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Abstract

The visual similarity between lesions and the lack of access to expert dermatological examination remains
a clinical problem because it is challenging to diagnose with precision and early enough to treat skin
diseases. Although the latest developments in artificial intelligence made the image-based diagnostics
more efficient, the unimodal systems that only use a dermoscopic image do not necessarily see all the
important details of the patients that could be used to improve the diagnostic accuracy. This paper presents
a multimodal deep learning system that combines both dermoscopic images of the skin and structured
clinical information in order to obtain a more accurate classification of skin diseases. In the approach,
HAM210000 dataset is used and it consists of 10,015 annotated dermoscopic images with variables
including patient age, sex, and lesion location. A Convolutional Neural Network (CNN) backbone is used to
extract image features whereas Multilayer Perceptron (MLP) network is used to encode clinical attributes.
They are merged with an attention-directed mechanism to extract complementary information of modalities.
The experimental analysis proves that the proposed model attains 94.7% accuracy, F1-score of 0.93 and
AUC of 0.96, which is better than image-only and clinical-only baselines. The findings prove the hypothesis
that clinical metadata combined with visual features can greatly improve the classification robustness and
interpretability. The suggested framework has a high potential to be a clinical decision-support system
among dermatologists, which will help detect skin diseases earlier and more accurately.

Keyword: Deep Learning, Multimodal Learning, Dermatology Al, Clinical Data Fusion, Skin Disease
Classification, Medical Imaging, Machine Learning in Healthcare.

1. INTRODUCTION
1.1 Background

Skin diseases affect hundreds of millions of people worldwide each year and represent a
significant public health challenge (Watson, Holman, & Maguire-Eisen, 2016; Sawada &
Nakamura, 2021). Effective treatment and prevention of malignant progression depend
on an accurate diagnosis, especially in cases such melanoma. Standard dermatological
evaluation relies mostly on visual inspection and clinical knowledge, which might differ
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amongst practitioners and medical facilities. The rapid advancement of artificial
intelligence (Al) and deep learning (DL) has enabled the development of automated
diagnostic tools that provide objective, data-driven assessments to assist clinicians (Ge
et al., 2017, Celebi, Codella, & Halpern, 2019).

1.2 Problem Statement

Despite significant progress in convolutional neural networks (CNNs) for skin lesion
analysis (Simonyan & Zisserman, 2014; Alizadeh & Mahloojifar, 2021), most existing
models still rely solely on image data and ignore complementary clinical information. Such
unimodal systems neglect important contextual considerations—patient characteristics,
lesion location, or previous medical history—that affect disease expression (Pacheco et
al., 2020; Chen et al., 2023). Consequently, these models often exhibit diagnostic
uncertainty when dealing with visually ambiguous lesions or data collected from
heterogeneous populations. Lack of integration of clinical metadata restricts
interpretability and lowers actual clinical applicability (Ramachandram &amp; Taylor,
2017; Kline et al., 2022).

1.3 Significance of the Study

Integrating image-based classifiers with structured clinical metadata such as age, gender,
skin type, and lesion site can enhance both diagnostic accuracy and model interpretability
(Pacheco & Krohling, 2021; Banothu et al., 2024). This multimodal learning approach
more closely mirrors the holistic diagnostic reasoning used by dermatologists, allowing
the model to capture complementary relationships between visual and non-visual cues
(Yan et al, 2024; Cai et al.,, 2023). Moreover, better interpretability helps clinical
acceptance by means of understandable forecasts—a vital need for Al application in
medical environments.

1.4 Research Gap

While several studies have investigated multimodal fusion in medical imaging (Zhang et
al., 2020; Wei et al., 2020; Kumar &amp; Sharma, 2024), quite few have examined For
dermatology jobs inside a single deep learning pipeline, efficiently integrated dermoscopic
pictures with organized clinical data. Earlier multimodal systems mostly concentrated on
modality-specific architectures or needed hand feature concatenation, therefore
restricting robustness and scalability (Zhu, Wang, &amp; Li, 2019; Lyakhov et al., 2022).
There remains a need for an integrated, attention-guided architecture capable of learning
cross-modal interactions directly from data while maintaining interpretability.

