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Abstract 

Some quadrature rules of a degree of precision six, eight, and ten have been formulated for numerical 
evaluation of complex Cauchy principal value integrals and their asymptotic errors have been obtained. 
The rules which have been constructed in this paper involve neither the derivative nor its approximation at 
any of the nodes on which the rules are based. Besides, a few more quadrature rules from the rules derived 
in the first instant have also been constructed following the technique of extrapolation and their asymptotic 
error estimates have also been obtained. Some standard test integrals of the Cauchy principal value type 
and Hyper singular type have been numerically evaluated by each of the rules constructed in this paper. 

Keywords: Asymptotic error, Cauchy principal value, degree of precision, error bound, error constant, 
Hadamard finite part-integral (HFP), hyper singular. 
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1. INTRODUCTION 

A complex Cauchy principal value integral along a directed line segment L, joining points 
𝑧0 − ℎ 𝑎𝑛𝑑 𝑧0 + ℎ in the complex plane C is given by 

                                      𝐼(𝑓) = ∫
𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧                                                            

𝑧0+ℎ

𝑧0−ℎ
            (1.1) 

where f(z) is an analytic function in a simply connected domain Ω containing the line 
segment L and 𝑧0 is the mid-point of the line segment L. Such integrals occur quite often 
in different branches of   engineering, theory of elasticity, aerodynamics, scattering theory, 
etc. Most importantly, it occurs very often in contour integration, which in turn, becomes 
an essential tool in applied mathematics. Extensive research works have been conducted 
by many researchers such as Acharya and Das [1], Milovanovic, Acharya, and Pattanaik 
[12], Das and Pradhan ([4],[5],[6]) Das and Hota [7], Chawla [3], Longman [11], Hunter 
[9], Davis and Rabinowitz [8] and others. The main objective of this paper is to construct 
some interpolatory type of rules of a degree of precision six and eight and form these 
rules (of precision six and eight), some quadrature rules of precision eight and ten have 
been obtained by extrapolation. The rules have been derived in the forthcoming section. 
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2.  FORMULATIONS OF THE RULE  

For the construction of the rule the following set of nodes is chosen: 

                                  𝑧0, 𝑧0 ± ℎ,𝑧0 ± 𝑖ℎ, 𝑧0 ± 𝛼ℎ    where i=  √−1  and 0 < 𝛼 < 1. 

It may be noted that these nodes include the five nodes 𝑧0, 𝑧0 ± ℎ,𝑧0 ± 𝑖ℎ, which Birkhoff-
Young [2] have used first for the formulation of an interpolatory type of rule of precision 
five for approximation of integrals of an analytic function on a line segment lying in the 
domain of analyticity.  

      Let the rule based on these nodes be denoted by 𝑅(𝑓; 𝛼) and suppose 

                                      𝑅(𝑓; 𝛼) = 𝐴𝑓(𝑧0) + 𝐵[𝑓(𝑧0 + ℎ ) − 𝑓(𝑧0 − ℎ)]                               

                           +𝐶[𝑓(𝑧0 + 𝑖ℎ) − 𝑓(𝑧0 − 𝑖ℎ)] + 𝐷[𝑓(𝑧0 + 𝛼ℎ) − 𝑓(𝑧0 − 𝛼ℎ )] .     (2.1) 

The weights A, B, C, and D are to be determined so that; 

                             𝐼((𝑧 − 𝑧0)𝑘) = 𝑅((𝑧 − 𝑧0)𝑘); for k= 0, 1, 3, 5.                               (2.2) 

It is pertinent to note here that 

                                                              𝐼((𝑧 − 𝑧0)2𝑘) = 𝑅((𝑧 − 𝑧0)2𝑘); for k= 1,2,3, …  

i.e. it integrates all monomials of even degree since the nodes in the proposed rule given 
in (2.1) are symmetrically situated about the point 𝑧 = 𝑧0. Using the identities given in 
(2.2), the following set of four linear equations in the unknowns A, B, C, and D are  

                   

𝐴 = 0
𝐵 + 𝑖𝐶 + 𝛼𝐷 = 1

3𝐵 − 3𝑖𝐶 + 3𝛼3𝐷 = 1
5𝐵 + 5𝑖𝐶 + 5𝛼5𝐷 = 1

} ;     i = √−1.                                                  (2.3) 

On solving the set of linear equations in the weights A, B, C, and D given in (2.3) we arrive 
at  

          A=0 , B =
2(2−5𝛼2)

15(1−𝛼2)
 , C =

5𝛼2−1

15𝑖(1+𝛼2)
 , D =

−4

5𝛼(𝛼4−1)
.                                             (2.4) 

Thus, the rule 𝑅(𝑓; 𝛼) given in equation (2.1) with weights A, B, C, and D as given in (2.4) 
represents a one-parameter (𝛼) family of six point rules (since the weight A of f(𝑧0) is 
zero) integrating all polynomials of degree at least six. 

From this one- parameter family of rules certain specific rules can be obtained for some 
suitable values of  ′𝛼′ with a smaller number of nodes. 

