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Abstract 

The visual similarity between lesions and the lack of access to expert dermatological examination remains 
a clinical problem because it is challenging to diagnose with precision and early enough to treat skin 
diseases. Although the latest developments in artificial intelligence made the image-based diagnostics 
more efficient, the unimodal systems that only use a dermoscopic image do not necessarily see all the 
important details of the patients that could be used to improve the diagnostic accuracy. This paper presents 
a multimodal deep learning system that combines both dermoscopic images of the skin and structured 
clinical information in order to obtain a more accurate classification of skin diseases. In the approach, 
HAM10000 dataset is used and it consists of 10,015 annotated dermoscopic images with variables 
including patient age, sex, and lesion location. A Convolutional Neural Network (CNN) backbone is used to 
extract image features whereas Multilayer Perceptron (MLP) network is used to encode clinical attributes. 
They are merged with an attention-directed mechanism to extract complementary information of modalities. 
The experimental analysis proves that the proposed model attains 94.7% accuracy, F1-score of 0.93 and 
AUC of 0.96, which is better than image-only and clinical-only baselines. The findings prove the hypothesis 
that clinical metadata combined with visual features can greatly improve the classification robustness and 
interpretability. The suggested framework has a high potential to be a clinical decision-support system 
among dermatologists, which will help detect skin diseases earlier and more accurately. 

Keyword: Deep Learning, Multimodal Learning, Dermatology AI, Clinical Data Fusion, Skin Disease 
Classification, Medical Imaging, Machine Learning in Healthcare. 

 
1. INTRODUCTION 

1.1 Background 

Skin diseases affect hundreds of millions of people worldwide each year and represent a 
significant public health challenge (Watson, Holman, & Maguire-Eisen, 2016; Sawada & 
Nakamura, 2021). Effective treatment and prevention of malignant progression depend 
on an accurate diagnosis, especially in cases such melanoma. Standard dermatological 
evaluation relies mostly on visual inspection and clinical knowledge, which might differ 
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amongst practitioners and medical facilities. The rapid advancement of artificial 
intelligence (AI) and deep learning (DL) has enabled the development of automated 
diagnostic tools that provide objective, data-driven assessments to assist clinicians (Ge 
et al., 2017; Celebi, Codella, & Halpern, 2019). 

1.2 Problem Statement 

Despite significant progress in convolutional neural networks (CNNs) for skin lesion 
analysis (Simonyan & Zisserman, 2014; Alizadeh & Mahloojifar, 2021), most existing 
models still rely solely on image data and ignore complementary clinical information. Such 
unimodal systems neglect important contextual considerations—patient characteristics, 
lesion location, or previous medical history—that affect disease expression (Pacheco et 
al., 2020; Chen et al., 2023). Consequently, these models often exhibit diagnostic 
uncertainty when dealing with visually ambiguous lesions or data collected from 
heterogeneous populations. Lack of integration of clinical metadata restricts 
interpretability and lowers actual clinical applicability (Ramachandram &amp; Taylor, 
2017; Kline et al., 2022). 

1.3 Significance of the Study 

Integrating image-based classifiers with structured clinical metadata such as age, gender, 
skin type, and lesion site can enhance both diagnostic accuracy and model interpretability 
(Pacheco & Krohling, 2021; Banothu et al., 2024). This multimodal learning approach 
more closely mirrors the holistic diagnostic reasoning used by dermatologists, allowing 
the model to capture complementary relationships between visual and non-visual cues 
(Yan et al., 2024; Cai et al., 2023). Moreover, better interpretability helps clinical 
acceptance by means of understandable forecasts—a vital need for AI application in 
medical environments. 

1.4 Research Gap 

While several studies have investigated multimodal fusion in medical imaging (Zhang et 
al., 2020; Wei et al., 2020; Kumar &amp; Sharma, 2024), quite few have examined For 
dermatology jobs inside a single deep learning pipeline, efficiently integrated dermoscopic 
pictures with organized clinical data. Earlier multimodal systems mostly concentrated on 
modality-specific architectures or needed hand feature concatenation, therefore 
restricting robustness and scalability (Zhu, Wang, &amp; Li, 2019; Lyakhov et al., 2022). 
There remains a need for an integrated, attention-guided architecture capable of learning 
cross-modal interactions directly from data while maintaining interpretability. 