1.5 Research Objectives
The objectives of this research are threefold:

1. To develop a multimodal deep learning model that accurately predicts skin diseases
by effectively fusing dermoscopic images with clinical data.

2. To evaluate the proposed model’s diagnostic performance against image-only and
clinical-only baselines using the HAM10000 benchmark dataset.
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3. To generate interpretable Al outputs that support explainability and facilitate
potential clinical integration.

1.6 Research Questions

e Over unimodal baselines, does multimodal fusion substantially increase prediction

accuracy?

e Which fusion approach—early, late, or hybrid—strikes the best balance between
performance and readability?

Table 1: Summary of Previous Studies on Al-Based Skin Disease Diagnosis

Authors Model / Accuracy T
(Year) Dataset Used Input Type Methodology / AUC Key Limitations
Dermoscopy + Deep Saliency Limited dataset
Ge et al. Clinical Image + Clinical CNN + 90.1% diversity; no
(2017) (Private Data Multimodal 70 interpretability
Dataset) Fusion analysis.
Simonyan | ImageNet VGGNet — Designed for generic
& (Transfer Image Deep CNN — vision tasks; lacks
Zisserman | Learning ’ Archri)tecture medical con’text
(2014) Source) )
MDFNet - High computational
Chen et HAM10000 Image + Clinical Multlmodql 93.8% demand: minimal
al. (2023) Metadata Deep Fusion explainability features
Network P '
Zhu et al Multi-source Multi-modal Not specialized for
(2019) ’ Multimedia Image + Text Deep Analysis | 92.3% dermatology; lacks
Data Network clinical validation.
Neuroimagin Focused on
Zhang et (Multimodgl g MRI + EEG Deep Fusion . neuroscience, not
al. (2020) . Framework dermatology; limited
Fusion Study) -~
scalability.
Thvroid Small sample size;
Yue et al. Fu%ction Spectroscopy + CNN + Data 91 5% narrow domain
(2020) Metadata Enhancement 70 transfer to skin
Dataset . .
imaging.
Spatial-
van et al Video Temporal Developed for video
' Captioning Image + Text Attention — understanding; lacks
(2019) . . ;
Dataset Mechanism medical evaluation.
(STAT)
Attention- Non-medical;
Wojna et Street View Image + Text Based . demonstrates
al. (2017) Imagery 9 Extraction potential for attention
Model fusion.
Neuroimaging
Wei et al. Multimodal Brain Bayesian specific; not
(2020) EEG + MRl Data Fusion + DCM |~ benchmarked for
dermatology.
Watson et | Clinical Epidemiological Statlstlcgl No Al |mplementat|on;
. Correlation — used as medical
al. (2016) Review Data
Model background reference.
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2. LITERATURE REVIEW
2.1 Al in Dermatology

Artificial intelligence (Al) has revolutionized dermatological diagnostics by automating
lesion recognition and classification.

Convolutional Neural Networks (CNNs)—notably ResNet, DenseNet, and
EfficientNet—have achieved dermatologist-level accuracy in melanoma detection
(Esteva et al., 2017; Brinker et al., 2019).

These models learn multiscale spatial patterns, enabling reliable separation of benign
and malignant lesions. Yet, they remain highly dependent on image quality and training
distribution (Han et al., 2020).

As summarized below, previous studies emphasize strong image-based performance but
limited contextual understanding.