Some specific rules 

A set of two 4-point rules can be obtained from the rule (2.1) by choosing suitable values 
of the parameter ′𝛼′ without altering the algebraic degree of precision of the rule (2.1) 
which is six. 
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i)  𝜶 = √
𝟐

𝟓
  

For this value of 𝛼, we note that the weight B =0 and the corresponding rule which is 
denoted by 𝑅1(𝑓) is given as  

  𝑅1(𝑓) =
−𝑖

21
[𝑓(𝑧0 + 𝑖ℎ ) − 𝑓(𝑧0 − 𝑖ℎ)] +

10√10

21
[𝑓 (𝑧0 + √

2

5
ℎ ) − 𝑓 (𝑧0 − √

2

5
ℎ)]     (2.5)   

ii)   𝜶 = 
𝟏

√𝟓
 

Again, for this choice of 𝛼, the weight C in (2.4) is found to be zero and the rule given in 

(2.1) now boils down to a 4- point rule which we denote by 𝑅2(𝑓) and is given by 

     𝑅2(𝑓) =
1

6
[𝑓(𝑧0 + ℎ ) − 𝑓(𝑧0 − ℎ)] +

5√5

6
[𝑓 (𝑧0 +

1

√5
ℎ ) − 𝑓 (𝑧0 −

1

√5
ℎ)].             (2.6) 

DEGREE OF PRECISION OF THE RULES 𝑹𝟏(𝒇) AND 𝑹𝟐(𝒇) : 

Denoting the truncation errors associated with the rules 𝑅1(𝑓) and 𝑅2(𝑓) by 𝐸1(𝑓) and 

𝐸2(𝑓) respectively in the approximation of the integral given in (1.1) we have 

                                                         I (f) =𝑅𝑖(𝑓) + 𝐸𝑖(𝑓) ;    i =1, 2.                                                        

 and for i = 1, 2 

                                                          𝐸𝑖((𝑧 − 𝑧0)𝑘)= 0;   k = 0(1)6                              

which implies that the degree of precision of both the rules 𝑅1(𝑓) and 𝑅2(𝑓) is at least six. 

Further    

                                              𝐸𝑖((𝑧 − 𝑧0)7)= { 

136

525
ℎ7     ≠ 0;   𝑖 = 1

−
32

525
ℎ7 ≠ 0;   𝑖 = 2

  .      

So, each of the rules 𝑅1(𝑓) and 𝑅2(𝑓) is a 4- point rule and the algebraic degree of 
precision of each is exactly six.  

For the approximation of the integral (1.1) by the rules 𝑅1(𝑓) and 𝑅2(𝑓), we need to 
determine the values of the function at four points only, however for any other values of 
𝛼 in (0,1), one is to evaluate the function at six points, although all these rules are of 

precision six.  

Two of the complex nodes viz  𝑧0 ± 𝑖ℎ associated with the rule 𝑅1(𝑓) are off the contour 
of integration whereas all the nodes in case of the rule 𝑅2(𝑓) are on the line of integration 
L. It is shown in Numerical Result section that the rule 𝑅2(𝑓) numerically integrates more 
accurately than the rule 𝑅1(𝑓) although both have the same degree of precision i.e six. 

Thus, it appears that a rule having some or all of its nodes off the path of integration does 
not integrate as accurately as a rule having the same precision but all its nodes on the 
path of integration. 
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iii) 𝜶 =√
𝟓

𝟐𝟏
  

It may be noted here that: 

                                                  𝐼((𝑧 − 𝑧0)𝑘) − 𝑅((𝑧 − 𝑧0)𝑘; 𝛼) = 0;  for k=0(1)6  

and  

                                                 𝐼((𝑧 − 𝑧0)7) − 𝑅((𝑧 − 𝑧0)7; 𝛼) =  
4(42𝛼2−10)

105
ℎ7 ≠ 0;  

but it is zero if 𝛼 =√
5

21
. Hence for this value of 𝛼, the degree of precision of the rule (2.1) 

with weights:  

                                                       A= 0, B=
17

120
,   C=

−2𝑖

195
,   D=

441

520×√
5

21

   

 increases from six to eight. 

We denote this rule of precision eight by 𝑅3(𝑓) and it is given as 

                 𝑅3(𝑓)=
17

120
[𝑓(𝑧0 + ℎ ) − 𝑓(𝑧0 − ℎ)]  −

2𝑖

195
[𝑓(𝑧0 + 𝑖ℎ) − 𝑓(𝑧0 − 𝑖ℎ)] +

441

520×√
5

21

[𝑓 (𝑧0 + √
5

21
ℎ) − 𝑓 (𝑧0 − √

5

21
ℎ )]  .  (2.7)  

A glance at the rules 𝑅1(𝑓), 𝑅2(𝑓), and 𝑅3(𝑓) reveal that the weights associated with the 
nodes which are off the contour are imaginary and those associated with the nodes on 
the contour are real. 

The rules 𝑅1(𝑓), 𝑅2(𝑓), and 𝑅3(𝑓) may be termed as basic rules. 

Next, we construct two more quadrature rules; one is of precision eight and the other is 
of precision ten from the basic rules 𝑅1(𝑓), 𝑅2(𝑓), and 𝑅3(𝑓). These rules may be called 
as composite rules, being a linear combination of basic rules of the same precision. 

iv) Construction of the composite rules: 

The first composite rule to be formulated here by the method of extrapolation is of 
precision eight and it is different from the rule 𝑅3(𝑓) given in (2.7). We denote this rule of 

precision eight by 𝑅1,2(𝑓) and it is constructed by using the two basic rules 𝑅1(𝑓) and 

𝑅2(𝑓) having the same degree of precision i.e. six. 

The second composite rule is constructed by using the basic rule 𝑅3(𝑓) and the composite 

rule 𝑅1,2(𝑓) and we denote this rule by 𝑅1,2,3(𝑓). It is pertinent to note here that both the 

rules 𝑅3(𝑓) and 𝑅1,2(𝑓) are of the same degree of precision.  

