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Abstract  

Exome sequencing (exome-seq) by NGS (Next generation sequencing.) has aided in the finding of a 
significant number of cancer mutations, however challenges persist in translating oncogenomics data into 
information that is comprehensible and useful for clinical care. We identified the driver genes and the 
mutation using the database DriverDBV3, which combines exome-seq data, annotation databases, and 
bioinformatics methods. This database offered Transforming Growth Factor Beta 1 (TGFB1) and driver 
genes to visualize the correlations between mutations and driver genes in glioblastoma multiform (GBM). 
The most aggressive brain cancer is the GBM that affects adults with the lowest life expectancy. This study 
compiles data illustrating the considerable transcriptional and genomic variability of GBM, focusing on 20 
clinically relevant driver genes. With a different profile for driver genes and TGFB1 in GBM, a pattern 
matched the driver genes' involvement in GBM ontogenesis. Also, we discovered TGFB1 overexpression, 
which was identified as a driver gene in five different aspects based on the mutation score. Also, we 
discovered a combination of the six-driver genes EGFR, TP53, PTEN, PIK3CA, PIK3R1, and IDH1 with a 
unique pattern of differential expression and their distinct distribution of somatic mutation, giving them a 
significant potential to identify the molecular subtype of GBM. Eight computational techniques were used 
for the GBM dataset to summarize and calculate the results of the driver genes and TGFB1 implicated in 
GBM. The differential regulation of these genes concerning distinct cellular pathways for GBM patients 
were also found in our data. This multi-omics analysis will outline future strategies for applying these 
molecular markers for patient assessment in regular medical practice. 

Keywords: Driver genes, Exome sequencing, Glioblastoma, Mutation, Next generation sequencing, 
TGFB1 

 
1. INTRODUCTION 

The cancer genome mutations being identified have significantly risen because of next-
generation sequencing (NGS), which also enables the characterization of the 
histopathological and molecular characteristics of different malignancies. Exome 
sequencing (exome-seq) has been standard practice in oncogenomics studies over the 
past few years [1]. Additionally, massive cancer projects like the International Cancer 
Genome Consortium (ICGC), The Cancer Genome Atlas (TCGA), Therapeutically 
Applicable Research to Generate Effective Treatments (TARGET), and the Pediatric 
Cancer Genome Project have generated enormous amounts of data related to cancer 
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genomics (PCGP) [2]. Although NGS has already assisted researchers in uncovering a 
sizable number of aberrant events in cancer genomes, it is still challenging to transform 
this information into scientific information that can be easily acquired and interpreted. 

Cancers may be characterized by multiple somatic mutations and are primarily brought 
by the accumulating effects of genetic changes. However, not all of these mutations 
contribute to the development of a tumour. Only a small portion of mutations, whereas 
others, have little impact on cancer development. The driver and passenger mutation has 
been developed to clarify this concept further.[3]. "Driver" mutations give the tumour cell 
a selective growth advantage. A "passenger" mutation does not provide a growth benefit 
but does so in a cell that concurrently or later obtains a "driver" mutation [4]. 

Although somatically changed genes that change their protein products are present in 
most solid tumours, the number of non-synonymous mutations varies depending on the 
kind of cancer. More than 80% of mutations are missense, and the functional effects of 
these mutations vary greatly depending on their location and function within the protein 
and the type of amino acid used as a replacement [5]. While many identified missense 
alterations are neutral passenger mutations, pinpointing cancer driver mutations and are 
still consider tricky to analyse. Several computational techniques have been developed 
to anticipate missense mutational effects based on concepts including evolutionary 
conservation, structural restrictions, and the physicochemical characteristics of amino 
acids[6]. Machine learning techniques have recently been developed to forecast cancer-
causing deleterious mutations[7]. 

GBM substantially threatens the human population because of its poor prognosis. 
Individuals with GBM have a meagre chance of survival and often only live for 14 to 15 
months after diagnosis [8]. In the current study the mutational data of driver genes and 
TGFB1 were investigated in the GBM. It was observed that based on IDH1/2 mutational 
status and the existence of a codeletion of 1p19q, GBMs were divided into three different 
subtypes: IDH1/2 mut, IDH1/2 mut 1p19q codeletion, and IDH1/2 wt [9]. Several non-
synonymous mutations in six genes (EGFR, TP53, PTEN, PIK3CA, PIK3R1, IDH1), were 
discovered in the glioblastoma catalytic domain and examined using various methods, in 
silico tools and databases to understand their potential implications on the structure and 
operation of the GBM driver genes. It is possible that the mutations observed in the GBM 
events could change the structure and functions of the protein. As a result, we discover 
the driver genes, TGFB1, and their potential impacts on the protein's structure and 
function. 