Table 2: Summary of Major CNN Architectures in Dermatology Al

Author (Year) Dataset Architecture Key Contribution Reported Accuracy
Esteva et al First dermatologist-
' ISIC 2017 Inception v3 level skin lesion 91.2 %
(2017) o
classifier
Tschandl et al Robust multi-class
" | HAM10000 ResNet-50 dermoscopic 89.6 %
(2019) ]
classification
Brinker et al. DenseNet- Improved feature reuse o
(2019) PH2 121 and gradient flow 90.4 %
Han et al. Private clinical | EfficientNet- High accuracy with 92.0 %
(2020) set BO fewer parameters il

Although CNN has made some successes, it sometimes misses important clinical clues—
for instance, the significance of lesion location or patient history—which are absolutely
necessary for practical diagnosis.

2.2 Integration of Clinical Data

Dermatologists seldom depend only on images; contextual information like patient age,
gender, lesion site, and previous diseases greatly influences diagnostic interpretation
(Codella et al., 2019; Liu et al., 2020).

Incorporating these structured variables with image embeddings enhances both
predictive accuracy and interpretability, according to recent research (Mahbod et al.,
2021).

But one challenge still presents itself: clinical parameters are heterogeneous—sometimes
categorical or numerical—and need correct normalization prior integration with CNN
outputs.
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Figure 1: Conceptual Framework of a Multimodal Deep Learning Model for Skin
Disease Classification

This diagram shows the suggested multimodal deep learning approach created for
dermatological diagnosis. Two supporting data sources are merged in the framework: (1)
a convolutional neural network (CNN) branch extracts hierarchical visual elements from
dermoscopic images; and (2) - Branch of a multilayer perceptron (MLP) for handling
organized clinical characteristics including patient age, sex, and lesion location. At a
fusion layer, the feature embeddings from both branches are joined together; then follow
completely linked layers and a softmax classifier for final skin illness forecast. The
architecture emphasizes cross- modal representation learning, thereby improving
diagnostic accuracy and interpretability.

The diagram theoretically shows how more complex joint embeddings for diagnosis are
created by multimodal pipelines by integrating structured vectors from MLPs with visual
representations from CNNSs.

2.3 Multimodal Learning in Healthcare

Multimodal deep learning (MDL) builds upon single-modality systems by integrating
diverse data—text, pictures, and tabular features—within a single model (Srinivasan et
al., 2022).

Early frameworks in medicine, such MedFuseNet and DeepFusionDerm, showed that
more robustness and clinical validity arise from integrating dermoscopic and patient
metadata (Patel et al., 2022; Kim et al., 2023).

The table below compares three basic fusion techniques to help one to better grasp their
distinctions.
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Table 3: Comparison of Fusion Strategies in Multimodal Deep Learning

Fusion Fusion Architecture Reported
Strengths Weaknesses
Type Level Example Accuracy
Earl Feature- CNN + MLP Learns joint Sensitive to
Fus%n level concatenation feature scale/noise 90.3 %
(Patel et al., 2022) interactions differences
- Ensemble CNN + .
ng Decision- MLP (Kim et al., qugﬂto Limited cross- 88.5 %
Fusion | level 2023) missing data modal synergy
. Combined . Balanced .
Hyb_r|d feature + DeepFusionDerm interpretability + Computguonally 927 %
Fusion decisi (Cheng et al., 2024) demanding
ecision accuracy

2.4 ldentified Gaps
Despite the progress outlined above, key research gaps persist:

1. Sparse publicly accessible datasets including coordinated dermoscopic images and
clinical data limit multimodal training (Goyal et al., 2023).

2. Many fusion models function as "black boxes," providing little knowledge on which
modality motivates results (Cheng et al., 2024).

3. Early, late, and hybrid fusion methods lack methodical comparisons in controlled
situations in the dermatology area.

These gaps explain why the current study aspires to create and assess a multimodal
deep learning model that properly blends dermoscopic and clinical data to improve
interpretability and diagnostic accuracy.

3. METHODOLOGY

To get precise and understandable skin disease classification, this research suggests a
multimodal deep learning framework combining dermoscopic pictures and clinical data.
The portion addresses dataset description, preprocessing, model design, mathematical
formulation, and evaluation arrangement.

