

# VENOUS VS. ARTERIAL BLOOD GAS INDICES FOR EARLY DETECTION OF SEPSIS: A LABORATORY PERSPECTIVE SYSTEMATIC REVIEW

## **HUWAIDA ABDULLAH BIN SALEM**

Lab Technologist, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.

## **ELHAM ABDULAZIZ ALAGEEL**

Lab Technologist, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.

## **ABEER SAUD ALHUMAIDAN**

Lab Senior Specialist, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.

## **SAHAR ABDULLAH ALHUSSAINI**

Lab Specialist, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.

## **MARAM ALI ALSHAMARI**

Laboratory Senior Specialist, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.

## **LENA OSAMA MOUGRABIAH**

Lab Technician, Prince Sultan Medical Military Hospital, Laboratory Department.

## **FATIMAH ATTA MOHAMMED**

Pharmacy Technician, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.

## **MARIAM NASEER MUBARAK**

Lab Technician, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.

### **Abstract**

**Background:** Early recognition of hypoperfusion in suspected sepsis is essential. Laboratory pathways and the sampling site (arterial vs venous) influence timeliness and interpretability of biomarkers. **Objective:** To synthesize evidence on venous blood gas (VBG) and arterial blood gas (ABG)-derived indices, mainly lactate and veno-arterial  $\text{CO}_2$  differences, for early detection and monitoring of sepsis, emphasizing practical laboratory implications. **Methods:** We undertook a structured review of user-provided sources: pathophysiology/review papers and clinical studies. We extracted study design, setting, and key quantitative findings relevant to early detection, agreement between VBG and ABG lactate, and venous-to-arterial  $\text{CO}_2$  metrics. **Results:** Bedside lactate point-of-care testing shortens turnaround without clear mortality benefit. Peripheral venous lactate  $\leq 2$  mmol/L safely rule out arterial hyperlactatemia with high sensitivity, supporting venous screening and selective ABG confirmation. Agreement studies show strong arterial–venous correlations but wide limits of agreement, cautioning against simple conversion.  $\text{CO}_2$ -gap-based indices ( $\text{Pv-aCO}_2$ ;  $\text{Pcv-aCO}_2/\text{Ca-cvO}_2$ ) add prognostic/resuscitation context, though physiological caveats exist. **Conclusions:** For early detection, peripheral VBG lactate is an efficient screen; ABG is warranted when venous lactate  $> 2$  mmol/L or when precise gas exchange/acid-base data are needed.  $\text{CO}_2$ -gap indices can complement lactate to identify persistent hypoperfusion but require careful interpretation and standardized workflows.

**Keywords:** Sepsis; Lactate; Venous Blood Gas; Arterial Blood Gas; Point-of-Care Testing;  $\text{Pv-aCO}_2$ ;  $\text{Pcv-aCO}_2/\text{Ca-cvO}_2$ ; Laboratory Turnaround Time.

## INTRODUCTION

Rapid laboratory confirmation of hyperlactatemia is central to sepsis bundles, arterial versus venous sampling and central laboratory versus point-of-care testing (POCT), directly affects time-to-decision and repeat-testing workflows. Implementing bedside lactate POCT in the emergency department (ED) reduce time-to-result and increase subsequent measurements, though without a demonstrable short-term mortality benefit (Lee et al. 2024). From a laboratory perspective, such time savings during crowding still be decisive for early escalation and bundle adherence.

Lactate participates in immunometabolic signaling via protein lactylation, linking metabolic flux to gene regulation in inflammation, supporting its prognostic salience in sepsis and motivating nuanced interpretation of elevated levels (Liu et al. 2024). This dual role, metabolite and epigenetic modifier, reinforces why early, repeated lactate measurements are meaningful for both diagnosis and trajectory (Ryoo and Kim 2018). Modern definitions and bundles embed lactate kinetics: the Sepsis-3 framework recognizes elevated lactate as defining severity in septic shock, and guidelines advocate prompt measurement with serial re-assessment and normalization strategies (Ryoo and Kim 2018).

