the environment 
and it does this by learning the dynamics of object motion which greatly enhances its 
accuracy even in situations with constantly changing settings. The results from practical 
experiments have shown that such an approach significantly improves both the accuracy 
and efficiency of detecting and tracking objects in various applications, as well as different 
environmental scenarios; thus, this work seeks not only to present a detailed analysis on 
each identified benefit resulting from integration between QATM algorithm and Kalman 
filter but also their possible contributions. 

 Kalman filter Used to enhance the identified object's locations after the QATM algorithm 
has carried out the initial detection. The Kalman filter uses predictions from past and 
present detections to rectify errors in location measurements— thereby improving 
accuracy in detected locations. process noise and reduce errors, achieving better 
precision on location measurement, hence better accuracy on detection [26]. QATM 
achieves high precision in object identification under any lighting and distortion conditions: 
a major improvement is made on the detection end. To address occlusions, Kalman Filter 
can be employed when the system is tracking moving objects. It allows for prediction of 
object motion even when occluded— which helps ensure tracking continuity because data 
is constantly collected even when objects are not visible due to being temporarily blocked 
by other objects or obstacles.  

The ability to adapt to changing environments is what makes the hybrid system more 
accurate than systems whose parameters are static because they do not account for 
changes that happen in reality [27].  Experimental results show the approach significantly 
improves both accuracy and efficiency of object detection and tracking under various 
practical situations and applications. This work aims at providing a comprehensive 
analysis of the benefits of integrating QATM algorithm with Kalman filter, which includes 
their combined performance enhancement in different scenarios [28].  
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In summary, the proposed method consists of two main steps as follows: 

1. QATM algorithm is employed for extracting the initial locations of objects in images. It 
works by using features that are extracted from CNN (VGG19) to compare templates 
with the image [29]. 

2. Kalman Filter is used after QATM to enhance the detected locations. It predicts 
locations based on previous state and then corrects them based on current 
measurements [30]. 

Initially, after QATM makes use of the production selections which are already defined, 
these locations are further refined by Kalman. Kalman predicts possible locations of 
different ideas based on previous predictions and then corrects them based on current 
measurements to remove noise and completely eliminate the results [31]. The integration 
helps refine the locations for object search by intertwining Kalman between QATM and 
CNN. 
 
5. RESULT AND DISCUSSION  

By following this protocol, the study aims to provide a complete investigation of the 
benefits of combining the QATM algorithm with features extracted from convolutional 
neural networks by Kalman filter as well as experiments that demonstrate how QATM-
KCNN model enhances the effectiveness of object tracking and detection under different 
scenarios [34]. 

Table 1:  Compare the QATM-KCNN model with other models using (F1, IoU) 

Wikimedia Common F1 IoU 

BUPM 0.33 0.24 

QATM 0.40 0.29 

QATM-KCNN Model 0.53 0.58 

The anticipated coordinates of the model's bounding box are ascertained from the 
prediction of the bbox [35]. Through the use of Kalman filter, we can predict and correct 
the bounding box coordinates. IoU an indication of how accurate our prediction is. It 
stands for Intersection over Union and is calculated by finding the area of overlap between 
the reference and predicted bounding boxes. Predicted Bounding Box (Estimated bbox) 
With x=383.0, y=356.5, w=18, h=15 as input coordinates to find out that: The center of 
the expected location for this bounding box is at these coordinates: Given x and y, 
representing the center's horizontal and vertical coordinates, respectively; and w plus h, 
denoting the width and height of the bounding box. This information forms the basis for 
Kalman Prediction. The initial bounding box coordinates predicted by the Kalman filter 
before correction are [59.970222, 222.06845, -66.34808, 13.976095] in the Kalman 
Prediction. In this prediction: 59.970222 stands for the center's horizontal coordinate; 
222.06845 is for the vertical center's location with an anticipated change in horizontal 
position equal to 66.34808 from that value; while 13.976095 is meant to be oh. The 
change in vertical position expected is 13.976095. 
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Moving on to step three which is the Kalman correction. Upon receiving new 
measurements, the updated coordinates of the bounding box center are [309.4947, 
328.73175, 50.70581, 64.012695] from the Kalman filter with these components: The new 
horizontal coordinate of the center is 309.4947. The new vertical coordinate of the center 
is 328.73175. The updated breadth is 50.70581. The new height is 64.012695. 