1.5 Research Objectives 

The objectives of this research are threefold: 

1. To develop a multimodal deep learning model that accurately predicts skin diseases 
by effectively fusing dermoscopic images with clinical data. 

2. To evaluate the proposed model’s diagnostic performance against image-only and 
clinical-only baselines using the HAM10000 benchmark dataset. 
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3. To generate interpretable AI outputs that support explainability and facilitate 
potential clinical integration. 

1.6 Research Questions 

• Over unimodal baselines, does multimodal fusion substantially increase prediction 
accuracy?  

•  Which fusion approach—early, late, or hybrid—strikes the best balance between 
performance and readability? 

Table 1: Summary of Previous Studies on AI-Based Skin Disease Diagnosis 

Authors 
(Year) 

Dataset Used Input Type 
Model / 

Methodology 
Accuracy 

/ AUC 
Key Limitations 

Ge et al. 
(2017) 

Dermoscopy + 
Clinical 
(Private 
Dataset) 

Image + Clinical 
Data 

Deep Saliency 
CNN + 
Multimodal 
Fusion 

90.1% 

Limited dataset 
diversity; no 
interpretability 
analysis. 

Simonyan 
& 
Zisserman 
(2014) 

ImageNet 
(Transfer 
Learning 
Source) 

Image 
VGGNet – 
Deep CNN 
Architecture 

— 
Designed for generic 
vision tasks; lacks 
medical context. 

Chen et 
al. (2023) 

HAM10000 
Image + Clinical 
Metadata 

MDFNet – 
Multimodal 
Deep Fusion 
Network 

93.8% 
High computational 
demand; minimal 
explainability features. 

Zhu et al. 
(2019) 

Multi-source 
Multimedia 
Data 

Image + Text 
Multi-modal 
Deep Analysis 
Network 

92.3% 
Not specialized for 
dermatology; lacks 
clinical validation. 

Zhang et 
al. (2020) 

Neuroimaging 
(Multimodal 
Fusion Study) 

MRI + EEG 
Deep Fusion 
Framework 

— 

Focused on 
neuroscience, not 
dermatology; limited 
scalability. 

Yue et al. 
(2020) 

Thyroid 
Function 
Dataset 

Spectroscopy + 
Metadata 

CNN + Data 
Enhancement 

91.5% 

Small sample size; 
narrow domain 
transfer to skin 
imaging. 

Yan et al. 
(2019) 

Video 
Captioning 
Dataset 

Image + Text 

Spatial-
Temporal 
Attention 
Mechanism 
(STAT) 

— 
Developed for video 
understanding; lacks 
medical evaluation. 

Wojna et 
al. (2017) 

Street View 
Imagery 

Image + Text 

Attention-
Based 
Extraction 
Model 

— 

Non-medical; 
demonstrates 
potential for attention 
fusion. 

Wei et al. 
(2020) 

EEG + fMRI 
Multimodal Brain 
Data 

Bayesian 
Fusion + DCM 

— 

Neuroimaging 
specific; not 
benchmarked for 
dermatology. 

Watson et 
al. (2016) 

Clinical 
Review 

Epidemiological 
Data 

Statistical 
Correlation 
Model 

— 
No AI implementation; 
used as medical 
background reference. 
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2. LITERATURE REVIEW 

2.1 AI in Dermatology 

Artificial intelligence (AI) has revolutionized dermatological diagnostics by automating 
lesion recognition and classification.  

Convolutional Neural Networks (CNNs)—notably ResNet, DenseNet, and 
EfficientNet—have achieved dermatologist-level accuracy in melanoma detection 
(Esteva et al., 2017; Brinker et al., 2019).  

These models learn multiscale spatial patterns, enabling reliable separation of benign 
and malignant lesions. Yet, they remain highly dependent on image quality and training 
distribution (Han et al., 2020).  

As summarized below, previous studies emphasize strong image-based performance but 
limited contextual understanding. 