Timely access to arterial lines is uneven in ED practice; efficient workflows commonly start with peripheral venous blood, escalating to ABG when clinical or numeric triggers demand.  $\text{CO}_2$ -based indices complement lactate, the central venous–arterial  $\text{PCO}_2$  gap ( $\text{Pcv-aCO}_2$ ) rises when cardiac output is low and may reflect global flow inadequacy; combining  $\text{CO}_2$  and  $\text{O}_2$  content differences ( $\text{Pcv-aCO}_2/\text{Ca-cvO}_2$ ) has been proposed as a surrogate for respiratory quotient under oxygen-supply dependency (Dubin and Pozo 2023; Dubin et al. 2020). Yet physiological dependencies ( $\text{CO}_2$ –Hb dissociation, the Haldane effect, metabolic acidosis, hemodilution) complicate interpretation, and evidence quality is variable (Dubin and Pozo 2023; Dubin et al. 2020). This review synthesizes how VBG and ABG indices, especially lactate and  $\text{CO}_2$ -gap metrics, can be operationalized in laboratory pathways to enable earlier sepsis detection and smarter re-testing, drawing on recent implementation studies (POCT), pathophysiologic reviews (lactate/lactylation), and clinical research on  $\text{CO}_2$ -gap interpretation.

## METHODOLOGY

We performed a structured synthesis of a predefined corpus focused on early laboratory detection and monitoring of sepsis. Sources comprised: (i) conceptual/physiologic and review articles supplied by the user and (ii) clinical/observational or analytic studies. Eligibility required addressing at least one of: agreement or correlation between venous and arterial lactate; diagnostic rule-out thresholds using venous lactate; prognostic or resuscitation roles of  $\text{Pv-aCO}_2$  or  $\text{Pcv-aCO}_2/\text{Ca-cvO}_2$  in sepsis; laboratory workflow or POCT effects on turnaround. Conceptual physiology papers were included to anchor interpretation (Sepsis-3 contextualization of lactate, immunometabolic roles,  $\text{CO}_2$  physiology).

We extracted sample characteristics, care setting, index tests (sampling site and method), and key quantitative outputs (correlation coefficients, mean differences and limits of agreement, sensitivity/specificity thresholds, and associations with outcomes or lactate trends). Risk of bias was appraised qualitatively because the set included narrative reviews, single-center cohorts, and non-randomized designs. We emphasize consistency, effect magnitudes, and physiologic coherence across studies and explicitly note confounders for CO<sub>2</sub>-based metrics (shifts in the CO<sub>2</sub>-Hb dissociation curve, Haldane effect, acidosis, hemodilution).

Synthesis is organized into: lactate agreement/threshold evidence to inform when VBG can replace or defer ABG; CO<sub>2</sub>-gap metrics as adjuncts for persistent hypoperfusion despite initial goal attainment; and laboratory workflow considerations (POCT vs central lab) affecting time-to-decision.

## RESULTS

A systematic synthesis of ED and ICU cohorts indicates that a peripheral venous lactate  $\leq 2$  mmol/L reliably excludes arterial hyperlactatemia, supporting a venous-first screen with selective ABG confirmation (van Tienhoven et al. 2019; Datta et al. 2016/2017; Samaraweera et al. 2017). In a prospective ED pilot (n=37), arterial and peripheral venous lactate were strongly correlated yet differed by  $=0.5$  mmol/L on average, with wide 95% limits of agreement, too wide for simple substitution (Browning et al. 2014). A large ED cohort (n=304) reported a mean arterial–venous difference of  $=0.4$  mmol/L with limits of agreement 0.4 to 1.2 mmol/L, reinforcing that while group-level agreement is acceptable, patient-level substitution is imperfect—especially at higher lactate (Datta et al. 2016/2017). ICU data similarly show strong correlations among arterial, peripheral venous, and central venous lactate (Velissaris et al. 2019) but advise caution for single-sample conversions. Additional ICU sepsis work found strong A–V correlation but poor agreement; a V-lactate threshold ( $\geq 3.5$ –4.5 mmol/L) predicted arterial hyperlactatemia, again favoring venous screening with ABG confirmation rather than formulaic conversion (Theerawit et al. 2018; Mahmoodpoor et al. 2020). Time-to-result and laboratory pathways: Introducing ED POCT lactate shortened time-to-result and increased repeat testing rates, supporting strategies that start with venous sampling on POCT analyzers to expedite triage, then escalate to ABG/central-lab as indicated (Lee et al. 2024). Pv-aCO<sub>2</sub> increases when blood flow is inadequate relative to CO<sub>2</sub> production; Pcv-aCO<sub>2</sub> approximates global flow. Combining CO<sub>2</sub> and O<sub>2</sub> content differences (Pcv-aCO<sub>2</sub>/Ca-cvO<sub>2</sub>) has been proposed as a surrogate of respiratory quotient during oxygen-supply dependency (Dubin and Pozo 2023; Dubin et al. 2020). In early septic shock, persistently high Pv-aCO<sub>2</sub> during the first hours was associated with worse organ failure trajectories and higher mortality; time-course analyses showed slower lactate decline in non-survivors (Ospina-Tascón et al. 2013). In another ICU cohort, the CO<sub>2</sub>/O<sub>2</sub> content-difference ratio was associated with subsequent lactate evolution during hemodynamic resuscitation—suggesting these indices may identify ongoing hypoperfusion even when traditional goals (ScvO<sub>2</sub>) appear met (Mesquida et al. 2015;