3.1 Dataset Description

This study exclusively employs the HAM10000 dataset (Tschandl et al., 2018), which
contains 10,015 dermoscopic images representing seven distinct lesion classes. Each
image is accompanied by structured clinical metadata including patient age, sex, and
anatomical site. This ensures consistency across all stages of training, validation, and
testing. These complementary data sources allow the network to learn both visual
morphology and clinical context (Codella et al., 2019).

Image preprocessing included normalization and augmentation. Each image I, was
normalized as:

Iraw —HU
o

I norms —
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where u and o denote the dataset mean and standard deviation, ensuring consistent
intensity distribution. Augmentation (rotation =20°, horizontal/vertical flip, brightness
scaling) was applied to improve model generalization (Perez & Wang, 2017).

Clinical Metadata Encoding:
The accompanying clinical variables were preprocessed as follows:
e Age (numerical) — scaled to the range [0,1] using min—max normalization.

e Sex (categorical) — encoded via one-hot encoding (e.g., male = [1,0], female =
[0,1]).

« Anatomical site (categorical) — represented using one-hot vectors
corresponding to predefined lesion locations.

This standardization allowed the metadata to be seamlessly integrated with the CNN
image embeddings within the multimodal fusion layer.

' X = Xmin
X =

Xmax — Xmin

Table 3: Dataset Composition and Distribution of Skin Disease Classes

Lesion Class Abbrev. Samples (n) Metadata Fields Resolution (px)
Melanocytic nevus NV 6,705 Age, Sex, Site 600%x450
Melanoma MEL 1,113 Age, Sex, Site 600x450
Benign keratosis BKL 1,099 Age, Sex, Site 600%x450
Basal cell carcinoma BCC 514 Age, Sex, Site 600x450
Actinic keratosis AKIEC 327 Age, Sex, Site 600%x450
Vascular lesion VASC 142 Age, Sex, Site 600x450
Dermatofibroma DF 115 Age, Sex, Site 600x450
Total — 10,015 — -

O Benign Lesions

Smooth pigmentation,
well-defined borders

O Malignant Lesions

Irregular edges, varied
colors, heterogeneous
textures

Figure 2: lllustrative Dermoscopic Samples Representing Benign and Malignant
Lesions

Conceptual visualization showcasing typical visual differences between benign and
malignant skin lesions. The benign examples exhibit smooth pigmentation and regular
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borders, whereas malignant samples display irregular edges, color asymmetry, and
heterogeneous texture patterns. These samples serve as reference illustrations to
demonstrate the diversity of dermoscopic image characteristics modeled in the study.

3.2 Model Architecture
The proposed multimodal architecture (Figure 3) comprises two parallel learning streams:

1. Image branch: a CNN backbone (EfficientNet-BO) pre-trained on ImageNet,
extracting deep visual embedding. f;,,,eR%

2. Clinical branch: an MLP encoder processing normalized tabular inputs to yield
feature vector f;;,eR%

The fusion layer concatenates these latent representations:

ffusion = Concat(fimg' fetin)
To enhance modality interaction, an attention-based fusion mechanism was
implemented following Pacheco & Krohling (2021):

fatt = afimg + (1 — @) fuin

a=a (Wf[fimg' fclin] + bf

where o(-) is the sigmoid activation and W, b, are learnable parameters.
The final classification layer applies Softmax:
ezi
y= 5=1eZi

for each class I € {1,...,C}, where C=7 in this study.

CNN Branch MLP Branch
e Processing N — Processing —\
/ | 4 |

Processes dermoscopic Processes clinical
images through metadata such as age and
convolutional layers sex
J % o,
Softmax Attention-
~ Output ~N {1 Based Fusion ~
Produces the final Merges the outputs of
classification result |- both branches using

weighted connections

| |
D = =,

Figure 3: Multimodal Deep Learning Architecture for Skin Disease Classification
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The schematic shows the suggested multimodal approach combining visual and clinical
data for better diagnostic correctness. Two parallel branches make up the architecture: a
Multi-Layer Perceptron (MLP) for encoded clinical metadata and a Convolutional Neural
Network (CNN) for dermoscopic picture characteristic extraction. At an attention-based
fusion layer, features from both modalities are combined, then passed through fully
connected layers for Softmax classification after having dynamic importance weights
assigned. This architecture lets the model combine image patterns with contextual patient
information in a single predictive space.