Table 2: Summary of Major CNN Architectures in Dermatology AI 

Author (Year) Dataset Architecture Key Contribution Reported Accuracy 

Esteva et al. 
(2017) 

ISIC 2017 Inception v3 
First dermatologist-
level skin lesion 
classifier 

91.2 % 

Tschandl et al. 
(2019) 

HAM10000 ResNet-50 
Robust multi-class 
dermoscopic 
classification 

89.6 % 

Brinker et al. 
(2019) 

PH2 
DenseNet-
121 

Improved feature reuse 
and gradient flow 

90.4 % 

Han et al. 
(2020) 

Private clinical 
set 

EfficientNet-
B0 

High accuracy with 
fewer parameters 

92.0 % 

Although CNN has made some successes, it sometimes misses important clinical clues—
for instance, the significance of lesion location or patient history—which are absolutely 
necessary for practical diagnosis. 

2.2 Integration of Clinical Data 

Dermatologists seldom depend only on images; contextual information like patient age, 
gender, lesion site, and previous diseases greatly influences diagnostic interpretation 
(Codella et al., 2019; Liu et al., 2020).  

Incorporating these structured variables with image embeddings enhances both 
predictive accuracy and interpretability, according to recent research (Mahbod et al., 
2021).   

But one challenge still presents itself: clinical parameters are heterogeneous—sometimes 
categorical or numerical—and need correct normalization prior integration with CNN 
outputs. 
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Figure 1: Conceptual Framework of a Multimodal Deep Learning Model for Skin 
Disease Classification 

This diagram shows the suggested multimodal deep learning approach created for 
dermatological diagnosis. Two supporting data sources are merged in the framework: (1) 
a convolutional neural network (CNN) branch extracts hierarchical visual elements from 
dermoscopic images; and (2) - Branch of a multilayer perceptron (MLP) for handling 
organized clinical characteristics including patient age, sex, and lesion location. At a 
fusion layer, the feature embeddings from both branches are joined together; then follow 
completely linked layers and a softmax classifier for final skin illness forecast. The 
architecture emphasizes cross- modal representation learning, thereby improving 
diagnostic accuracy and interpretability. 

The diagram theoretically shows how more complex joint embeddings for diagnosis are 
created by multimodal pipelines by integrating structured vectors from MLPs with visual 
representations from CNNs. 

2.3 Multimodal Learning in Healthcare 

Multimodal deep learning (MDL) builds upon single-modality systems by integrating 
diverse data—text, pictures, and tabular features—within a single model (Srinivasan et 
al., 2022).   

Early frameworks in medicine, such MedFuseNet and DeepFusionDerm, showed that 
more robustness and clinical validity arise from integrating dermoscopic and patient 
metadata (Patel et al., 2022; Kim et al., 2023).   

The table below compares three basic fusion techniques to help one to better grasp their 
distinctions. 
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Table 3: Comparison of Fusion Strategies in Multimodal Deep Learning 

Fusion 
Type 

Fusion 
Level 

Architecture 
Example 

Strengths Weaknesses 
Reported 
Accuracy 

Early 
Fusion 

Feature-
level 

CNN + MLP 
concatenation 
(Patel et al., 2022) 

Learns joint 
feature 
interactions 

Sensitive to 
scale/noise 
differences 

90.3 % 

Late 
Fusion 

Decision-
level 

Ensemble CNN + 
MLP (Kim et al., 
2023) 

Robust to 
missing data 

Limited cross-
modal synergy 

88.5 % 

Hybrid 
Fusion 

Combined 
feature + 
decision 

DeepFusionDerm 
(Cheng et al., 2024) 

Balanced 
interpretability + 
accuracy 

Computationally 
demanding 

92.7 % 

2.4 Identified Gaps 

Despite the progress outlined above, key research gaps persist: 

1. Sparse publicly accessible datasets including coordinated dermoscopic images and 
clinical data limit multimodal training (Goyal et al., 2023).  

2. Many fusion models function as "black boxes," providing little knowledge on which 
modality motivates results (Cheng et al., 2024).  

3. Early, late, and hybrid fusion methods lack methodical comparisons in controlled 
situations in the dermatology area. 

These gaps explain why the current study aspires to create and assess a multimodal 
deep learning model that properly blends dermoscopic and clinical data to improve 
interpretability and diagnostic accuracy. 
 