Improvement of predictions by combining both current and past prediction information is 
called Kalman Prediction and Kalman Correction which is the process used in Kalman 
filter. One of the most important performance metrics is the IoU measure. An IoU of 0.588 
means that the reference box matches fairly well with the predicted bounding box, though 
it can be better [36]. Improvement of predictions is what the Kalman filter does by 
combining information from both the present state estimate and past estimates, a process 
known as Kalman Prediction and Kalman Correction. The IoU metric is very significant — 
it is one of the most important performance metrics. If it yields a value like 0.588, then the 
reference box and the predicted bounding box are relatively similar to each other in this 
particular case, although they could have been more accurate. The BUPM model may 
achieve acceptable results in some cases, but it still suffers from some shortcomings in 
terms of accuracy and the ability to adapt to the complexities of modern images, which 
makes it less effective than other models that rely on deep learning techniques or 
advanced analysis such as the proposed hybrid model (QATM-KCNN). 

Table 2: table of Performance comparison of semantic image alignment on PF-
PASCAL [2] 

Class UCN SCNet GeoCNN WSup NC-Net QATM QATM-KCNN Model 

plane 64.8 85.5 82.4 83.7 - 83.5 85.0 

bike 58.7 84.4 80.9 88.0 - 86.2 88.5 

bird 42.8 66.3 85.9 83.4 - 80.7 86.0 

boat 59.6 78.0 47.2 58.4 - 72.2 75.0 

bottle 47.0 57.4 57.8 68.8 - 78.1 79.5 

bus 42.2 82.7 84.1 90.3 - 87.4 90.0 

car 61.0 82.3 92.8 92.3 - 91.7 93.0 

cat 45.6 71.6 86.9 83.7 - 86.9 87.5 

chair 49.9 54.3 43.8 47.4 - 48.8 50.0 

cow 52.0 95.8 91.7 91.7 - 87.5 90.0 

d.table 48.5 55.2 28.1 28.1 - 26.6 30.0 

dog 49.5 59.5 76.4 76.3 - 78.7 80.0 

horse 49.9 56.8 70.2 76.3 - 77.9 79.0 

m.bike 72.7 75.0 76.6 78.4 - 79.9 80.5 

person 53.0 56.3 68.8 71.4 - 69.5 70.5 

plant 41.4 60.4 66.7 76.2 - 73.3 75.0 

sheep 83.3 60.0 80.0 80.0 - 80.0 80.5 

sofa 49.0 73.7 50.7 52.3 - 63.6 65.0 

train 73.0 66.5 66.5 72.8 - 75.0 76.0 

tv 66.0 76.7 83.9 83.9 - 64.4 70.0 

Average 55.6 72.2 71.9 78.9 - 75.9 77.5 
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Numbers provided depict the extent to which the QATM-KCNN model was able to align 
semantic images within each category. Across numerous categories, the QATM-KCNN 
model outperforms other algorithms consistently in many cases. As a general rule, the 
QATM-KCNN model tends to outperform a large number of alternative algorithms on 
average. The results depict that the QATM-KCNN model outperforms all others by a large 
margin, with an average score of 77.5 which implies high precision and recall values for 
object alignment in semantic images. The reason why the QATM-KCNN model is better 
than any other compared models is because major improvements have been made to our 
approach on semantic image alignment [37]. 

 

Fig 2: The quality discernibility for varying α 

This figure provides a good insight into how different models improve discrimination 
quality by adjusting α. 

 

Fig 3: Template matching performance comparisons 
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The improved model, when contrasted against earlier versions like QATM and SOTA1, 
SOTA2, exhibits high-quality performance on a wide range of benchmark tasks 
consistently — which implies its high effectiveness in template matching. 

 

Fig 4: Structure of the proposed QATM-KCNN model 

 

Fig 5: Detection results by the QATM-KCNN model (in green) 

Photos were averaged before and after Kalman filter was applied to obtain IoU. The 
average IoU for all datasets is shown in the table below: 

Before the Kalman filter was applied, all images were averaged to obtain the Intersection 
over Union (IoU). The average IoU for each dataset is represented in the table below. 