Denoting the truncation errors by 𝐸1(𝑓), 𝐸2(𝑓), and 𝐸3(𝑓)  incurred in approximation of the 

integral (1.1), by the rules  𝑅1(𝑓), 𝑅2(𝑓), and 𝑅3(𝑓) respectively we have 

                       I (f) =𝑅1(𝑓) + 𝐸1(𝑓) ,                                                              (2.8) 
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                          I (f) =𝑅2(𝑓) + 𝐸2(𝑓),                                                            (2.9) 

and                    I (f) =𝑅3(𝑓) + 𝐸3(𝑓).                                                          (2.10) 

Assuming f(z) to be infinitely differentiable, the truncation errors associated with the rules 
under references can be expressed as   

                                             𝐸1(𝑓) =
136

525

𝑓(7)(𝑧0)

7!
ℎ7 +

88

1125

𝑓(9)(𝑧0)

9!
ℎ9 + ⋯                                                                    

                                                 𝐸2(𝑓) = −
32

525

𝑓(7)(𝑧0)

7!
ℎ7 −

128

1125

𝑓(9)(𝑧0)

9!
ℎ9 − ⋯                                                     

and 

                                                         𝐸3(𝑓) = −
64

735

𝑓(9)(𝑧0)

9!
ℎ9 −

8384

101871

𝑓(11)(𝑧0)

11!
ℎ11 − ⋯ .                                             

Now multiplying (2.8) by 
4

21
 and (2.9) by  

17

21
 , then adding these results we obtain  

                          I (f)  = [
4

21
𝑅1(𝑓) +

17

21
𝑅2(𝑓)] + [

4

21
𝐸1(𝑓) +

17

21
𝐸2(𝑓)] 

                        = 𝑅1,2(𝑓) + 𝐸1,2(𝑓)                                                                 (2.11)  

where 

                      𝑅1,2(𝑓) =
1

21
(4𝑅1(𝑓) + 17𝑅2(𝑓))                                              (2.12)   

is the desired composite rule meant for the approximate evaluation of I(f) and the 
corresponding truncation error committed in this approximation is given by  

                                                            𝐸1,2(𝑓)  =
4

21
𝐸1(𝑓) +

17

21
𝐸2(𝑓)   

                            =  −
608

7875

𝑓(9)(𝑧0)ℎ9

9!
−

10688

144375

𝑓(11)(𝑧0)

11!
ℎ11 − ⋯    .                        (2.13) 

Thus 

                      𝐼(𝑓) =  𝑅1,2(𝑓) −
608

7875

𝑓(9)(𝑧0)ℎ9

9!
−

10688

144375

𝑓(11)(𝑧0)

11!
ℎ11 − ⋯.                     

Degree of precision of the rule 𝑹𝟏,𝟐(𝒇) ∶ 

For k= 0(1)8 we have 

                                                              𝐸1,2((𝑧 − 𝑧0)𝑘)= 0 

and 

                                                           𝐸1,2((𝑧 − 𝑧0)9) = −
608

7875
 ℎ9 ≠ 0.                                                        

So, the degree of precision of the quadrature rule 𝑅1,2(𝑓) is eight. 

 Following the technique used in the construction of the rule 𝑅1,2(𝑓), we multiply the (2.11) 

by (
150

17
) and (2.10) by (−

133

17
) and then adding the results, we get 
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                𝐼(𝑓) = [
150

17
𝑅1,2(𝑓) −

133

17
𝑅3(𝑓)] +[

150

17
𝐸1,2(𝑓) −

133

17
𝐸3(𝑓)]   

                                                                      = 𝑅1,2,3(𝑓)+ 𝐸1,2,3(𝑓) 

Where                              𝑅1,2,3(𝑓) =
150

17
𝑅1,2(𝑓) −

133

17
𝑅3(𝑓)                                   (2.14) 

is the desired second composite rule and the truncation error incurred in approximation 
by this composite rule is   

                                                     𝐸1,2,3(𝑓) =
150

17
𝐸1,2(𝑓) −

133

17
𝐸3(𝑓) .                                                       

                                                          =  −
3392

363825

𝑓(11)(𝑧0)

11!
ℎ11 − ⋯   .                                                         

Degree of precision of the composite rules 𝑹𝟏,𝟐,𝟑(𝒇). 

   It is to be noted here that  

             𝐸1,2,3((𝑧 − 𝑧0)𝑘) =
150

17
𝐸1,2(𝑧 − 𝑧0)𝑘 −

133

17
𝐸3(𝑧 − 𝑧0)𝑘 = 0       for k = 0(1)8       

 but      𝐸1,2,3((𝑧 − 𝑧0)𝑘) = {
0 ;        𝑘 = 9,10

−0.009323 ℎ11 ≠ 0;   𝑘 = 11
  .                                (2.15) 

This implies that the degree of precision of the composite rule 𝑅1,2,3(𝑓) is ten. 

Next we consider 
 
3. ASYMPTOTIC ERROR ESTIMATES 

Now we analyze the errors associated with the basic rules 𝑅1(𝑓),𝑅2(𝑓),𝑅3(𝑓), and the 
composite rules 𝑅1,2(𝑓), and 𝑅1,2,3(𝑓) which are prescribed in (2.5), (2.6), (2.7), (2.11) and 

(2.14) respectively. 

Here, we assume that the function f (z) is analytic in the disc: 

                                        Ω = {z:|𝑧 − 𝑧0| ≤  𝜌 = 𝑟|ℎ|;  𝑟 > 1} 

so that the points 𝑧0, 𝑧0 ± ℎ, 𝑧0 ± 𝑖ℎ and 𝑧0 ± 𝛼ℎ are all interior to the disc Ω. Now using 
Taylor’s series expansion of f (z) about z =𝑧0, we obtain 

                                  𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)𝑛∞
−∞ ;                                                      (3.1) 

 where 𝑎𝑛 = 
𝑓(𝑛)(𝑧0)

𝑛!
   are the Taylor’s coefficients. 