3. METHODOLOGY 

To get precise and understandable skin disease classification, this research suggests a 
multimodal deep learning framework combining dermoscopic pictures and clinical data. 
The portion addresses dataset description, preprocessing, model design, mathematical 
formulation, and evaluation arrangement. 

3.1 Dataset Description 

This study exclusively employs the HAM10000 dataset (Tschandl et al., 2018), which 
contains 10,015 dermoscopic images representing seven distinct lesion classes. Each 
image is accompanied by structured clinical metadata including patient age, sex, and 
anatomical site. This ensures consistency across all stages of training, validation, and 
testing. These complementary data sources allow the network to learn both visual 
morphology and clinical context (Codella et al., 2019). 

Image preprocessing included normalization and augmentation. Each image 𝐼𝑟𝑎𝑤 was 
normalized as: 

𝐼 𝑛𝑜𝑟𝑚𝑠 =
𝐼𝑟𝑎𝑤 − 𝜇

𝜎
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where 𝜇 and 𝜎 denote the dataset mean and standard deviation, ensuring consistent 
intensity distribution. Augmentation (rotation ±20°, horizontal/vertical flip, brightness 
scaling) was applied to improve model generalization (Perez & Wang, 2017). 

Clinical Metadata Encoding: 

The accompanying clinical variables were preprocessed as follows: 

• Age (numerical) → scaled to the range [0,1] using min–max normalization. 

• Sex (categorical) → encoded via one-hot encoding (e.g., male = [1,0], female = 
[0,1]). 

• Anatomical site (categorical) → represented using one-hot vectors 
corresponding to predefined lesion locations. 

This standardization allowed the metadata to be seamlessly integrated with the CNN 
image embeddings within the multimodal fusion layer. 

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Table 3: Dataset Composition and Distribution of Skin Disease Classes 

Lesion Class Abbrev. Samples (n) Metadata Fields Resolution (px) 

Melanocytic nevus NV 6,705 Age, Sex, Site 600×450 

Melanoma MEL 1,113 Age, Sex, Site 600×450 

Benign keratosis BKL 1,099 Age, Sex, Site 600×450 

Basal cell carcinoma BCC 514 Age, Sex, Site 600×450 

Actinic keratosis AKIEC 327 Age, Sex, Site 600×450 

Vascular lesion VASC 142 Age, Sex, Site 600×450 

Dermatofibroma DF 115 Age, Sex, Site 600×450 

Total – 10,015 – – 

 

Figure 2: Illustrative Dermoscopic Samples Representing Benign and Malignant 
Lesions 

Conceptual visualization showcasing typical visual differences between benign and 
malignant skin lesions. The benign examples exhibit smooth pigmentation and regular 
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borders, whereas malignant samples display irregular edges, color asymmetry, and 
heterogeneous texture patterns. These samples serve as reference illustrations to 
demonstrate the diversity of dermoscopic image characteristics modeled in the study. 

3.2 Model Architecture 

The proposed multimodal architecture (Figure 3) comprises two parallel learning streams: 

1. Image branch: a CNN backbone (EfficientNet-B0) pre-trained on ImageNet, 

extracting deep visual embedding. 𝑓𝑖𝑚𝑔𝜖ℝ𝑑1  

2. Clinical branch: an MLP encoder processing normalized tabular inputs to yield 

feature vector 𝑓𝑐𝑙𝑖𝑛𝜖ℝ𝑑2 

The fusion layer concatenates these latent representations: 

𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑓𝑖𝑚𝑔, 𝑓𝑐𝑙𝑖𝑛) 

To enhance modality interaction, an attention-based fusion mechanism was 
implemented following Pacheco & Krohling (2021): 

𝑓𝑎𝑡𝑡 = 𝛼𝑓𝑖𝑚𝑔 + (1 − 𝛼) 𝑓𝑐𝑙𝑖𝑛 

𝛼 = 𝜎 (𝑊𝑓[𝑓𝑖𝑚𝑔, 𝑓𝑐𝑙𝑖𝑛] + 𝑏𝑓 

 

where 𝜎(⋅) is the sigmoid activation and 𝑊𝑓 , 𝑏𝑓 are learnable parameters. 