In order to discover driver genes, a variety of computational techniques have been used 
. Algorithms like MUTSIG-CV, OncodriverFM, MuSiC, Simon and DriveDBV3 which are 
based on the frequency of gene mutations compared to background mutation rates. 
However, background mutation rates vary significantly among genomic regions and 
individuals [10]. Using DriverDBV3, we identify driver genes with statistically significant 
mutation rates in phosphorylation-specific regions. Other methods based on the sub-
network approach can identify groups of genes with driver mutations directly from cancer 
mutation data, with or without prior knowledge of pathways or other information on 
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protein/genetic relationships[11]. This approach works particularly well when it cannot 
discriminate between the observed frequencies of passenger and driver mutations, which 
is when single gene testing fails. Moreover, sub-networks are thought to find cancer-
causing genes with minimal recurrence [12]. Most sub-network-based methods, such as 
Dendrix, Multi-Dendrix, MEMo, MDPFinder, and RME, identify driver genes with the 
characteristics of mutual exclusion. 

In the current study, we introduce the DriverDBV3 database, which integrates exome-seq 
data, annotation databases (such as 1000 Genome and COSMIC), and several 
bioinformatics techniques devoted to determining driver genes or mutations in GBM.[13]. 
DriverDBV3 uses various techniques to determine driver genes and offers many facets 
of a gene's mutation profile. By analyzing Copy number variation (CNV), methylation 
patterns, and micro RNA (miRNA) expression profile data, we also conducted an 
integrated analysis of the TCGA database of GBM Genomic Data Commons database 
(GDC), intending to complete a new molecular classification and present some new 
treatment targets for GBM. Recent research has demonstrated that GBM driver genes 
are essential to numerous biological networks, including the immune system [14]. 
MiRNAs and CNVs play an essential regulatory role in disease processes and function in 
typical physiological processes [15]. Although some miRNAs have been associated with 
the pathophysiology and development of brain tumours, research on long non-coding 
RNAs (lncRNAs) and miRNAs in brain tumours has lagged [16]. 

It is essential to comprehend the underlying oncogenic pathways of GBM to develop 
rational therapeutic strategies. Several driver genes have been linked to GBM in a variety 
of ways. The protein kinase EGFR is affected by a well-characterized mutation that results 
in EGFRvIII, a truncated form that is constitutively activated [17]. Furthermore, EGFR 
overexpression and amplification are significant in GBM. MET amplification, PIK3CA 
mutations, ERBB2 mutations, CDK4 and CDK6 amplification have all been connected to 
glioblastoma [18]. Some kinases, like as the kinase WEE1, are discovered to be 
overexpressed in GBM [19]. It is unclear if other kinases in GBM contribute to mutational 
activation in the same way. 

Hence, it is conceivable to comprehensively analyze the detrimental molecular processes 
such as genomic instability and somatic mutation of driver genes and TGFB1 in GBM with 
multi-omics data analysis. We examined the miRNA expression profile data, CNV, and 
methylation patterns in GBM. This study aimed to classify all dysregulated CNV, MET, 
and miRNA dysregulation aspects of protein-coding drivers and TGFB1 and also Locus 
enrichment analysis of these genes linked with patient prognosis. 
 
2 MATERIALS AND METHODS 

2.1 Data collection  

The TCGA database had 163 tumour samples and 207 standard samples in the 
glioblastoma dataset. We only used samples for which data for the four genomic platforms 
of RNA expression, gene mutation, CNV, and gene fusion were available in the 
DriverDBV3 database. The most recent RNA sequencing and exome sequencing data 
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from TCGA were obtained from the GDC data portal, for which the pre-processing data 
method is described in the DriverDBV3 portal[20]. This portal includes the TCGA 2BED 
tool, for Methylation data from a firehose, for the TCGA R package, "TCGA bio links," and 
CGC, which was collected from COSMIC and the NCG6.0 database, was used to define 
cancer-related genes. These pairs' mutation and CNV data were obtained through the 
data portal. Using the Pathway Mapper database, the representative genes of eleven 
traditional pan-cancer signalling pathways were obtained[21]. In the DriverDBV3 online 
database, at least seven algorithms (or 50 percent of all algorithms) predicted the driver 
genes that were the subject of this investigation [22]. 

2.2 Prognostic analysis of glioblastoma 

TCGA glioblastoma sample mutational characteristics were categorized using gene 
expression profiles.PAM50 algorithm with the Integration of DriverDBV3 was used[23]. 
Using Kaplan-Meier analysis, the predictive analysis was carried out on the samples. 

2.3 Screening and identification of Driver Genes  

DriverDBV3 used eight computational techniques to locate cancer driver genes. All 
mutations are used to identify driver genes by four approaches based on mutation 
frequencies: MutsigCV, OncodriverFM, Simon, and ActiveDriver. The sub-network-based 
approaches were implemented using MEMo, Dendrix, MDPFinder, and NetBox. The 
DriverDBV3 database having well-known driver gene prediction methods were then 
utilized to determine the 80 driver genes. We defined driver genes as genes that were 
recognized as driver genes by more than seven algorithms [24]. 