Since the series given in (3.1) is uniformly convergent in Ω, term by term integration of 
both sides of (3.1) is possible and it yields  

    𝐼(𝑓) = 2ℎ𝑓′(𝑧0) +
2

3

𝑓(3)(𝑧0)

3!
ℎ3 +

2

5

𝑓(5)(𝑧0)

5!
ℎ5 +

2

7

𝑓(7)(𝑧0)

7!
ℎ7 +

2

9

𝑓(9)(𝑧0)

9!
ℎ9 +…          (3.2) 

Further using the Taylor’s series expansion of each term of 𝑅(𝑓; 𝛼) about z= 𝑧0 in the disc 
Ω we obtain after simplification: 
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𝑅(𝑓; 𝛼)=2ℎ𝑓′(𝑧0) +
2

3

𝑓(3)(𝑧0)

3!
ℎ3 +

2

5

𝑓(5)(𝑧0)

5!
ℎ5+

2(5−12𝛼2)

15

𝑓(7)(𝑧0)

7!
ℎ7+

2(1−4𝛼4)

5

𝑓(9)(𝑧0)

9!
ℎ9+...  (3.3) 

Now substituting 𝛼=√
2

5
 , 𝛼 =

1

√5
 and √

5

21
 in succession in the expression given in (3.3), we 

have 

  𝑅1(𝑓)2 = ℎ𝑓′(𝑧0) +
2

3

𝑓(3)(𝑧0)

3!
ℎ3 +

2

5

𝑓(5)(𝑧0)

5!
ℎ5 +

2

75

𝑓(7)(𝑧0)

7!
ℎ7 +

18

125

𝑓(9)(𝑧0)

9!
ℎ9+…       (3.4) 

𝑅2(𝑓) = 2ℎ𝑓′(𝑧0) +
2

3

𝑓(3)(𝑧0)

3!
ℎ3 +

2

5

𝑓(5)(𝑧0)

5!
ℎ5+

26

75

𝑓(7)(𝑧0)

7!
ℎ7+

126

375

𝑓(9)(𝑧0)

9!
ℎ9+…            (3.5) 

and 

𝑅3(𝑓) = 2ℎ𝑓′(𝑧0) +
2

3

𝑓(3)(𝑧0)

3!
ℎ3 +

2

5

𝑓(5)(𝑧0)

5!
ℎ5+

2

7

𝑓(7)(𝑧0)

7!
ℎ7+

682

2205

𝑓(9)(𝑧0)

9!
ℎ9+…            

respectively. 

 Now from (3.2), (3.4) and (3.2), (3.5) we obtain  

                                                               𝐸𝑘(𝑓; 𝛼) =

{
0.259048

𝑓(7)(𝑧0)

7!
ℎ7 + 0.078222

𝑓(9)(𝑧0)

9!
ℎ9 + ⋯        k = 1

−0.060952
𝑓(7)(𝑧0)

7!
ℎ7 − 0.113778

𝑓(9)(𝑧0)

9!
ℎ9 − ⋯     k = 2,

   

which in turn imply  

   |𝐸𝑘(𝑓; 𝛼)| = 𝑂(|ℎ|7) ;             𝑘 = 1,2.                                                   (3.6) 

Now from (2.13) it is also evident that 

                                                                                |𝐸1,2(𝑓)| = 𝑂(|ℎ|9).                                                               

 Also, from (2.15) we have 

                                                                               |𝐸1,2,3(𝑓)| = 𝑂(|ℎ|11).                                                       

ERROR BOUND 

The error bounds of four quadrature rules 𝑅2(𝑓), 𝑅3(𝑓), 𝑅1,2(𝑓), and 𝑅1,2,3(𝑓) constructed 

in this paper have been obtained here following the technique due to Lether [10]. Since 
the derivation of error bounds of all the rules constructed are similar to each other, we 
have derived the error bound of the rule 𝑅2(𝑓) only and it is given in Theorem-3.1. The 
error bounds of the rules 𝑅3(𝑓), 𝑅1,2(𝑓) and 𝑅1,2,3(𝑓) are stated in Theorem-3.2  following 

the technique used in Theorem-3.1. 

 Further, it is noted here that, the error bound of the quadrature rule 𝑅1(𝑓)  given in (2.5) 
cannot be determined in the same way as it is done for the other four cases, 
i.e, 𝑅2(𝑓), 𝑅3(𝑓), 𝑅1,2(𝑓) and 𝑅1,2,3(𝑓) following the technique due to Lether [10] for the 

reason explained below: 
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Since 𝐸1(𝑓) denotes the truncation error in approximation of the integral 𝐼(𝑓) by the rule 
𝑅1(𝑓), 

𝐼(𝑓) = 𝑅1(𝑓) + 𝐸1(𝑓) 

and 𝐸1(𝑓) being a linear operator, we obtain from (3.1) the following: 

                                       𝐸1(𝑓) = ∑ 𝑎2𝜇+1ℎ2𝜇+1𝐸1(𝑡2𝜇+1),∞
𝜇=3                                

by using the transformation 𝑧 = 𝑧0 + ℎ𝑡,   𝑡𝜖[−1,1]. 

Thus, we get  

                                              𝐸1(𝑓) = 2 ∑ 𝑎2𝜇+1∅1(𝜇),∞
𝜇=3  

where                                 ∅1(𝜇) =
1

2𝜇+1
−

1

21
{(−1)𝜇 + 20 (

2

5
)

𝜇

}   

which is not of one sign for 𝜇 ≥ 3. 