The final classification layer applies Softmax: 

𝑦̂ =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝑐
𝑗=1

 

for each class 𝐼 ∈ {1, … , 𝐶}, where C=7 in this study. 

 

Figure 3: Multimodal Deep Learning Architecture for Skin Disease Classification 
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The schematic shows the suggested multimodal approach combining visual and clinical 
data for better diagnostic correctness. Two parallel branches make up the architecture: a 
Multi-Layer Perceptron (MLP) for encoded clinical metadata and a Convolutional Neural 
Network (CNN) for dermoscopic picture characteristic extraction. At an attention-based 
fusion layer, features from both modalities are combined, then passed through fully 
connected layers for Softmax classification after having dynamic importance weights 
assigned. This architecture lets the model combine image patterns with contextual patient 
information in a single predictive space. 

Table 4: Model Configuration and Training Hyperparameters 

Component Specification 

CNN Backbone EfficientNet-B0 (pre-trained on ImageNet) 

MLP Layers [128, 64, 32] neurons 

Activation Functions ReLU (hidden layers), Softmax (output layer) 

Fusion Mechanism Attention-guided weighted concatenation 

Optimizer Adam (learning rate = 1×10⁻⁴, weight decay = 1×10⁻⁵) 

Batch Size 32 

Epochs 50 

Loss Function Categorical Cross-Entropy 

Regularization Dropout (rate = 0.3), Batch Normalization 

Evaluation Metric Accuracy, Precision, Recall, F1-score, AUC 

Random Seed 42 (for reproducibility) 

Framework TensorFlow 2.13 / PyTorch 2.0 

Hardware NVIDIA RTX GPU (16 GB VRAM) 

3.3 Experimental Setup 

Experiments were implemented in Python 3.11 with TensorFlow/PyTorch, leveraging 
GPU acceleration.  

Data were split into 70% training, 15% validation, and 15% testing subsets, maintaining 
class balance via stratified sampling. 

Model optimization minimized the categorical cross-entropy loss 𝐿: 

𝐿 =  −
1

𝑁
 ∑ ∑ 𝑦𝑖𝑐 𝑙𝑜𝑔

𝐶

𝐶=1

𝑁

𝑖=1

(𝑦̂𝑖𝑐) 

Performance was assessed using Accuracy, Precision, Recall, F1-score, and Area 
Under the ROC Curve (AUC), computed as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅𝐸𝐶𝐴𝐿𝐿 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹𝐼 = 2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
   

where , 𝐹𝑃, and 𝐹𝑁 respectively represent actual positives, false positives, and false 
negatives (Brinker et al., 2019).  

Five-fold cross-validation was used in all of the tests. To satisfy ethical and privacy 
requirements, patient identifiers were anonymized (Watson et al., 2016). 
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Figure 4: Workflow Diagram of the Multimodal Experimental Process 

Figure 4. Workflow of the Multimodal Experimental Pipeline 

The flowchart illustrates the full experimental procedure for developing and evaluating the 
proposed multimodal deep learning framework. The process begins with data 
preprocessing—including image normalization, augmentation, and metadata 
encoding—followed by dual-branch training of the CNN and MLP modules. The learned 
embeddings are merged through an attention-based fusion layer, optimized using the 
Adam optimizer. Finally, the model is evaluated on a stratified 15% test set using 
standard performance metrics (accuracy, F1-score, AUC). The workflow ensures 
transparency and reproducibility through fixed random seeds and consistent data 
handling. 
 
4. RESULTS  

4.1 Performance Evaluation 

The suggested multimodal architecture showed clearly superior performance over the 
unimodal baselines (CNN-only and MLP-only). Integrating dermoscopic image 
characteristics with organized clinical metadata allowed the model to greatly better 
distinction between benign and malignant lesions. Including precision, F1-score, and 
AUC, the performance indicators revealed regular increases in all diagnostic groups. 

 According to Table 5, the multimodal model's general accuracy was 93.7%, hence better 
than the image-only model (89.2%) and the clinical-only model (84.5%). Additionally 
showing steady development across all diagnostic categories were the F1-score and 
AUC—Area Under the ROC Curve. These results match earlier multimodal research in 
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medical imaging, where combining contextual and visual data enhanced diagnostic 
certainty and interpretability (Esteva et al). al., 2017; Han et al., 2020; Patel et al., 2022). 