2.4 DNA-Level differences and Mutation annotation 

Our study evaluated the GBM driver gene TGFB1 and ten common oncogenic pathway 
genes for DNA-level alterations like gene mutation, gene fusion and CNV. A thorough 
investigation of the prevalence of DNA changes and the number of samples with DNA 
changes was conducted for each subtype. All mutations were mapped to well-known 
databases, and various bioinformatics tools are displayed in the Annotation module. 
DriverDBV3 uses data gathered from numerous databases, including NHLBI GO ESP, 
dbSNP, COSMIC, 1000 genomes, ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/), GWAS 
catalogue, HGMD-PUBLIC, and OMIM (http://omim.org/), to annotate known 
variations[25]. To forecast the effects of each mutation, including non-synonymous 
coding, stop gained/lost, and frameshift, we employed SnpEff and VEP.Also, we assigned 
a Driver Score of 7 to each mutation based on the 7 algorithms that classify the mutation 
as harmful [26]. 

2.5 Functional Analysis  

In order to evaluate the interactions between driver genes discovered in a collection of 
cancer samples using one or more methods, we defined three levels of biological 
interpretation of Gene Ontology, Pathways enrichment, and Protein/Genetic Interaction 
between the driver genes. The Gene Ontology task was carried out by computing the GO 
graph's topology and visualizing the connections between GO keywords and genes using 
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Bioconductor programmes. The datasets were employed from KEGG, REACTOME, and 
MSigDB to annotate driver genes in the "Pathway" analysis. The Protein/Genetic 
Interaction was deciphered using the three databases BioGRID, iRefIndex and IntAct. 
Traditional Fisher's exact test and -log (P value) was used to assess each GO word and 
Pathway category in the Gene Oncology and Pathway studies. The Cytoscape Web tool 
was included in the DriverDBV3 web interface's "Pathway" and "Protein/Genetic 
Interaction" sections enabling interactive network visualization [11]. 

2.6 Ethical Approval and Resource Sharing 

This retrospective study received approval by the ethical review board of the Capital 
University of Science and Technology (CUST), Islamabad, Pakistan. All the patients 
provided consent to the scientific use of their data. The biopsy samples of thirty-three (23 
males, 10 females, median age 50 ± 13 years) patients of high grade gliomas were 
collected from various surgery departments, public sector tertiary care hospitals of 
Pakistan who underwent brain surgery between January 2018 and December 2021. 
Before sample collection, none of the participants in the study had radio therapeutic or 
chemotherapeutic treatment. 

2.7 Quantitative RT-qPCR Analysis 

After ablation, 33 tissue biopsy samples were liquid nitrogen-snapped and stored at -80 
C until RNA extraction. To extract total RNA, the TriZol reagent was utilized. Using the 
SYBR® Green Master Mix kit, qPCR was carried out to amplify the specific PCR products 
of the three genes proposed in this investigation using Superscript II reverse transcriptase 
(Invitrogen, Paisley, UK) (Thermoscientific, CA, USA). The 2 –ΔΔCt technique and β-actin 
as the reference gene was used to analyze the mRNA expression of each gene. 

2.8 ELISA 

Before protein extraction, high-grade glioma biopsy samples were frozen in sterile 
containers and kept at -80°C. Protein-specific ELISA kits (Abcam Elisa kits USA) were 
used to quantify the levels of the gene TGFB1 following the manufacturer's instructions. 
Right away, the specific binding optical density at 450 nm was determined by a 
spectrophotometer. 
 