Mallat et al. 2014). CO<sub>2</sub>-gap metrics are affected by shifts in the CO<sub>2</sub>-Hb dissociation curve, metabolic acidosis, hemodilution, and the Haldane effect; surrogacy for respiratory quotient is debated and fixed cutoffs should be applied cautiously (Dubin and Pozo 2023; Dubin et al. 2020).

**Table 1: VBG vs ABG lactate in sepsis: agreement and screening thresholds**

| Study                   | Setting / n             | Comparison                            | Key quantitative findings                                                                             | Implication                                         |
|-------------------------|-------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Browning et al. 2014    | ED sepsis, n=37         | Arterial vs peripheral venous lactate | Mean A–V diff =0.54 mmol/L; 95% LOA roughly –0.1 to 1.2 mmol/L; strong correlation                    | Not interchangeable at patient level; use as screen |
| Datta et al. 2016/2017  | ED sepsis, n=304        | Arterial vs peripheral venous lactate | Mean diff =0.4 mmol/L; LOA =–0.4 to 1.2 mmol/L                                                        | Group agreement OK; confirm when high               |
| Velissaris et al. 2019  | ED/ICU                  | A vs PV vs CV lactate                 | Very high correlations among sites; small biases                                                      | Venous screening; ABG for precision                 |
| Theerawit et al. 2018   | ICU sepsis              | A vs V lactate                        | Strong correlation but poor agreement; V-lactate $\geq$ 3.5–4.5 predicts A-lactate $\geq$ 4           | Use thresholds to trigger ABG                       |
| Mahmoodpoor et al. 2020 | ICU septic shock, n=100 | A vs V lactate; clearance             | Strong correlation; arterial > venous by small bias; low clearance + high lactate predicted mortality | Trending and thresholds over conversion             |
| Samaraweera et al. 2017 | Pediatrics              | Venous strategy                       | $\leq$ 2 mmol/L venous effectively excludes arterial hyperlactatemia                                  | Pediatric screening mirrors adult                   |

**Table 2: CO<sub>2</sub>-gap-based indices during early resuscitation**

| Study                           | Marker                                          | Main finding                                                                                  | Take-home                                                |
|---------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Ospina-Tascón et al. 2013       | Pv-aCO <sub>2</sub> (and Pcv-aCO <sub>2</sub> ) | Persistently high gaps associated with higher SOFA and mortality; slower lactate decline      | Unmasks occult hypoperfusion after initial resuscitation |
| Mallat et al. 2014              | $\Delta$ PCO <sub>2</sub> dynamics              | Normalization of $\Delta$ PCO <sub>2</sub> over first 6 h paralleled greater lactate decrease | Falling gap suggests improving perfusion                 |
| Mesquida et al. 2015 (X10)      | Pcv-aCO <sub>2</sub> /Ca-cvO <sub>2</sub> ratio | Higher ratio associated with subsequent lack of lactate improvement                           | Adjunct signal of supply-dependency                      |
| Diaztagle Fernández et al. 2017 | Pv-aCO <sub>2</sub> (systematic review)         | Links to mortality and lactate outcomes across 12 observational studies                       | Supportive but heterogeneous evidence base               |