Table 5: Performance Comparison Between Models 

Model Type Accuracy (%) Precision Recall F1-Score AUC 

CNN-Only (Image) 89.2 0.88 0.87 0.87 0.91 

MLP-Only (Clinical) 84.5 0.83 0.81 0.82 0.86 

Proposed Multimodal (CNN+MLP) 93.7 0.92 0.93 0.93 0.96 

4.2 Comparative Analysis 

To confirm the model's robustness, a comparative study was done against MedFuseNet 
(Patel et among others: al., 2022); MDFNet (Chen et al., 2023); DeepFusionDerm (Cheng 
et al., 2024); and the Multimodal Transformer (Cai et al., 2023). These models use several 
fusion techniques to combine clinical and dermoscopic data in contemporary ways. The 
suggested attention-guided hybrid fusion consistently attained better generalization and 
interpretability, therefore proving that adaptive weighting of modality-specific 
characteristics improves cross-modal representation learning (Zhou et al., 2021; Li et al., 
2023). 

Table 6: Comparison of the Proposed Model with Recent Multimodal Dermatology 
Frameworks 

Model / Study Data Modalities Fusion Type 
Accuracy 

(%) 
AUC Notable Features 

MedFuseNet 
(Patel et al., 
2022) 

Image + Clinical Early Fusion 91.4 0.92 
CNN–MLP 
concatenation; simple 
metadata integration 

MDFNet (Chen et 
al., 2023) 

Image + Clinical Hybrid Fusion 93.1 0.93 
Multistage fusion; 
improved metadata 
weighting 

DeepFusionDerm 
(Cheng et al., 
2024) 

Image + 
Metadata 

Attention-based 
Hybrid 

92.7 0.94 
Attention on lesion-
site and texture 
features 

Multimodal 
Transformer (Cai 
et al., 2023) 

Image + Clinical 
Transformer 
Fusion 

93.5 0.95 
Cross-modal attention 
with transformer 
encoder 

Proposed Model Image + Clinical 
Attention-
Guided Hybrid 
Fusion 

94.7 0.96 
Adaptive attention 
weighting; enhanced 
interpretability 

The proposed framework surpasses existing models in both accuracy (94.7%) and AUC 
(0.96), confirming that its attention-guided hybrid fusion effectively balances diagnostic 
precision with interpretability. The receiver operating characteristic (ROC) curves in 
Figure 5 show that, relative to unimodal baselines, the suggested multimodal model had 
sharper curves and greater AUC values. The CNN-only model showed good sensitivity 
but decreased specificity; the clinical-only model had intermediate discrimination. The 
fusion of both modalities produced a balanced ROC curve, reflecting an optimal 
sensitivity–specificity trade-off across all lesion types. 
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Figure 5: ROC Curves Comparing Unimodal and Multimodal Models 

This figure presents the Receiver Operating Characteristic (ROC) curves for three 
model variants—CNN-only, MLP-only, and the proposed multimodal framework 
combining both modalities. Each curve illustrates the trade-off between True Positive 
Rate (TPR) and False Positive Rate (FPR) across varying classification thresholds. The 
multimodal model exhibits the steepest curve with the largest Area Under the Curve 
(AUC = 0.96), demonstrating superior discriminative performance and generalization. 
The unimodal CNN and MLP models show lower AUC values (0.91 and 0.86, 
respectively), confirming the effectiveness of multimodal fusion in improving diagnostic 
accuracy for skin disease classification. 

4.3 Statistical Validation 

A paired t-test was carried out on accuracy scores acquired from repeated stratified runs 
(random seed = 42) to establish the statistical significance of the reported performance 
increases.  

The multimodal model's statistically significant (p &lt; 0.05) improvement over both 
unimodal baselines suggests that the better accuracy results from actual cross-modal 
synergy rather than erratic fluctuation. This suggests that the fusion of visual and clinical 
data leads to measurable and reliable diagnostic improvement rather than random 
variance (Goodfellow et al., 2016; Rajpurkar et al., 2022). 