3. RESULTS 

3.1. Identification of driver genes in glioblastoma network and functional analysis  

The GBM summary network (Fig. 1A) showed the relationship between driver genes and 
miRNA drivers in glioblastoma. Driver genes have a variety of characteristics, and colour-
coded nodes identify them; yellow nodes identify MicroRNA (miRNA) drivers. These 
nodes are joined by lines to depict the protein-protein interactions (PPIs) in the STRING 
database and synergistic effects, which are defined as situations in which the hazard ratio 
(HR) of two genes is larger than 1.5 times that of each gene. Moreover, miRTar Base 
keeps track of how miRNAs and genes interact (Fig.1B). We predicted the driver genes 
of glioblastoma samples in the TCGA database using the DriverDBV3 online database, 
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as shown in table 1, in order to better understand the molecular characteristics of 
glioblastoma. Our top 20 driver genes are Epidermal Growth Factor Receptor (EGFR), 
Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA), 
Isocitrate Dehydrogenase (NADP(+)) 1 (IDH1), Tumor Protein P53 (TP53), Phosphatase 
and tensin homolog (PTEN),  Rh Blood Group D ( RHD), Phosphoinositide-3-Kinase 
Regulatory Subunit 1( PIK3R1), leucine rich repeat containing 37A (LRRC37A), 
Glutathione S-Transferase M1(GSTM1), Signal Regulatory Protein Beta 1(SIRPB1), 
Sodium/potassium/calcium exchanger 3(SLC24A3), Major Histocompatibility Complex, 
Class II, DR Beta 5 (HLA-DRB5), osteosarcoma amplified 9( OS9),  Carboxy-terminal 
domain RNA polymerase II polypeptide A small phosphatase 2 (CTDSP2), Maternal 
Embryonic Leucine Zipper Kinase (MELK), Zinc Finger And BTB Domain Containing 42 
(ZBTB42), UDP Glucuronosyltransferase Family 2 Member B17 (UGT2B17), Energy 
Homeostasis Associated (ENHO), Cyclin Dependent Kinase Inhibitor 2B (CDKN2B) and 
contact in associated protein family member 3B (CNTNAP3B). We employed DriverDBV3 
having more than seven algorithms to predict driver genes simultaneously to improve the 
accuracy of our results. Through network analysis, 80 driver genes were expressed, and 
the top 20 driver genes of glioblastoma were screened for gene ontology based upon 
significant log values of biological process ERBB2 signaling pathway, regulation of cyclin-
dependent proteins, regulation of cyclin-dependent proteins kinases, positive regulation 
of production of miR and negative regulation of mitotic cell cycle (Fig.1C-D). The twelve 
gene set collections from seven public database KEGG, PID, Biocarta, Recatome, 
MsigDB, miRTar, and miRWalk are used in the pathway analysis. The significant genes 
at KEGG were PIK3CA, PIK3R1, TP53, EGFR, PTEN, CDKN2A and CNTNAP3B at –
log10 (p-value) (Fig.1E). Similarly cellular functional analysis showed phosphatidylinositol 
3-kinase complex, cytoplasmic part, region of cytosol, cytoplasm and apical plasma 
membrane shown highest log values (Fig.1F). Lastly the molecular functions of driver 
genes of GBM also shown significant log 10 values in respect to natural killer cell lectin-
like receptor, insulin substrate insulin binding and cyclin dependent protein serine 
threonine in (Fig.1G). 

Table 1: Top 20 driver genes of glioblastoma summary table 

cancer gene CGC NCG6.0 mutation CNV methylation miRNA 

GBM EGFR 1 1 12 1 0   

GBM IDH1 1 1 7 0 0   

GBM PIK3CA 1 1 9 0 0   

GBM PIK3R1 1 1 9 0 0   

GBM PTEN 1 1 11 0 0   

GBM TP53 1 1 12 0 0   

GBM RHD 0 0 0 -1 0   

GBM LRRC37A 0 0 0 1 0   

GBM GSTM1 0 0 0 -1 0   

GBM SIRPB1 0 1 0 1 0   

GBM SLC24A3 0 0 0 1 0   

GBM HLA-DRB5 0 0 0 1 0   

GBM CTDSP2 0 0 0 1 0   

GBM OS9 0 0 0 1 0   
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GBM MELK 0 0 0 -1 0   

GBM ZBTB42 0 0 0 -1 0   

GBM UGT2B17 0 0 0 -1 0   

GBM ENHO 0 0 0 -1 0   

GBM CDKN2B 0 1 0 -1 0   

GBM CNTNAP3B 0 0 0 -1 0  
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Fig 1: Analysis of the driver genes in glioblastoma. A) The glioblastoma network 
presents the relationships between driver genes and miRNA drivers in a specific 
cancer type. B) In the Summary panel, a network shows the drivers for mutation, 
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CNV, methylation, and miRNA, each represented by a different colour grid in the 
node. Protein-protein interactions between nodes make up the string database's 
interactions. Determining which two genes' hazard ratios (HR) are larger than 1.5 
for each gene. C-D-F-G) with a statistically significant value of Log10 P = 0.05, the 

functional annotation section provides gene ontology of functional analysis of 
driver genes in biological, cellular, and molecular processes. E) The Pathway 

section contains 12 gene set collections collected from 7 open-access databases: 
at -log10 for KEGG (p-value) 