However, its asymptotic error estimate has been given in (3.6). Next, we consider 

Error Bound of the rule 𝑹𝟑(𝒇)        

 Theorem 3.1. If 𝑓(𝑧) is analytic in a closed disc 

                                                   Ω = {𝑧𝜖𝐶: |𝑧 − 𝑧0| ≤ 𝜌 = 𝑟|ℎ|, 𝑟 > 1}                       

 Then                                               |𝐸2(𝑓)| ≤ 2M 𝑒2(𝑟)                 

where  

                                                  𝑒2(𝑟) = |ln (
𝑟+1

𝑟−1
) − (

30𝑟3−26𝑟

15𝑟4−18𝑟2+3
)|                                                                 

which tends to zero as 𝑟 → ∞. 

Proof 

Here 

                         𝐸2((𝑧 − 𝑧0)𝑘) = 𝐼2((𝑧 − 𝑧0)𝑘) − 𝑅2((𝑧 − 𝑧0)𝑘) = 0       for k = 0(1)6. 

Further 𝐸2(f) being a linear operator, using (3.1) and the transformation  𝑧 = 𝑧0 + ℎ𝑡,
𝑡𝜖[−1,1] we obtain 

                             𝐸2(𝑓) = ∑ 𝑎2𝜇+1ℎ2𝜇+1𝐸2(𝑡2𝜇+1)∞
𝜇=3   .                                    (3.7) 

Equation (3.7) can also be written as 

                                             𝐸2(𝑓) = ∑ 2𝑎2𝜇+1ℎ2𝜇+1∅2(𝜇)∞
𝜇=3                    

where  

                                                         ∅2(𝜇) =
1

2𝜇+1
−

1

3
[1 +

5

6
(

1

5
)

𝜇

]                                                   

                                                                       < 0      ∀  𝜇 ≥ 3. 
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Now using Cauchy inequality [10] 

                                                         |𝐸2(𝑓)| ≤ 2𝑀 ∑
1

𝑟2𝜇+1
|𝐸2(𝑡2𝜇+1)|∞

𝜇=3  

                                                                         = 2𝑀𝑒2(𝑟). 

Where                        

                                    𝑀 = 𝑚𝑎𝑥|𝑧|=𝜌|𝑓(𝑧)|  

and 

                                                                𝑒2(𝑟) = |𝐸 ((1 −
𝑡

𝑟
)

−1
)| 

                                                           = |ln (
𝑟+1

𝑟−1
) −

(30𝑟3−26𝑟)  

15𝑟4−18𝑟2+3
| 

which tends to zero as r→ ∞.                                                                                                

This proves Theorem – 1. 

Similarly, now we have 

Theorem 3.2. 

 If 𝑓(𝑧) is analytic in a closed disc 

                                                             Ω = {𝑧𝜖𝐶: |𝑧 − 𝑧0| ≤ 𝜌 = 𝑟|ℎ|, 𝑟 > 1}                                       

 Then             

                                                              |𝐸3(𝑓)| ≤ 2M𝑒3(𝑟) ,                                                                        

                                                              |𝐸12(𝑓)| ≤ 2M𝑒12(𝑟) ,                                                                      

                                                              |𝐸123(𝑓)| ≤ 2M𝑒123(𝑟) .                                                                        

  Where   

                                                         𝑒3(𝑟) = |ln (
𝑟+1

𝑟−1
) −

(32760𝑟5−3120𝑟3−28808𝑟)

16380𝑟6−3900𝑟4−16380𝑟2+3900
| ,                  

                                                        𝑒12(𝑟) = |ln (
𝑟+1

𝑟−1
) −

1

189

(3150𝑟7−1960𝑟5−1554𝑟3+772𝑟)

(25𝑟8−15𝑟6−23𝑟4+15𝑟2−2)
|            

and                                  

                            𝑒123(𝑟) = |ln (
𝑟+1

𝑟−1
) −

1

51
[

(−4282551000𝑟13+2551512600𝑟11+8485451520𝑟9−5816931120𝑟7−3870676057𝑟5+2633150520𝑟3−332224464𝑟

(8599500𝑟14−7207200𝑟12−15282540𝑟10+14250600𝑟8+4766580𝑟6−6879600𝑟4+1916460𝑟2−163800)
]|   

which tends to zero as 𝑟 → ∞. 

Proof 

This theorem can be established in the same way as it is done in Theorem-3.1, since 
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                                                  𝐸3(𝑓) = ∑ 2𝑎2𝜇+1ℎ2𝜇+1∅3(𝜇)∞
𝜇=4                                                 

                                                 𝐸12(𝑓) = ∑ 2𝑎2𝜇+1ℎ2𝜇+1∅12(𝜇)∞
𝜇=4                                          

and                                          𝐸123(𝑓) = ∑ 2𝑎2𝜇+1ℎ2𝜇+1∅123(𝜇)∞
𝜇=5                                          

where 

                                    ∅3(𝜇) = {

1

2𝜇+1
− (

17

120
+

2

195
(

1

3
)

𝜇

−
441

520
(

5

21
)

𝜇

)      ∀ 𝑒𝑣𝑒𝑛  𝜇

1

2𝜇+1
− (

17

120
−

2

195
(

1

3
)

𝜇

−
441

520
(

5

21
)

𝜇

)      ∀ 𝑜𝑑𝑑   𝜇  
           

                                                 < 0            for 𝜇 ≥ 4 

                                             ∅1,2(𝜇) =

{

1

2𝜇+1
− (

4

441
+

17

126
+

20

21
(

2

5
)

𝜇

+
5

3
(

1

5
)

𝜇

)      ∀ 𝑒𝑣𝑒𝑛  𝜇

1

2𝜇+1
− {

20

21
(

2

5
)

𝜇

+
5

3
(

1

5
)

𝜇

− (
4

441
+

17

126
)}      ∀ 𝑜𝑑𝑑   𝜇  

   

                                  < 0           for 𝜇 ≥ 4. 

and  

                        ∅1,2,3(𝜇) = {

1

2𝜇+1
− (

37

270
+

10240

12150
(

1

4
)

𝜇

+
49

2430
(

5

7
)

𝜇

)      ∀ 𝑒𝑣𝑒𝑛  𝜇

1

2𝜇+1
− (

37

270
+

10240

12150
(

1

4
)

𝜇

−
49

2430
(

5

7
)

𝜇

)      ∀ 𝑜𝑑𝑑   𝜇  
    

                                                      < 0           for  𝜇 ≥ 5. 