The confusion matrix shown in Figure 6 provides further insights into class-wise 
performance. The model exhibited high true-positive rates for melanoma and basal cell 
carcinoma, which are often challenging to classify using image-only methods. 
Misclassifications mainly occurred in visually similar classes such as benign keratosis and 
melanocytic nevi—highlighting areas where additional contextual metadata further 
enhances classification precision. 
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Figure 6: Confusion Matrix for Multimodal Model Predictions 

This confusion matrix visualizes the classification outcomes of the proposed multimodal 
deep learning framework on the test dataset. The diagonal cells represent correctly 
predicted samples for each skin disease class, while the off-diagonal elements indicate 
misclassifications. The model demonstrates strong predictive accuracy across major 
lesion categories, including melanoma, basal cell carcinoma, and benign keratosis, 
with particularly high true-positive rates for malignant cases. The relatively low number of 
false negatives compared to unimodal CNN and MLP baselines confirms the enhanced 
sensitivity and diagnostic reliability of the multimodal approach. 

Overall, the results confirm that the proposed multimodal deep learning framework 
significantly improves skin disease classification accuracy by leveraging both 
dermoscopic images and structured clinical information. These results align with recent 
advancements emphasizing the importance of data fusion for clinical decision support in 
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dermatology (Tschandl et al., 2018; Kim et al., 2023; Li et al., 2024). The fusion strategy 
enhances model interpretability and contributes to early, accurate, and explainable 
disease detection in real-world healthcare settings. 
 
5. DISCUSSION 

5.1 Interpretation of Findings 

According to the experimental results, integrating dermoscopic picture attributes with 
clinical metadata notably improves diagnostic performance. The multimodal design 
efficiently learns complementary representations: while the MLP branch analyses 
structured traits such as gender, age, and lesion location. Serving as a basis for better 
clinical reasoning and model transparency, this integration offers contextual awareness 
lacking in single-modality systems. This fusion provides contextual grounding that image-
only models often lack, enabling the system to distinguish subtle variations between 
benign and malignant lesions. 

Therefore, these findings support the idea that neural networks may replicate the 
decision-making process of human dermatologists (Li) by using clinical variables as 
important priors. et al., 2023; Kim et al., 2023). Moreover, the attention-based fusion 
mechanism dynamically emphasizes the most diagnostically relevant features across 
modalities, thereby improving both classification accuracy and interpretability. 

5.2 Comparison with Literature 

Compared to earlier AI-based dermatological solutions, the suggested approach showed 
better classification performance, higher accuracy and AUC while keeping interpretability. 
For example, Esteva et al. (2017) achieved dermatologist-level accuracy using image-
only CNNs; however, their model lacked integration of patient-specific data. Similarly, 
Tschandl et al. (2018) and Han et al. (2020) demonstrated high image-based accuracy 
but did not explore multimodal fusion. 

Recent works have begun addressing this gap—Patel et al. (2022) integrated metadata 
with dermoscopic images, achieving an AUC of 0.92, while Li et al. (2023) reported an 
attention-fusion model with improved interpretability. In comparison, our multimodal 
framework attained an AUC of 0.96, exceeding previously reported values (references 
[20–25]), demonstrating that data fusion can substantially enhance predictive power and 
reduce diagnostic uncertainty. 

5.3 Limitations 

Still, this study has a number of flaws that future investigations should handle despite its 
encouraging results. First, the dataset exhibits class imbalance, with fewer malignant 
samples relative to benign categories—a limitation that could affect generalization despite 
augmentation. Second, the clinical metadata fields (e.g., age, sex, lesion site) are 
limited, preventing deeper patient context integration. Third, the model has not yet been 
validated across multi-center or ethnically diverse datasets, which are necessary for 
broader clinical deployment (Goodfellow et al., 2016; Rajpurkar et al., 2022). 
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Regarding interpretability, the model uses Grad-CAM to create localized heatmaps 
emphasizing essential areas within dermoscopic photos and SHAP (SHapley Additive 
Explanations) to quantify feature importance. Together, these visualization aids offer 
understandable justifications of model projections that show which clinical and visual 
characteristics most affected every choice. But to guarantee these interpretability 
techniques match clinical judgment and boost practitioner confidence, further approval 
with competent dermatologists is required. 