3.2. The mutational and survival analysis of driver genes 

The current insilico studies have shown that glioblastoma has many driver gene 
mutations. To more clearly establish the impact of driver genes on the prognosis of 
glioblastoma patients, we analyzed the driver gene mutations in the erroneous 
modifications of commonly altered genes and essential cancer genes in many signalling 
pathways. The bar graph depicted the top 30 major mutation drivers as determined by 
multiple computational tools, including the new tools CoMET, Mutex, and DriverML. (Fig. 
2A). It was observed that the change frequency of driver genes EGFR, TP53, PTEN, 
PIK3CA, PIK3R1, IDH1 were more significant, and we discovered these driver genes had 
a higher proportion of mutations. This graphic shows the relationships between the top 
30 mutation driver genes and cancer patients with the integration of tools as shown in 
figure 2B-2C. The impact of driver gene mutations on the prognosis of GBM patients was 
then examined. Based on whether the driver gene had a mutation, CNV, or gene fusion, 
we separated the samples of each subtype into an altered group and a non-altered group. 
Our investigation discovered that CRISP2, DCSTAMP, and MLPH had a poor survival 
effect and a substantial hazard ratio. The orange and green nodes indicate the survival 
genes with HR >1. For each synergistic survival event, Kaplan-Meier plots were 
generated using the comparison of all high against others and four expression-based 
groups (all high, low/high, high/low, and all low). The hazard ratio values for CRISP2,  

DCSTAMP, and MLPH were 2.75, 2.55, and 2.81, respectively, as shown in figure 2D. 
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Fig 2 | Mutational and survival Analysis of the driver genes in glioblastoma. A) 
The plot indicates defined mutation driver numbers by a different number of 

computational tools according to the mutation summary table. B) Using cancer 
patient samples on the x-axis and the top 30 genes on the y-axis, this graphic 
shows the relationships between the top 30 mutation driver genes and cancer 
patients. C) This plot shows the top 30 genes on the y-axis and the number of 
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tools by which they are defined on x-axis. D) This section includes all gene pairs 
with HR fold change greater than 1.5 in both directions. The patients are divided 
into groups depending on the patients' levels of gene expression for each gene 

pair. The hazard ratios for CRISP2, DCSTAMP, and MLPH were 2.75, 2.55, and 2.81 
respectively. The survival probabilities of the patient groups are then contrasted 
throughout the months, as demonstrated in the plots with a significant p-value of 

0.05 

3.3. CNV, MET and miRNA-define dysregulation features of protein-coding drivers 
and Locus enrichment analysis of Glioblastoma  

In order to analyse the aberrant shifts and changes in gene expression and to define CNV 
and methylation dysregulation events, iGC, DIGGIT, and methylmix were used to identify 
CNV dysregulation events. Whereas the ELMER and methylation mix were used to 
identify methylation dysregulation incidents to analyze the aberrant shifts and changes in 
gene expression and define CNV and methylation dysregulation events by driverDBV3. 
As a result, this aligns CNV and methylation computational algorithms and interpretations 
of abnormal miRNA regulation with negative correlation coefficients between miRNA and 
driver genes. Using a heat map, we identify the top 30 drivers, CNV and methylation 
panels  which also showed these novel traits in a similar way (Fig. 3A) .Similarly 
percentage bar charts showed significant gain in percentage of genes are EGFR (81%), 
LANCL2 (79%), SEC61G (78%), VOPP1 (77%), NIPSNAP2 (73%), MRPS17 (73%), 
ZNF713 (73%), PSPH (73%), SUMF2 (72%) and the genes with the significant loss 
functions were CDKN2A (71%), CDKN2B (70%), MTAP (67%), KLHL9 (60%), MLLT3 
(54%) and TUSC1(50%) as shown in (Fig. 3B). The most significant regions with identified 
CNV events were 1,3,4,6,7,9,12,13,14,15,17,20,22 and Y, as indicated in locus 
enrichment, which were also carried out to comprehend those regions that include 
CNV/differentially methylated events (Fig. 3C). 
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Fig 3 | CNV, MET and miRNA-define dysregulation features in GBM. A) The top 30 
CNV drivers are shown on a Heat Map in the CNV panel. B) A percentage bar 
chart in the CNV panel displays the sample proportions for the top 30 CNV 

drivers. C) Based on the locus enrichment analysis's findings, a circle graph in 
the CNV panel highlights the driver's loci on each chromosome with a red dot 