From the asymptotic error estimates of the rules 𝑅1(𝑓), 𝑅2(𝑓), 𝑅3(𝑓), 𝑅1,2(𝑓) and 𝑅1,2,3(𝑓) 

constructed in this paper for the numerical evaluation of complex CPV integrals, it also 
follows that 

                                     |𝐸1,2,3(𝑓)| ≤ |𝐸1,2(𝑓)| ≤ |𝐸3(𝑓)| ≤ |𝐸2(𝑓)| ≤ |𝐸1(𝑓)|. 

This observation is in fact very much noticeable from the numerical integration of the 
integrals that we have taken and the results of numerical integration are depicted in the 
tables given in next section.  
 
4. NUMERICAL RESULTS AND DISCUSSION 

Under this section, we have considered the following categories of integrals which have 
been numerically integrated by the set of five quadrature rules  

                                        S= {𝑅1(𝑓), 𝑅2(𝑓), 𝑅3(𝑓), 𝑅1,2(𝑓), 𝑅1,2,3(𝑓)}  

constructed in formulation of the rule section. 

 

 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 56 Issue: 07: 2023 
DOI10.17605/OSF.IO/HDJEA 
 

July 2023 | 132 

  

i) Approximation of the Complex Cauchy Principal Value (CPV) integrals: 

Here we have considered the integrals:  

                      𝑰𝟏 = ∫
(𝟏+𝒛)𝒆𝒛

𝒛

𝒊

−𝒊
𝒅𝒛 ,   𝑰𝟐 = ∫

𝒔𝒊𝒏𝒛

𝒛−(𝟏+𝒊)

𝟑

𝟐
(𝟏+𝒊)

𝟏

𝟐
(𝟏+𝒊)

𝒅𝒛 , 𝒂𝒏𝒅   𝑰𝟑 = ∫
𝒆𝒛

𝒛

𝒊

−𝒊
𝒅𝒛. 

The results of the numerical integration of the above-mentioned integrals have been 
depicted in Table-1 given below. The exact values of the integrals are given in the last 
row of the said Table. 

Table 1: Numerical Values of the Complex CPV Integrals 

 
Rule/Integral 

𝑰𝟏=∫
(𝟏+𝒛)𝒆𝒛

𝒛
𝒅𝒛

𝒊

−𝒊
 𝑰𝟐=∫

𝒔𝒊𝒏𝒛

𝒛−(𝟏+𝒊)

𝟑

𝟐
(𝟏+𝒊)

𝟏

𝟐
(𝟏+𝒊)

𝒅𝒛 𝑰𝟑=∫
𝒆𝒛

𝒛

𝒊

−𝒊
𝒅𝒛 

𝑹𝟏(𝒇; 𝜶) 3.575 517 2 i 1.817 588 2−0.205 730 9 i 1.892 217 3 i 

𝑹𝟐(𝒇; 𝜶) 3.575 014 4 i 1.817 588 8−0.205 723 7 i 1.892 154 4 i 

𝑹𝟑(𝒇; 𝜶) 3.575 110 5 i 1.817 588 8−0.205 725 5 i 1.892 166 4 i 

𝑹𝟏,𝟐(𝒇; 𝜶) 3.575 110 2 i 1.817 588 7−0.205 725 2 i 1.892 166 4 i 

𝑹𝟏,𝟐,𝟑(𝒇; 𝜶) 3.575 108 1 i 1.817 588 7−0.205 725 1 i 1.892 166 1 i 

Exact value  3.575 108 1 i 1.817 588 7−0.205 725 1 i 1.892 166 1 i 

From the approximate values of the integrals reported in Table-1, it is observed that the 
approximations steadily improve from a minimum of three decimal places (in case of 
𝑅1(𝑓) ) to a maximum of seven decimal places (in case of 𝑅1,2,3(𝑓)) of accuracy. 

Approximations of each of the integrals show a trend of convergence from which the user 
can confidently accept the final approximation correct to certain decimal places as the 
true value of the integral, which is a positive advantage when an unknown integral is 
numerically integrated by the sequence of rules of increasing precision given in set S.  

ii) Numerical integration of Real Cauchy Principal Value (CPV) integrals: 

Through numerical integrations, it is shown that the real CPV integrals can also be 
evaluated with approximately almost eight decimal accuracies by the set of rules S given 
in the formulation of the rule section. For this purpose, we have chosen the integrals: 

                 𝑱𝟏 = ∫
𝒆𝒙

𝒙

𝟏

−𝟏
𝒅𝒙,      𝑱𝟐 = ∫

𝒔𝒊𝒏𝒙

𝒙

𝟏

−𝟏
𝒅𝒙,     𝑱𝟑 = ∫

𝒄𝒐𝒔𝒙

𝒙

𝟏

−𝟏
𝒅𝒙 

The approximations obtained by numerical integration of the integrals  𝐽𝑘; k=1, 2, 3 are 
depicted in Table-2 along with their exact values noted in the last row of the table. 
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Table-2: Numerical values of the Real CPV Integrals 

 

 

 

 

 

 

iii) Evaluation of Complex/Real definite integrals: 

Integration of analytic functions over a line segment L in the complex plane C can also be 
evaluated approximately by the same set of rules S. 