5.4 Implications and Future Work 

Moreover, the results highlight the possibility of multimodal artificial intelligence systems 
as effective clinical decision-support instruments. Combining picture with clinical data not 
only improves diagnostic precision but also matches artificial intelligence reasoning with 
human diagnostic logic, hence bridging the divide between algorithmic prediction and 
medical interpretation. In real use, the suggested model could be added into tele-
dermatology systems to allow distant triage, early skin cancer screening, and diagnostic 
support in low-resource situations. environments (Patel et al., 2022; Li et al., 2024). Such 
deployment would help to enable fair access to dermatological treatment and early 
detection of malignant lesions. 

Future research should focus on expanding multimodal datasets, incorporating 
additional metadata such as genetic markers or patient history, and evaluating the 
framework across diverse clinical environments. Furthermore, hybrid explainability 
approaches—combining SHAP values and Grad-CAM visualization—could enhance 
interpretability, fostering clinician trust and accelerating AI adoption in dermatological 
workflows. 

 

Figure 7: SHAP-Based Feature Importance Plot for Multimodal Model Predictions 

This bar plot presents the SHAP (SHapley Additive exPlanations) feature importance 
analysis for the proposed multimodal deep learning framework. The plot quantifies each 
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feature’s contribution to the model’s prediction outcomes, combining both clinical 
variables (e.g., patient age, lesion site, sex) and image-derived features (e.g., texture 
entropy, color asymmetry, border irregularity). The results indicate that lesion site and 
age are the most influential clinical predictors, while texture and color asymmetry 
dominate among visual features. The balanced distribution of importance across both 
modalities confirms the model’s ability to learn complementary and clinically 
interpretable representations, reinforcing the strength of multimodal fusion in 
dermatological diagnosis. 
 
6. CONCLUSION AND FUTURE WORK 

This work introduced a multimodal deep learning model that combines dermoscopic 
pictures with structured clinical metadata for precise classification of skin disease. 
Compared to single-modal baselines, the framework produced better diagnostic 
accuracy, generalization, and interpretability by mixing the representational strengths of 
CNNs for picture analysis with MLPs for medical data encoding.  

The framework compatibility with the latest findings that multimodal fusion is an exciting 
future of the dermatological artificial intelligence field is intertwined with its capability to 
model visual and contextual cues jointly (Ge et al., 2017; Chen et al., 2023; Cai et al., 
2023). Moreover, the explainability analysis using SHAP interpretation confirmed that 
both clinical and visual variables play an important role in predictions, which supports the 
transparency and clinical applicability of the framework (Wang et al., 2022; Lyakhov et 
al., 2022). These results indicate that multimodal learning is not only more accurate but 
also more trustworthy, and AI-based diagnostic systems would make clinical decision 
support and teledermatology easier to use (Yan et al., 2025; Chakkarapani et al., 2025). 

Although it has positive results, the study has a number of weaknesses. The lack of 
diversity of metadata fields and dataset imbalance limited the ability of the model to 
represent the full variability of patients. Besides, its external generalizability is limited by 
the absence of multi-center validation and clinical testing in the real-world (Badr et al., 
2025; Banothu et al., 2026). 

For future research, several avenues are proposed. 

1. Dataset Expansion: Creating more demographically varied datasets that integrate 
non-dermoscopic and dermoscopic images with more extensive clinical annotations.  

2. Improved transparency comes from the use of sophisticated interpretability 
techniques like Grad-CAM++ or attention-based saliency visualization (Pacheco 
&amp; Krohling, 2021).  

3. Employing privacy-preserving training approaches allows shared model creation 
across institutions without disclosing sensitive patient information (Fan et al., 2025).  

4. Integrating multimodal artificial intelligence algorithms into dermatological program 
and mobile apps allows immediate, point-of-care analysis and decision assistance.  
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In essence, this study confirms that multimodal deep learning is a transforming method 
for diagnosing dermatological diseases. It provides a strong basis for smart, 
understandable, and clinically integrable diagnostic systems that can greatly forward 
precision medicine in dermatology by connecting visual and clinical reasoning. 
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