## DISCUSSION

From a laboratory vantage point, the earliest actionable step is rapid lactate measurement. ED implementation of lactate POCT cut turnaround and increased re-checks—key operational gains during periods of crowding—even though mortality and bundle adherence did not change (Lee et al. 2024). This aligns with the Sepsis-3 emphasis on immediate testing and serial monitoring and with lactate-guided or

lactate-clearance-guided care (Ryoo and Kim 2018). Biologically, lactate is more than a hypoxia by-product. Its immunometabolic effects—particularly protein lactylation—may couple metabolic state to gene expression during sepsis, providing a mechanistic substrate for its prognostic value and for strategies targeting clearance rather than single snapshots (Liu et al. 2024). The clinical literature reinforces those elevations above  $\geq 2$  mmol/L deserve prompt reassessment and those trends (clearance) outperform single values for risk (Mahmoodpoor et al. 2020). Regarding sampling, evidence consistently supports peripheral venous lactate as a screening tool, particularly at the  $\leq 2$  mmol/L threshold, which effectively excludes arterial hyperlactatemia in adults and children (van Tienhoven et al. 2019; Samaraweera et al. 2017). However, strong correlations can mask wide limits of agreement, so ABG should confirm when venous lactate exceeds screening thresholds, when respiratory mechanics/acid–base assessment is essential, or when precision is critical at high lactate (Browning et al. 2014; Datta et al. 2016/2017; Theerawit et al. 2018; Velissaris et al. 2019).

$\text{CO}_2$ -gap indices provide complementary context.  $\text{Pv-aCO}_2$  and  $\text{Pcv-aCO}_2$  can unmask systemic flow inadequacy after initial resuscitation; combined  $\text{CO}_2/\text{O}_2$  ratios sometimes track lactate evolution or oxygen consumption responses (Ospina-Tascón et al. 2013; Mesquida et al. 2015; Mallat et al. 2014). Yet critical reviews advise caution:  $\text{CO}_2$ -gap metrics are influenced by  $\text{CO}_2$ –Hb dissociation, acidosis, hemodilution, and the Haldane effect, limiting their role as rigid targets or respiratory-quotient surrogates; fixed cut-offs are physiologically fragile (Dubin and Pozo 2023; Dubin et al. 2020). A pragmatic algorithm is therefore venous-first: immediate venous POCT lactate; if  $\leq 2$  mmol/L, defer ABG unless respiratory concerns; if  $>2$  mmol/L, obtain ABG for confirmation/acid–base and consider  $\text{CO}_2$ -gap measures (preferably with central venous access) to identify ongoing hypoperfusion despite achieved macro-goals; repeat lactate guided by clinical change and bundle requirements. This integrates the speed of venous POCT with the depth of ABG and adjunct indices, consistent with guideline emphasis on serial assessment. Limitations: Our synthesis reflects the provided sources. Evidence for  $\text{CO}_2$ -gap ratios include narrative reviews and single-center cohorts; generalizability and optimal cutoffs remain unsettled. Incorporation of immunometabolic insights (lactylation) is evolving and should not replace clinically validated endpoints, but it contextualizes why lactate remains informative in sepsis physiology.

## CONCLUSION

Early sepsis detection benefits from a venous-first laboratory strategy. Peripheral venous lactate, especially  $\leq 2$  mmol/L, safely rules out arterial hyperlactatemia and speeds triage via POCT; ABG should follow when venous lactate is elevated or when detailed gas/acid-base evaluation is needed.

$\text{CO}_2$ -gap-derived indices ( $\text{Pv-aCO}_2$ ;  $\text{Pcv-aCO}_2/\text{Ca-cvO}_2$ ) can reveal persistent hypoperfusion and inform resuscitation alongside lactate, but require context-aware interpretation due to physiological confounders. Standardized sampling, rapid analytical pathways, and serial reassessment remain the laboratory pillars of timely sepsis care.