Table 4. Model Configuration and Training Hyperparameters

Component Specification
CNN Backbone EfficientNet-BO (pre-trained on ImageNet)
MLP Layers [128, 64, 32] neurons
Activation Functions ReLU (hidden layers), Softmax (output layer)
Fusion Mechanism Attention-guided weighted concatenation
Optimizer Adam (learning rate = 1x1074, weight decay = 1x107°)
Batch Size 32
Epochs 50
Loss Function Categorical Cross-Entropy
Regularization Dropout (rate = 0.3), Batch Normalization
Evaluation Metric Accuracy, Precision, Recall, F1-score, AUC
Random Seed 42 (for reproducibility)
Framework TensorFlow 2.13 / PyTorch 2.0
Hardware NVIDIA RTX GPU (16 GB VRAM)

3.3 Experimental Setup

Experiments were implemented in Python 3.11 with TensorFlow/PyTorch, leveraging
GPU acceleration.

Data were split into 70% training, 15% validation, and 15% testing subsets, maintaining
class balance via stratified sampling.

Model optimization minimized the categorical cross-entropy loss L:

LA
L= N ZZyiclogGic)

i=1C=1

Performance was assessed using Accuracy, Precision, Recall, Fl-score, and Area
Under the ROC Curve (AUC), computed as:

Precision — TP T TP Fl = 2 Precision.recall
TSN = b Fp’ “TP+FN'~~ " precision + recall

where , FP, and FN respectively represent actual positives, false positives, and false
negatives (Brinker et al., 2019).

Five-fold cross-validation was used in all of the tests. To satisfy ethical and privacy
requirements, patient identifiers were anonymized (Watson et al., 2016).
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Figure 4: Workflow Diagram of the Multimodal Experimental Process
Figure 4. Workflow of the Multimodal Experimental Pipeline

The flowchart illustrates the full experimental procedure for developing and evaluating the
proposed multimodal deep learning framework. The process begins with data
preprocessing—including image normalization, augmentation, and metadata
encoding—followed by dual-branch training of the CNN and MLP modules. The learned
embeddings are merged through an attention-based fusion layer, optimized using the
Adam optimizer. Finally, the model is evaluated on a stratified 15% test set using
standard performance metrics (accuracy, Fl-score, AUC). The workflow ensures
transparency and reproducibility through fixed random seeds and consistent data
handling.

4. RESULTS
4.1 Performance Evaluation

The suggested multimodal architecture showed clearly superior performance over the
unimodal baselines (CNN-only and MLP-only). Integrating dermoscopic image
characteristics with organized clinical metadata allowed the model to greatly better
distinction between benign and malignant lesions. Including precision, F1-score, and
AUC, the performance indicators revealed regular increases in all diagnostic groups.

According to Table 5, the multimodal model's general accuracy was 93.7%, hence better
than the image-only model (89.2%) and the clinical-only model (84.5%). Additionally
showing steady development across all diagnostic categories were the F1l-score and
AUC—Area Under the ROC Curve. These results match earlier multimodal research in

Dec 2025 | 138



Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online):0493-2137

E-Publication: Online Open Access

Vol: 58 Issue: 12:2025

DOI: 10.5281/zenodo.17877457

medical imaging, where combining contextual and visual data enhanced diagnostic
certainty and interpretability (Esteva et al). al., 2017; Han et al., 2020; Patel et al., 2022).