For instance, if we desire to determine the approximations of the integrals  

                                                          K = ∫ 𝑓(𝑧)𝑑𝑧
𝐿

 

where L is a line segment joining the points from 𝑧0 − ℎ  to 𝑧0 + ℎ  in the complex plane 
C, we rewrite the same integral in the form 

                                                         K =∫
∅(𝑧)

𝑧
𝑑𝑧

𝑧0+ℎ  

𝑧0−ℎ
; ∅(𝑧)= z f(z) 

and then approximate it by the rules under consideration choosing ∅(𝑧) instead of f(z) in 
the quadrature rules. 

 Following this simple technique, the definite integrals  

                                     𝒌𝟏 = ∫ 𝒆𝒛𝒅𝒛
𝒊

−𝒊
,   𝒌𝟐 = ∫ 𝒄𝒐𝒔𝒛 𝒅𝒛

𝒊/𝟐

−𝒊/𝟐
,    𝒌𝟑 = ∫  𝒛𝒆𝒛𝒅𝒛

(𝟏+𝒊)

√𝟐

− 
(𝟏+𝒊)

√𝟐

 

have been numerically integrated and their approximate values along with their respective 
exact values are shown in Table-(4.3). 

Table 3: Numerical Values of the Complex Definite Integrals 

Rule/Integral 𝒌𝟏 = ∫ 𝒆𝒛𝒅𝒛
𝒊

−𝒊

 𝒌𝟐 = ∫ 𝒄𝒐𝒔𝒛 𝒅𝒛
𝒊/𝟐

−𝒊/𝟐

 𝒌𝟑 = ∫ 𝒛𝒆𝒛𝒅𝒛

(𝟏+𝒊)

√𝟐

−
(𝟏+𝒊)

√𝟐

 

𝑹𝟏(𝒇) 1.683 299 89 i 1.042 187 80 i  −0.518 367 5+0.424 126 9 i 

𝑹𝟐(𝒇) 1.682 860 09 i 1.042 191 28 i −0.516 455 7+0.422 269 1 i 

𝑹𝟑(𝒇) 1.682 944 11 i 1.042 190 62 i −0.516 818 5+0.422 624 4 i 

𝑹𝟏,𝟐(𝒇) 1.682 943 86 i 1.042 190 61 i −0.516 819 9+0.422 622 9 i 

𝑹𝟏,𝟐,𝟑(𝒇) 1.682 941 97 i 1.042 190 61 i −0.516 830 6+0.422 612 0 i 

Exact value 1.682 941 97 i 1.042 190 61 i −0.516 830 5+0.422 612 0 i 

The error function  𝑒𝑟𝑓 𝑥 =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0
  has been numerically evaluated for x=1 and the 

approximations are shown in Table-4. 

Rule/Integral 𝑱𝟏=∫
𝒆𝒙

𝒙
𝒅𝒙

𝟏

−𝟏
 𝑱𝟐=∫

𝒔𝒊𝒏𝒙

𝒙

𝟏

−𝟏
𝒅𝒙 𝑱𝟑=∫

𝒄𝒐𝒔𝒙

𝒙

𝟏

−𝟏
𝒅𝒙 

𝑹𝟏(𝒇) 2.114 450 13 1.892 217 33 0.0 

𝑹𝟐(𝒇) 2.114 514 16 1.892 154 36 0.0 

𝑹𝟑(𝒇) 2.114 501 99 1.892 166 38 0.0 

𝑹𝟏,𝟐(𝒇) 2.114 501 97 1.892 166 35 0.0 

𝑹𝟏,𝟐,𝟑(𝒇) 2.114 501 75 1.892 166 14 0.0 

Exact value 2.114 501 75 1.892 166 14 0.0 



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/ 
Journal of Tianjin University Science and Technology 
ISSN (Online):0493-2137 
E-Publication: Online Open Access 
Vol: 56 Issue: 07: 2023 
DOI10.17605/OSF.IO/HDJEA 
 

July 2023 | 134 

Table 4: Numerical values of the error function 

Rule/Integral 
√𝝅

𝟐
 𝒆𝒓𝒇𝟏 = ∫ 𝒆−𝒕𝟐

𝒅𝒕
𝟏

𝟎

 

𝑹𝟏(𝒇) 0.746 758 31 

𝑹𝟐(𝒇) 0.746 836 60 

𝑹𝟑(𝒇) 0.746 821 37 

𝑹𝟏,𝟐(𝒇) 0.746 821 69 

𝑹𝟏,𝟐,𝟑(𝒇) 0.746 824 15 

Exact value 0.746 824 13 

iv) Approximations of some Hyper singular integrals: 

The Hyper singular integral of the type 

                                                    𝑯  ∫
𝒇(𝒙)

(𝒙−𝒔)𝟐 𝒅𝒙,
𝒃

𝒂
                                                                 

appears in the formulation of the crack problems in linear elastic fracture mechanics and 
many other applied sciences such as acoustic, fluid mechanics, elasticity, and so on. 
Here, we intend to illustrate the numerical integration of Hyper singular integrals of the 
type 

                                                        I𝐻 = H  ∫
𝑓(𝑥)

𝑥2 𝑑𝑥,
1

−1
                                               

by the rules constructed for approximation of complex CPV integrals in formulation of the 
rule section. For this, we write the integral as 

                                               I𝐻 = 𝐻 ∫
𝑓(𝑧)

𝑧2

1

−1
𝑑𝑧                                                (4.1) 

To accomplish the approximation, we rewrite I𝐻 in (4.1) as                                                                               

                                        