3.4. Differential expression of TGFB1 in pan-cancer and GBM biopsy samples due 
to mutations 

Differential expression of the TGFB1 gene concerning various cancer types is visualized 
using the Gene Summary analysis (Fig. 4A). The Differential Expression (DE) indicated 
Red block in GBM. The boxplots show the expression patterns across all cancer types 
for TGFB1. The expression is grouped by mutation class, showing the expression of 
TGFB1 in GBM in between 1e+5 to 1e+6 (Fig. 4B). The distribution of expression inside 
each GBM tumor type is shown in detail by the plot in a similar way. TGFB1 expression 
shown in Normal Solid Tissue was 2.1655e+5, Primary Solid Tumor was P=5.5846e+5 
and expression of TGFB1 shown in Recurrent Solid Tumor was 8.2995e+5 (Fig. 4C). To 
evaluate the mutational status of TGFB1 in GBM, we quantified the expression of TGFB1, 
and it was observed that protein expression was significantly increased in high grade 
glioma biopsy samples. We also examined the gene expression of targeted gene among 
grade III and gradeIV (GBM) specimen sections within the tumour and tumor-associated 
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normal tissue (TANT). All tissue samples were initially cut from four specimen regions, 
but samples with sufficient RNA quality and quantity were subjected to RT-PCR gene 
expression analysis (Fig. 4D). These data are consistent with ELISA findings (Fig. 4E).  
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Fig. 4 | Differential expression of TGFB1 in pan-cancer and in GBM biopsy 
samples due to mutations. A) Multi-omics characteristics in the major cancer 

types are shown in a summary graph for TGFB1. B) A percentage bar chart in the 
CNV panel represents the top 30 CNV drivers sample proportions. C) TGFB1 

expression shown in Solid Tissue Normal was 2.1655e+5, Primary Solid Tumor 
was P=5.5846e+5 and expression of TGFB1 shown in Recurrent Solid Tumor was 
8.2995e+5. D) Expression levels of TGFB1 in biopsy tissue of GBM through RT-
PCR. The graphs were plotted with the Graph Pad Prism 9 software. E) Enzyme-
Linked Immunosorbent Assay validated the expression of DEGs in GBM patients 

3.5. CNV, MET and miRNA-define dysregulation features of TGFB1 of GBM 

The gene mutation function provides visualizations to illustrate mutation statistics 
corresponding to protein regions and exons in multiple cancer types. This heat map 
displays the frequency of TGFB1 mutations at various protein locations in various cancer 
types (Fig. 5A). The mutation rate is calculated as the sample count divided by the 
mutation count and is shown by a colour scale. (Mutation rate = mutation count/sample 
count). The heat map shows mutations in 3 samples, the mutation rate =0.003 at protein- 
region 156- 176, for 2nd sample the mutation rate =0.003 at protein- region 176- 195 and 
3rd sample, the mutation rate =0.003 at protein- region 332- 351(Fig. 5B). The bar chart 
also showed the mutation rate of the TGFB1 and its protein positions for GBM. The green 
colour bar showed a low mutation rate at protein- region 156- 176, the red color bar 
showed high mutation rate at protein- region 176- 195 while blue color bar showed 
moderate mutation rate at protein- region 332- 351 (Fig. 5C). The Gene CNV function 
uses bioinformatics algorithms to visualize the copy number gain or loss of a user-
selected gene across various cancer types. The scatter plot displays the relationship 
between CNV value and gene expression (y-axis) (x-axis). The expression levels are 
shown in the left boxplot, and the CNV values for each type of CNV are shown in the 
bottom boxplot. TheTGFB1 showed 638.2k median expression copy number gain while 
the segment mean ranges from 0.489 at 0 to 0.5.Similarly, the TGFB1 showed 320.7k 
median expression copy number loss while the segment mean ranges from median -0.66 
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at -1 to -0.5. While TheTGFB1 showed 580.4k expression copy number none while the 
segment mean ranges from 0.0480 (Fig. 5D). The relationship between gene expression 
and beta value is similarly shown in the "Methylation" section. In order to demonstrate a 
detailed view of the methylation distribution and correlation in GBM, this graph combines 
a scatter plot and boxplot. The value of TGFB1 in the GBM data set considers as usual, 
having the value 0.0353K, Cor =-0.136 while p=0.13 as shown in (Fig. 5E). The gene 
miRNA network depicts the relationships between a TGFB1 and miRNAs. Table 2 lists 
details for seven miRNA genes. Twelve prediction tools or experimental validations that 
miRTarBase recorded contributed to defining the interactions. Predicted relations are 
shown as dotted lines, while validated relations are shown as solid lines. A minimum of 
six, eight, or ten tools can further filter the predicted relations by driverDBV3 (Fig. 5F). 

Table 2: Gene-miRNA of glioblastoma table 

 

 

 

 

 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 56 Issue: 04: 2023 
DOI10.17605/OSF.IO/E92XY 
 

April 2023 | 117 

 

 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 56 Issue: 04: 2023 
DOI10.17605/OSF.IO/E92XY 
 

April 2023 | 118 

 

 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 56 Issue: 04: 2023 
DOI10.17605/OSF.IO/E92XY 
 

April 2023 | 119 

 

Fig 5 |CNV, MET and miRNA-define dysregulation features of TGFB1 of GBM. A) 
The heat map indicates the mutation rate of TGFB1 at different protein positions 

in several cancer types. B) The heat map shows mutations in 3 samples. The 
mutation rate =0.003 at protein- region 156- 176. For the 2nd sample, the mutation 
rate =0.003 at protein- region 176- 195; for the 3rd sample, the mutation rate =0.003 
at protein- region 332- 351. C) The bar chart also showed the mutation rate of the 