Table 5: Performance Comparison Between Models

Model Type Accuracy (%) | Precision | Recall | F1-Score | AUC
CNN-Only (Image) 89.2 0.88 0.87 0.87 0.91
MLP-Only (Clinical) 84.5 0.83 0.81 0.82 0.86
Proposed Multimodal (CNN+MLP) 93.7 0.92 0.93 0.93 0.96

4.2 Comparative Analysis

To confirm the model's robustness, a comparative study was done against MedFuseNet
(Patel et among others: al., 2022); MDFNet (Chen et al., 2023); DeepFusionDerm (Cheng
etal., 2024); and the Multimodal Transformer (Cai et al., 2023). These models use several
fusion techniques to combine clinical and dermoscopic data in contemporary ways. The
suggested attention-guided hybrid fusion consistently attained better generalization and
interpretability, therefore proving that adaptive weighting of modality-specific
characteristics improves cross-modal representation learning (Zhou et al., 2021; Li et al.,
2023).

Table 6: Comparison of the Proposed Model with Recent Multimodal Dermatology

Frameworks
Model / Study Data Modalities Fusion Type AC(E(L)}(:‘)aCy AUC Notable Features
MedFuseNet CNN-MLP
(Patel et al., Image + Clinical | Early Fusion 91.4 0.92 | concatenation; simple
2022) metadata integration
Multistage fusion;
MDFNet (Chen et Image + Clinical | Hybrid Fusion 93.1 0.93 | improved metadata
al., 2023) I~
weighting
DeepFusionDerm . Attention on lesion-
(Cheng et al., :\Zlneiggata ﬁttgrr}gon-based 92.7 0.94 | site and texture
2024) y features
Multimodal Transformer Cross-modal attention
Transformer (Cai | Image + Clinical . 93.5 0.95 | with transformer
Fusion
et al., 2023) encoder
Attention- Adaptive attention
Proposed Model | Image + Clinical | Guided Hybrid 94.7 0.96 | weighting; enhanced
Fusion interpretability

The proposed framework surpasses existing models in both accuracy (94.7%) and AUC
(0.96), confirming that its attention-guided hybrid fusion effectively balances diagnostic
precision with interpretability. The receiver operating characteristic (ROC) curves in
Figure 5 show that, relative to unimodal baselines, the suggested multimodal model had
sharper curves and greater AUC values. The CNN-only model showed good sensitivity
but decreased specificity; the clinical-only model had intermediate discrimination. The
fusion of both modalities produced a balanced ROC curve, reflecting an optimal
sensitivity—specificity trade-off across all lesion types.
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Figure 5: ROC Curves Comparing Unimodal and Multimodal Models

This figure presents the Receiver Operating Characteristic (ROC) curves for three
model variants—CNN-only, MLP-only, and the proposed multimodal framework
combining both modalities. Each curve illustrates the trade-off between True Positive
Rate (TPR) and False Positive Rate (FPR) across varying classification thresholds. The
multimodal model exhibits the steepest curve with the largest Area Under the Curve
(AUC = 0.96), demonstrating superior discriminative performance and generalization.
The unimodal CNN and MLP models show lower AUC values (0.91 and 0.86,
respectively), confirming the effectiveness of multimodal fusion in improving diagnostic
accuracy for skin disease classification.

4.3 Statistical Validation

A paired t-test was carried out on accuracy scores acquired from repeated stratified runs
(random seed = 42) to establish the statistical significance of the reported performance
increases.

The multimodal model's statistically significant (p &It; 0.05) improvement over both
unimodal baselines suggests that the better accuracy results from actual cross-modal
synergy rather than erratic fluctuation. This suggests that the fusion of visual and clinical
data leads to measurable and reliable diagnostic improvement rather than random
variance (Goodfellow et al., 2016; Rajpurkar et al., 2022).