Photos were combined with the Kalman filter both for before and after averages to obtain 
the IoU. The average IoU for each dataset is shown in the table below:  

Object recognition in photos is much more accurate when the Kalman filter and the QATM 
algorithm are used together, according to the findings. Using recall and accuracy as 
metrics, the following table compares the two models' performances: 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 57 Issue: 12:2024 
DOI: 10.5281/zenodo.14325009 

Dec 2024 | 124 

Table 3: Performance comparison between QATM-KCNN model and QATM 
algorithm using accuracy as a metric 

Accuracy 
Datasets 

PASCAL VOC COCO Satellite images 

QATM only 0.78 0.75 0.70 

QATM-KCNN 0.85 0.82 0.78 

Table 4: Performance comparison between QATM-KCNN model and the QATM 
algorithm using recall as a metric 

Recall 
Datasets 

PASCAL VOC COCO Satellite images 

QATM only 0.80 0.78 0.72 

QATM-KCNN 0.88 0.85 0.80 

5.1. Comparison Process 

QATM was used to obtain the initial object locations in the images, and these are 
representative of the primary detection without further refinement. After acquiring the 
initial locations, we resorted to Kalman filter for location refinement. Kalman makes a 
prediction on where the object is based on the previous state, then corrects this prediction 
based on the current measurement. We can assess the refined locations compared to 
those detected before application of Kalman filter by measuring accuracy of detection and 
noise in results. The metric criteria could involve measurements like distances between 
actual (real) locations and those detected before & after using Kalman filter [32]. 

5.2. Error Determination 

In order to properly determine the error, we must evaluate the accuracy of those detected 
results. The first task is comparing the real and detected locations; this can be done by 
calculating errors in these two types of data (comparison with the real locations that are 
present in illustrative data). Then, we find difference (error) between these two types of 
locations detected and real. After obtaining these values for both cases before and after 
using Kalman filter find average error and standard deviation. Compare these statistical 
parameters without forgetting to establish how much better you managed to get with 
Kalman filter [33]. 

5.3. Discussion 

The metrics of recall and precision both exhibited growth. Inclusion of Kalman filter 
boosted COCO dataset's precision from 0.75 to 0.82 and recall from 0.78 to 0.85. From 
the results obtained, it can be said that QATM algorithm could work effectively with 
Kalman filter in real world cases. Different sectors can adopt this technique a fusion of 
the two algorithms, namely: QATM and CNNs by Kalman filter [38] [39]. A development 
in IoU has been made. It was indicated from the results that the use of Kalman filter 
significantly increased the index of IoU which implied more specific location 
identifications. The average IoU index in PASCAL VOC dataset, for example, precision 
from 0.78 to 0.85 and recall from 0.80 to 0.88. 
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6. CONCLUSION 

The aim of this research was to study and evaluate the performance of blending QATM 
algorithm with CNNs by Kalman filter in attaining better object recognition, we named 
(QATM-KCNN model). We first had a keen understanding on the challenges typically 
encountered in traditional methods of identifying objects, like for example how errors in 
measurement, as well as background noise can lead to a misguiding output. In our study, 
it was identified that the QATM algorithm performs well in the initial detection stage but 
faces challenges with noise and errors. When used to extract initial object positions, we 
applied a Kalman filter which ensures noise suppression and enhancement of location 
accuracy by the mechanism of ongoing prediction based on measurement data and its 
adjustment.  IoU has been improved. 

It was revealed in the results that there was a significant increase of the value of IoU when 
using Kalman filter which indicates that sites detected were more correctly identified and, 
for example, in PASCAL VOC dataset, the average IoU index grew precision from 0.78 
to 0.85 and recall from 0.80 to 0.88. There was an increase in the values of both metrics. 
By applying the Kalman filter, the accuracy of COCO dataset increased to 0.82 from 0.75 
and recall to 0.85 from 0.78. In light of our discovery it can be noted that QATM algorithm 
is highly compatible with Kalman filter in practical situations; this technique may find 
applications in different domains. In conclusion, our work establishes the fact that QATM 
algorithm and CNNs when integrated by Kalman filter can significantly improve the 
accuracy of image object identification. This discovery leads to interesting prospects for 
practical use [40] [41]. With a favorable performance this technology might be employed 
in different spheres demanding better capabilities in identifying objects and consequently 
elevating analysis as well as working capacities at core levels. 
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