TGFB1 and its protein positions for GBM. The green colour bar showed a low 
mutation rate at protein- region 156- 176, and the red colour bar showed a high 

mutation rate at protein- region 176- 195, while the blue colour bar showed a 
moderate mutation rate at protein- region 332- 351.D) This graph combines a 

scatter plot and boxplot to demonstrate a thorough picture of the CNV 
distribution and correlation in GBM. E) The gene methylation function provides 

Visualizations of the methylation pattern of TGFB1 across GBM. F) The gene 
miRNA function provides visualizations illustrating the relations between TGFB1 

and miRNAs across GBM. 
 
DISCUSSION 

DriverDBV3 imparts the extensive exome-seq data set published recently by combining 
driver gene analysis from various approaches and visualising mutation data according to 
many factors. Based on various presumptions and characteristics, various bioinformatics 
techniques have been employed to discover driver genes, each offering a different 
perspective. Gene ontology, pathway and protein/genetics interaction are the three levels 
of biological interpretation offered by driverDBV3, which integrates the study results of 
one or multiple methods [27]. The results of this visualization will help analyze the links 
between the driver genes. This study illustrates a driver genes found in glioblastoma 
multiforme (GBM). The 20 driver genes  discovered were TP53, EGFR, IDH1, PIK3CA, 
PIK3R1, PTEN, LRRC37A, GSTM1, SIRPB1, SLC24A3, OS9, MELK, ZBTB42, 
UGT2B17, ENHO, and CDKN2B (each gene by at least 7 methods by driverDBV3). The  
important six genes listed (EGFR, TP53, PTEN, PIK3CA, PIK3R1, IDH1) are recognized 
as crucial in developing GBM tumors due to  harmful mutations [28]. Therefore, through 
integrated analysis 12 mutations reported in the EGFR gene, 12 in the TP53 gene, 11 in 
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the PTEN gene, 9 in the PIK3CA gene, 9 in the PIK3R1 gene, and 7 in the IDH1 gene. 
Our functional analysis reveals that 20 genes are involved in cell cycle-related categories, 
including phosphatidylinositol 3-kinase complex, cytoplasmic part, region of cytosol, 
cytoplasm, and apical plasma membrane, as well as in the molecular functions of driver 
genes of glioblastoma in relation to natural killer cell lectin-like receptor, insulin substrate 
insulin binding, and cyclin-dependent protein serine-threonine. A few abnormalities that 
cause primary glioblastoma (GBM) to proliferate and invade angiogenetically are EGFR 
overexpression, PTEN (MMAC I) mutation, CDKN2A (p16) deletion, and, less commonly, 
MDM2 amplification [29]. In secondary GBM, TP53 mutations are typically the first genetic 
changes found [30, 31]. Moreover, the IDH mutation was linked to the G-CIMP (Glioma 
CpG Island Methylation Phenotype) of enhanced DNA methylation[32]. Somatic 
mutations in the iSH2 domain of PIK3R1, which encodes P85, provide a different way for 
tumours to downregulate the PI3K signalling cascade. This mutation also promotes the 
development of GBM [33]. In engineered mouse models and primary human cell systems, 
activation of PI3K signalling through PTEN loss or AKT overexpression has also been 
shown to promote the development of GBM tumours [34], validating the clinical 
significance of changes in this pathway that have been discovered in GBM patients [35]. 
Similarly, EGFR gene amplification and mutations play a significant genetic role in GBM, 
increasing the expression of both the wild-type (EGFRwt) and mutant oncogenic versions 
of the EGFR [36]. It has been shown that the mutant receptor may activate PI3K without 
PTEN loss because EGFRvIII strongly correlates with the activation of mTOR in vivo[37]. 
At least 60% of GBM have been found to have deregulated phosphatidylinositol 3-kinase 
(PI3K) signalling pathways due to genetic changes in the PTEN tumour suppressor gene 
on 10q23 at the level of LOH, mutation, and methylation[38]. Poor survival in anaplastic 
astrocytoma and GBM is correlated with loss of PTEN function by mutation or LOH, 
indicating that PTEN is involved in patient outcome [39]. TP53 mutations have been 
discovered to directly reduce overall survival in glioma patients [40]. The DNA-binding 
domain has missense mutations, accounting for 75% of p53 mutations[41]. The 
components of this pathway (PTEN, p110, p85, and probably receptor tyrosine kinases 
like EGFR) are the starting locations for signalling accelerated invasion among the 
prevalent alterations that promote GBM development and progression. Given that 46% 
of GBM patients have mutually exclusive mutations in PIK3CA, PIK3R1, and PTEN, the 
PI3K pathway is a promising therapeutic target [42]. 