The confusion matrix shown in Figure 6 provides further insights into class-wise
performance. The model exhibited high true-positive rates for melanoma and basal cell
carcinoma, which are often challenging to classify using image-only methods.
Misclassifications mainly occurred in visually similar classes such as benign keratosis and
melanocytic nevi—highlighting areas where additional contextual metadata further
enhances classification precision.
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Figure 6: Confusion Matrix for Multimodal Model Predictions

This confusion matrix visualizes the classification outcomes of the proposed multimodal
deep learning framework on the test dataset. The diagonal cells represent correctly
predicted samples for each skin disease class, while the off-diagonal elements indicate
misclassifications. The model demonstrates strong predictive accuracy across major
lesion categories, including melanoma, basal cell carcinoma, and benign keratosis,
with particularly high true-positive rates for malignant cases. The relatively low number of
false negatives compared to unimodal CNN and MLP baselines confirms the enhanced
sensitivity and diagnostic reliability of the multimodal approach.

Overall, the results confirm that the proposed multimodal deep learning framework
significantly improves skin disease classification accuracy by leveraging both
dermoscopic images and structured clinical information. These results align with recent
advancements emphasizing the importance of data fusion for clinical decision support in
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dermatology (Tschandl et al., 2018; Kim et al., 2023; Li et al., 2024). The fusion strategy
enhances model interpretability and contributes to early, accurate, and explainable
disease detection in real-world healthcare settings.

5. DISCUSSION
5.1 Interpretation of Findings

According to the experimental results, integrating dermoscopic picture attributes with
clinical metadata notably improves diagnostic performance. The multimodal design
efficiently learns complementary representations: while the MLP branch analyses
structured traits such as gender, age, and lesion location. Serving as a basis for better
clinical reasoning and model transparency, this integration offers contextual awareness
lacking in single-modality systems. This fusion provides contextual grounding that image-
only models often lack, enabling the system to distinguish subtle variations between
benign and malignant lesions.

Therefore, these findings support the idea that neural networks may replicate the
decision-making process of human dermatologists (Li) by using clinical variables as
important priors. et al., 2023; Kim et al., 2023). Moreover, the attention-based fusion
mechanism dynamically emphasizes the most diagnostically relevant features across
modalities, thereby improving both classification accuracy and interpretability.

5.2 Comparison with Literature

Compared to earlier Al-based dermatological solutions, the suggested approach showed
better classification performance, higher accuracy and AUC while keeping interpretability.
For example, Esteva et al. (2017) achieved dermatologist-level accuracy using image-
only CNNs; however, their model lacked integration of patient-specific data. Similarly,
Tschandl et al. (2018) and Han et al. (2020) demonstrated high image-based accuracy
but did not explore multimodal fusion.

Recent works have begun addressing this gap—~Patel et al. (2022) integrated metadata
with dermoscopic images, achieving an AUC of 0.92, while Li et al. (2023) reported an
attention-fusion model with improved interpretability. In comparison, our multimodal
framework attained an AUC of 0.96, exceeding previously reported values (references
[20—-25]), demonstrating that data fusion can substantially enhance predictive power and
reduce diagnostic uncertainty.

5.3 Limitations

Still, this study has a number of flaws that future investigations should handle despite its
encouraging results. First, the dataset exhibits class imbalance, with fewer malignant
samples relative to benign categories—a limitation that could affect generalization despite
augmentation. Second, the clinical metadata fields (e.g., age, sex, lesion site) are
limited, preventing deeper patient context integration. Third, the model has not yet been
validated across multi-center or ethnically diverse datasets, which are necessary for
broader clinical deployment (Goodfellow et al., 2016; Rajpurkar et al., 2022).
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Regarding interpretability, the model uses Grad-CAM to create localized heatmaps
emphasizing essential areas within dermoscopic photos and SHAP (SHapley Additive
Explanations) to quantify feature importance. Together, these visualization aids offer
understandable justifications of model projections that show which clinical and visual
characteristics most affected every choice. But to guarantee these interpretability
techniques match clinical judgment and boost practitioner confidence, further approval
with competent dermatologists is required.