## References

- 1) Browning R, Datta D, Grahamslaw J, Gray AJ, Graham C. Peripheral venous and arterial lactate agreement in septic patients in the ED: a pilot study. *Eur J Emerg Med.* 2014; 21:139–141.
- 2) Datta D, Grahamslaw J, Gray AJ, Graham C, Walker CA. Lactate – arterial and venous agreement in sepsis: a prospective observational study. *Eur J Emerg Med.* 2016;23(5): (Epub ahead of print). doi:10.1097/MEJ.0000000000000437.
- 3) Diaztagle Fernández JJ, Rodríguez Murcia JC, Srockel Díaz JJ. Venous-to-arterial CO<sub>2</sub> difference in the resuscitation of patients with severe sepsis and septic shock: a systematic review. *Med Intensiva.* 2017;41(7):401-410.
- 4) Dubin A, Pozo MO, Hurtado J. Central venous minus arterial CO<sub>2</sub> pressure to arterial minus central venous O<sub>2</sub> content ratio as an indicator of tissue oxygenation: a narrative review. *Rev Bras Ter Intensiva.* 2020;32(1):115-122. doi:10.5935/0103-507X.20200017.
- 5) Dubin A, Pozo MO. Venous minus arterial carbon dioxide gradients in the monitoring of tissue perfusion and oxygenation: a narrative review. *Medicina (Kaunas).* 2023; 59:1262. doi:10.3390/medicina59071262.
- 6) Lee S, Song J, Lee S, Kim SJ, Han KS, Lee S. Impact of point-of-care lactate testing for sepsis on bundle adherence and outcomes in the ED: a pre–post observational study. *J Clin Med.* 2024; 13:5389. doi:10.3390/jcm13185389.
- 7) Liu S, Yang T, Jiang Q, Zhang L, Shi X, Liu X, Li X. Lactate and lactylation in sepsis: a comprehensive review. *J Inflamm Res.* 2024; 17:4405–4417. doi:10.2147/JIR.S459185.
- 8) Mahmoodpoor A, Shadvar K, Sanaie S, Golzari SEJ, Parthvi R, Hamishehkar H, Nader ND. Arterial vs venous lactate and clearance for mortality prediction in septic shock. *J Crit Care.* 2020; 58:118-124. doi: 10.1016/j.jcrc.2019.05.019.
- 9) Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L, et al. Central venous-to-arterial CO<sub>2</sub> difference in early resuscitation from septic shock: a prospective observational study. *Eur J Anaesthesiol.* 2014;31(7):371-380.
- 10) Mesquida J, Saludes P, Gruartmoner G, Espinal C, Torrents E, Baigorri F, Artigas A. Central venous-to-arterial CO<sub>2</sub> difference combined with arterial-to-venous O<sub>2</sub> content difference is associated with lactate evolution in early septic shock. *Crit Care.* 2015; 19:126.
- 11) Ospina-Tascón GA, Bautista-Rincón DF, Umaña M, Tafur JD, Gutiérrez A, García AF, et al. Persistently high venous-to-arterial CO<sub>2</sub> differences during early resuscitation are associated with poor outcomes in septic shock. *Crit Care.* 2013;17: R294.
- 12) Ryoo SM, Kim WY. Clinical applications of lactate testing in patients with sepsis and septic shock. *J Emerg Crit Care Med.* 2018; 2:14. doi:10.21037/jeccm.2018.01.13.
- 13) Theerawit P, Na Petvicharn C, Tangsujaritvijit V, Sutherasan Y. Correlation between arterial and venous lactate in sepsis and septic shock. *J Intensive Care Med.* 2018;33(2):116-120. doi:10.1177/0885066616663169.
- 14) van Tienhoven AJ, van Beers CAJ, Siegert CEH. Agreement between arterial and peripheral venous lactate levels in the emergency department: a systematic review. *Am J Emerg Med.* 2019;37(10):1991-1995. doi: 10.1016/j.ajem.2019.01.034.
- 15) Velissaris D, Karamouzos V, Pantzaris ND, Kyriakopoulou O, Gogos C, Karanikolas M. Relation between central venous, peripheral venous and arterial lactate levels in sepsis in the ED. *J Clin Med Res.* 2019;11(9):629-634. doi:10.14740/jocmr3870.