Poor survival effects were identified for the other three genes, CRISP2, DCSTAMP, and 
MLPH. Many physiological and pathological processes, such as immunology, venom 
toxicity, reproduction, and cancer biology, have been linked to the CAP family of proteins 
[43]. Cell-cell adhesion, a crucial step in establishing and maintaining tissue patterns 
during development and a crucial mechanism during invasion and metastasis, one of the 
hallmarks of cancer, is mediated by DCSTAMP and MLPH [44] [45]. 

TGF-β is widely known as a cytokine that promotes invasion, angiogenesis, and the 
inhibition of the immune system, making it a known driver of GBM invasion [46]. Hence, 
in addition to its varied roles in the formation of GBM, TGF- β adds a new function as a 
result of our findings. Due to its effects on cell proliferation, tumour invasion, 
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angiogenesis, immunosuppression, and the preservation of the steaminess of glioma 
stem cells (GSCs), the TGFB1 pathway has been recognized as a mediator in the 
initiation and progression of gliomas[47]. We quantified the Expression of TGFB1 to 
evaluate the mutational status of the protein in GBM. It was found that the protein 
expression was markedly elevated in GBM biopsy samples. Human investigations have 
shown that malignant glioma tissues overexpress TGFB1 while normal brain tissues are 
undetectable, further indicating that TGFB1 plays a role in the development of gliomas 
[48]. 

TGFB1 driver gene mutation data were visualized using driverDBV3 through Insilico 
analysis. Hotspot mutation sites (in the protein's centre and end), particularly in the 
"Mutation Percentage of TGFB1” were identified and computed. It was noted in earlier 
studies, missense and deep deletion mutations of TGFBI were the most prevalent in 
GBM[49]. This has been identified as the cause of the suboptimal response to TGFB1 
inhibitors in GBM with mutations in the extracellular domain. Further to EGFR mutations 
at the kinase domain (KD), mutations at the extracellular domain activate EGFR in GBM. 
This has been observed as the cause of the poor response of GBM to EGFR inhibitors 
(such as erlotinib) that target the active kinase conformation in GBM with mutations in the 
extracellular domain [50]. Our calculations successfully simulated this pattern, also visible 
in the 'Mutation Profile' of TGFB1 in DriverDBV3. Study showed that miRNA expression 
is aberrant in cancer due to miRNA gene amplification, loss, translocation, epigenetic 
silencing, dysregulation of transcription factors (such as p53 and c-Myc), and flaws in the 
enzymatic machinery involved in synthesis[51]. 

The TGFB1 exhibited a 638.2k median expression copy number gain, while the segment 
means 0.489 at 0 to 0.5. Similarly, the bar chart's colours represent a functional impact 
of mutation. Similar to the theTGFB1, the segment means for the TGFB1 ranges from 
median -0.66 at -1 to -0.5 and 320.7k median expression copy number loss. When 
DriverDBV3 determined the segment mean from 0.0480, TheTGFB1 displayed 580.4k 
expression copy number none. 

Finding mutations that cause cancer still poses a considerable difficulty, according to 
several studies that evaluated the effectiveness of current techniques for predicting 
harmful mutations. So, to explain the harmful intensity of a mutation and to emphasize 
the hotspot mutation zone, we employed the "Driver Score," through the driverDBV3 
which incorporates the data from seven computational techniques. DriverDBV3 has been 
used to examine mutation data focused on one or more specific protein positions, locus 
enrichment, domains, exons, or cancers. 
 
CONCLUSION  

Glioblastoma multiforme (GBM) the most deadly malignant brain tumor still lacks reliable 
prognostic indicators and therapeutic targets. This work analyzed GBM patient data from 
cancer databases and clinical biopsy samples of high-grade glioma patients including 
CNV, MET miRNA, mRNA expression, and clinical information. A total of 20 driver genes, 
including the following: EGFR, IDH1, PIK3CA, PIK3R1, PTEN, TP53, RHD, LRRC37A, 
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GSTM1, SIRPB1, SLC24A3, HLA-DRB5, OS9, MELK, ZBTB42, UGT2B17, ENHO, and 
CDKN2B, were discovered by the ingreation of driver DBV3. Insilico analysis revealed 
that these 6 genes, EGFR, TP53, PTEN, PIK3CA, PIK3R1, and IDH1, showed mutations 
in glioblastoma. It is also concluded that TGFB1 is identified with enhanced expression in 
GBM clinical samples  through quantitative analysis may be associated with the presence 
of  mutations .which may  promotes invasion, angiogenesis, and the suppression of the 
immune system in GBM . We anticipate that these mutational analysis of novel driver 
genes by the application of DriverDBV3 will benefit fundamental research and the 
development of molecular therapeutics that target their abnormal signalling in GBM. 
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