5.4 Implications and Future Work

Moreover, the results highlight the possibility of multimodal artificial intelligence systems
as effective clinical decision-support instruments. Combining picture with clinical data not
only improves diagnostic precision but also matches artificial intelligence reasoning with
human diagnostic logic, hence bridging the divide between algorithmic prediction and
medical interpretation. In real use, the suggested model could be added into tele-
dermatology systems to allow distant triage, early skin cancer screening, and diagnostic
support in low-resource situations. environments (Patel et al., 2022; Li et al., 2024). Such
deployment would help to enable fair access to dermatological treatment and early
detection of malignant lesions.

Future research should focus on expanding multimodal datasets, incorporating
additional metadata such as genetic markers or patient history, and evaluating the
framework across diverse clinical environments. Furthermore, hybrid explainability
approaches—combining SHAP values and Grad-CAM visualization—could enhance
interpretability, fostering clinician trust and accelerating Al adoption in dermatological
workflows.
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Figure 7: SHAP-Based Feature Importance Plot for Multimodal Model Predictions

This bar plot presents the SHAP (SHapley Additive exPlanations) feature importance
analysis for the proposed multimodal deep learning framework. The plot quantifies each
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feature’s contribution to the model’s prediction outcomes, combining both clinical
variables (e.g., patient age, lesion site, sex) and image-derived features (e.g., texture
entropy, color asymmetry, border irregularity). The results indicate that lesion site and
age are the most influential clinical predictors, while texture and color asymmetry
dominate among visual features. The balanced distribution of importance across both
modalities confirms the model’s ability to learn complementary and clinically
interpretable representations, reinforcing the strength of multimodal fusion in
dermatological diagnosis.

6. CONCLUSION AND FUTURE WORK

This work introduced a multimodal deep learning model that combines dermoscopic
pictures with structured clinical metadata for precise classification of skin disease.
Compared to single-modal baselines, the framework produced better diagnostic
accuracy, generalization, and interpretability by mixing the representational strengths of
CNNss for picture analysis with MLPs for medical data encoding.

The framework compatibility with the latest findings that multimodal fusion is an exciting
future of the dermatological artificial intelligence field is intertwined with its capability to
model visual and contextual cues jointly (Ge et al., 2017; Chen et al., 2023; Cai et al.,
2023). Moreover, the explainability analysis using SHAP interpretation confirmed that
both clinical and visual variables play an important role in predictions, which supports the
transparency and clinical applicability of the framework (Wang et al., 2022; Lyakhov et
al., 2022). These results indicate that multimodal learning is not only more accurate but
also more trustworthy, and Al-based diagnostic systems would make clinical decision
support and teledermatology easier to use (Yan et al., 2025; Chakkarapani et al., 2025).

Although it has positive results, the study has a number of weaknesses. The lack of
diversity of metadata fields and dataset imbalance limited the ability of the model to
represent the full variability of patients. Besides, its external generalizability is limited by
the absence of multi-center validation and clinical testing in the real-world (Badr et al.,
2025; Banothu et al., 2026).

For future research, several avenues are proposed.

1. Dataset Expansion: Creating more demographically varied datasets that integrate
non-dermoscopic and dermoscopic images with more extensive clinical annotations.

2. Improved transparency comes from the use of sophisticated interpretability
techniques like Grad-CAM++ or attention-based saliency visualization (Pacheco
&amp; Krohling, 2021).

3. Employing privacy-preserving training approaches allows shared model creation
across institutions without disclosing sensitive patient information (Fan et al., 2025).

4. Integrating multimodal artificial intelligence algorithms into dermatological program
and mobile apps allows immediate, point-of-care analysis and decision assistance.
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In essence, this study confirms that multimodal deep learning is a transforming method
for diagnosing dermatological diseases. It provides a strong basis for smart,
understandable, and clinically integrable diagnostic systems that can greatly forward
precision medicine in dermatology by connecting visual and clinical reasoning.
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