                              I𝐻 =  𝑃 ∫  (
𝑓(𝑧)−𝑓(0)

𝑧
)

1

−1

1

𝑧
𝑑𝑧 + 𝑓(0) 𝐻 ∫  

1 

𝑧2

1

−1
 dz                                        

                            = 𝐻′ + 𝑓(0) 𝐻 ∫  
1 

𝑧2

1

−1
 dz                                                           (4.2) 

The first integral 𝐻′ on the righthand side of (4.2) is a complex CPV integral which can be 
approximated by the set of rules given in the set S meant for approximation of complex 
CPV integral. The second integral exists as a Hyper singular integral and its value is easily 
seen to be −2. Following this technique, the Hyper singular integrals such as  

            𝑯𝟏 = 𝑯 ∫
𝒄𝒐𝒔𝒙

𝒙𝟐
𝒅𝒙,

𝟏

−𝟏
      𝑯𝟐 = 𝑯 ∫

𝒆𝒊𝒙

𝒙𝟐
𝒅𝒙 

𝟏

−𝟏
, and   𝑯𝟑 = 𝑯 ∫

𝒆𝒙

𝒙𝟐
𝒅𝒙 ,

𝟏

−𝟏
 

have been numerically evaluated. The approximations of 𝐻′ for each such integral along 
with the corresponding approximation values of the integrals (𝐻′ − 2𝑓(0)) are depicted in 
Table-5 to Table-7 respectively. 
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Table 5: Numerical Values of Hyper singular Integral 𝑯𝟏 

Rule/Integral 𝑯𝟏
′ 𝑯𝟏 = 𝑯𝟏

′ − 𝟐𝒇(𝟎) 

𝑹𝟏(𝒇) -0.972 777 16 -2.972 777 16 

𝑹𝟐(𝒇) -0.972 769 27 -2.972 769 27 

𝑹𝟑(𝒇) -0.972 770 78 -2.972 770 78 

𝑹𝟏,𝟐(𝒇) -0.972 770 77 -2.972 770 77 

𝑹𝟏,𝟐,𝟑(𝒇) -0.972 770 75 -2.972 770 75 

Exact value ********* -2.972 770 75 

 
Table 6: Numerical values of the Hyper singular Integral 𝑯𝟐 

 
 
 
 
 
 
 
 

Table7: Numerical values of Hypersingular Integral 𝑯𝟑 
 

Rule/Integral 𝑯𝟐
′ 𝑯𝟐 = 𝑯𝟐

′ − 𝟐𝒇(𝟎) 

𝑹𝟏(𝒇) -0.972 770 16 -2.972 770 16 

𝑹𝟐(𝒇) -0.972 769 27 -2.972 769 27 

𝑹𝟑(𝒇) -0.972 770 78 -2.972 770 78 

𝑹𝟏,𝟐(𝒇) -0.972 770 77 -2.972 770 77 

𝑹𝟏,𝟐,𝟑(𝒇) -0.972 770 75 -2.972 770 75 

Exact value ********** -2.972 770 75 

 
CONCLUSION  

All the integrals under numerical verification have been numerically integrated by the 
sequence of quadrature rules of increasing precision; the precision increasing from six to 
ten. As a result, the approximate values of each of the integrals constantly improve and 
converge to the exact values and ultimately the values agree to eight decimal places. 

Once the functions at the nodes present in the basic rules 𝑅1(𝑓), 𝑅2(𝑓) and 𝑅3(𝑓) have 
been evaluated, the integral given in (1.1) can be numerically integrated by the composite 
rules 𝑅1,2(𝑓) and 𝑅1,2,3(𝑓) by a few arithmetic operations like addition and multiplication 

without incurring any additional truncation error. Also, the round of error in the last two 
approximations i.e. by the rules 𝑅1,2(𝑓) and 𝑅1,2,3(𝑓) will be negligible. 

 

 

Rule/Integral 𝑯𝟑
′ 𝑯𝟑 = 𝑯𝟑

′ − 𝟐𝒇(𝟎) 

𝑹𝟏(𝒇) 1.028 334 03 -0.971 665 97 

𝑹𝟐(𝒇) 1.028 342 02 -0.971 657 98 

𝑹𝟑(𝒇) 1.028 340 51 -0.971 659 49 

𝑹𝟏,𝟐(𝒇) 1.028 340 50 -0.971 659 50 

𝑹𝟏,𝟐,𝟑(𝒇) 1.028 340 48 -0.971 659 52 

Exact value ********** -0.971 659 52 
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Further between the rules 𝑅1(𝑓) and 𝑅2(𝑓), which are the same precision six, the rule 
𝑅2(𝑓) integrates more accurately than 𝑅1(𝑓) since 

                                                         |𝐸1(𝑓)| = 0.259048|ℎ|7 

and                                                  |𝐸2(𝑓)| = 0.060952|ℎ|7. 

This fact is also reflected in the approximation of integrals by the rules 𝑅1(𝑓) and 𝑅2(𝑓) 
reported in the Tables of approximation in the numerical section. 

The same fact is also noted in the case of the rules 𝑅3(𝑓) and 𝑅1,2(𝑓); 𝑅1,2(𝑓) integrates 

more accurately than 𝑅3(𝑓) as 

                                                       |𝐸3(𝑓)| = 0.087075|ℎ|9 

and                                               |𝐸1,2(𝑓)| = 0.077206|ℎ|9 . 

Over and above, the rule 𝑅1,2,3(𝑓), being a rule of precision ten, produces the most 

accurate approximation among all the rules constructed in this paper. 

As it is demonstrated through examples, Hyper singular integrals otherwise known as 
Hadamard finite part integrals can also be numerically integrated by the rules constructed 
in this paper to eight decimal accuracy. 
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